Open Access

Classification and nomenclature of all human homeobox genes

  • Peter WH Holland1Email author,
  • H Anne F Booth1 and
  • Elspeth A Bruford2
Contributed equally
BMC Biology20075:47

DOI: 10.1186/1741-7007-5-47

Received: 30 March 2007

Accepted: 26 October 2007

Published: 26 October 2007

Abstract

Background

The homeobox genes are a large and diverse group of genes, many of which play important roles in the embryonic development of animals. Increasingly, homeobox genes are being compared between genomes in an attempt to understand the evolution of animal development. Despite their importance, the full diversity of human homeobox genes has not previously been described.

Results

We have identified all homeobox genes and pseudogenes in the euchromatic regions of the human genome, finding many unannotated, incorrectly annotated, unnamed, misnamed or misclassified genes and pseudogenes. We describe 300 human homeobox loci, which we divide into 235 probable functional genes and 65 probable pseudogenes. These totals include 3 genes with partial homeoboxes and 13 pseudogenes that lack homeoboxes but are clearly derived from homeobox genes. These figures exclude the repetitive DUX1 to DUX5 homeobox sequences of which we identified 35 probable pseudogenes, with many more expected in heterochromatic regions. Nomenclature is established for approximately 40 formerly unnamed loci, reflecting their evolutionary relationships to other loci in human and other species, and nomenclature revisions are proposed for around 30 other loci. We use a classification that recognizes 11 homeobox gene 'classes' subdivided into 102 homeobox gene 'families'.

Conclusion

We have conducted a comprehensive survey of homeobox genes and pseudogenes in the human genome, described many new loci, and revised the classification and nomenclature of homeobox genes. The classification scheme may be widely applicable to homeobox genes in other animal genomes and will facilitate comparative genomics of this important gene superclass.

Background

Homeobox genes are characterized by the possession of a particular DNA sequence, the homeobox, which encodes a recognizable although very variable protein domain, the homeodomain [1, 2]. Most homeodomains are 60 amino acids in length, although exceptions are known. Many homeodomain proteins are transcription factors with important roles in embryonic patterning and cell differentiation, and several have been implicated in human diseases and congenital abnormalities [3].

The homeobox genes have been variously subdivided into superclasses, classes, subclasses or groups, although there has been much inconsistency in the use of these terms. The most commonly recognized groupings are the ANTP, PRD, LIM, POU, HNF, SINE, TALE, CUT, PROS and ZF groups (or variants of these names), although these are not always given equal rank in classification schemes [1, 2, 48]. There is more consensus in classification at a lower level, just above the level of the gene, where very similar genes are grouped into gene families. Widely recognized gene families include Dlx, Evx, Msx, Cdx, En, Otx, Pitx, Otx and Emx (or variants of these names), amongst many others, although there is variation particularly concerning how many gene families are used for the HOX, PAX and NK homeobox genes. Despite the numerous discrepancies, the common principle of classification is the same. The goal of any scheme is to mirror evolutionary diversification, so that 'closely related' genes are placed in the same gene family, and related gene families are placed in the same gene class or other higher grouping. It should be borne in mind, however, that the pathway of evolutionary diversification is never completely known for any large and complex set of genes.

The initial analyses of the draft human genome sequence published in 2001 included estimates of the number of human homeobox genes. Venter et al [9] found 160 homeobox genes, containing 178 homeobox sequences, using large-scale automated classification; while the IHGSC team [10] gave a much higher estimate of 267 homeobox genes. Both were based on draft coverage of the human genome and would be expected to be missing some genes, as well as confusing pseudogenes with genes. In the same year, Banerjee-Basu and Baxevanis [8] presented an analysis of 129 human homeodomain sequences, but this was far from a comprehensive survey. More recently, there have been two more accurate surveys of homeobox genes in the human genome. Nam and Nei [11] found 230 homeobox genes, containing 257 homeobox sequences. Ryan et al [7] found 228 homeodomain sequences in the NCBI RefSeq database of October 2004. Our analyses (described here) revealed many homeobox genes that were incorrectly annotated, named or classified and many homeobox pseudogenes that had previously been missed. We report a complete survey of homeobox loci in the euchromatic regions of the human genome, appropriate gene nomenclature and a consistent classification scheme.

Results and Discussion

How many homeobox genes and pseudogenes?

Using exhaustive database screening, followed by manual examination of sequences, we identified 300 homeobox loci in the human genome. Distinguishing which of these loci are functional genes and which are non-functional pseudogenes was difficult in some cases. Most loci classified as pseudogenes in this study are integrated reverse-transcribed transcripts, readily recognized by their dispersed genomic location, complete lack of intron sequences, and (in some cases) 3' homopolymeric run of adenine residues. A small minority are duplicated copies of genes, recognized by physical linkage to their functional counterparts and the same (or similar) exon-intron arrangement. In general, retrotransposed gene copies are non-functional (and therefore pseudogenes) from the moment of integration because they lack 5' promoter regions necessary for transcription. However, such sequences can occasionally acquire new promoters and become functional as 'retrogenes'. Duplicated gene copies often possess 5'promoter regions (as they are often encompassed by the duplication event); most degenerate to pseudogenes due to redundancy in a process known as non-functionalization, however some can be preserved as functional genes through sub- or neo-functionalization. Thus, in both instances, reliable indicators of non-functionality were sought in order to assign pseudogene status, notably frameshift mutations, premature stop codons and non-synonymous substitutions at otherwise conserved sites in the original coding region.

We currently estimate that the 300 human homeobox loci comprise 235 functional genes and 65 pseudogenes (Table 1). These figures include three functional genes that possess partial homeobox sequences (PAX2, PAX5 and PAX8) and retrotransposed pseudogenes that correspond to only part of the original transcript, whether or not it includes the homeobox region or indeed any of the original coding region. Consequently, 13 retrotransposed pseudogenes that lack homeobox sequences are included (NANOGP11, TPRX1P1, TPRX1P2, POU5F1P7, POU5F1P8, IRX4P1, TGIF2P2, TGIF2P3, TGIF2P4, CUX2P1, CUX2P2, SATB1P1, ZEB2P1). We do not include PAX1, PAX9 and CERS1; these are functional genes without homeobox motifs, albeit closely related to true homeobox genes (the other PAX and CERS genes).
Table 1

Numbers of human genes, pseudogenes and gene families in each homeobox gene class. The human homeobox gene superclass contains a total of 235 probable functional genes and 65 probable pseudogenes. These are divided between 102 gene families, which are in turn divided between eleven gene classes.

Class

Subclass

Number of gene families

Number of genes

Number of pseudogenes

ANTP

HOXL

14

52

0

 

NKL

23

48

19b

PRD

PAX

3

7a

0

 

PAXL

28

43

24c, d

LIM

 

6

12

0

POU

 

7

16

8e

HNF

 

2

3

0

SINE

 

3

6

0

TALE

 

6

20

10f

CUT

 

3

7

3g

PROS

 

1

2

0

ZF

 

5

14

1h

CERS

 

1

5i

0

Totals

 

102

235 a

65 b-h

aIncludes PAX2, PAX5 and PAX8 that have a partial homeobox; excludes PAX1 and PAX9 that lack a homeobox.

bIncludes NANOGP11 that lacks a homeobox.

cExcludes intronless and repetitive DUX1 to DUX5 sequences.

dIncludes TPRX1P1 and TPRX1P2 that lack a homeobox.

eIncludes POU5F1P7 and POU5F1P8 that lack a homeobox.

fIncludes IRX4P1, TGIF2P2, TGIF2P3 and TGIF2P4 that lack a homeobox.

gIncludes CUX2P1, CUX2P2 and SATB1P1 that lack a homeobox.

hIncludes ZEB2P1 that lacks a homeobox.

iExcludes CERS1 that lacks a homeobox.

The total number of homeobox sequences in the human genome is higher than 300 for two reasons. First, several genes and pseudogenes possess more than one homeobox sequence, notably members of the Dux (double homeobox), Zfhx and Zhx/Homez gene families. Second, we have excluded a set of sequences related to human DUX4 (DUX1 to DUX5), which have become part of 3.3 kb repetitive DNA elements present in multiple copies in the genome [1214]. Few of these tandemly-repeated sequences are likely to be functional as expressed proteins, and all were probably derived by retrotransposition from functional DUX gene transcripts (see below). The fact that they are not included in the total count, therefore, is likely to have limited bearing on understanding the diversity and normal function of human homeobox genes. Hence, our figure of 300 homeobox loci is the most useful current estimate of the repertoire of human homeobox genes and pseudogenes.

Classification

We propose a simple classification scheme for homeobox genes, based on two principal ranks: gene class and gene family. A gene class contains one or more gene families, which in turn will contain one or more genes. In a few cases, it is useful to erect an intermediate rank between these levels, and for this we use the term subclass. For the entire set of homeobox genes, we use the term superclass.

For the rank of gene family, we use a specific evolutionary-based definition based on common practice in the field of comparative genomics and developmental biology. We define a gene family as a set of genes derived from a single gene in the most recent common ancestor of bilaterian animals (here defined as the latest common ancestor of Drosophila and human). This definition has been made explicitly in previous work [2, 6] but is actually a principle that has been in widespread, but rather inconsistent, use for over a decade [15]. For example, amongst the homeobox genes, the En (engrailed) gene family was originally defined to include human EN1 and EN2, plus Drosophila en and inv [16]; these four genes arose by independent duplication from a single gene in the most recent common ancestor of insects and vertebrates. Moving outside the homeobox genes, this principle is also widespread; for example, the Hh (hedgehog) gene family was defined to include mouse Shh, Dhh and Ihh, plus Drosophila hh [17]. To clarify boundaries between gene families, we conducted molecular phylogenetic analyses of human homeodomain sequences, using a range of protostome and occasionally cnidarian homeodomain sequences as outgroups (Additional files 1 and 2).

While the gene family definition described above is generally workable for homeobox genes, by necessity there are some exceptions. One type of exception relates to genes with an unknown ancestral number. For example, there is uncertainty as to whether there were one or two Dlx (distal-less) genes in the most recent common ancestor of bilaterians; however it is common practice to refer to a single Dlx gene family [18]. Thus, we stick with convention for this set of genes. There is similar uncertainty over the ancestral number of Irx (iroquois) genes [19], and again we treat these as a single gene family. The HOX genes are an interesting case as their precise number in the most recent common ancestor of bilaterians is unknown due to lack of phylogenetic resolution between 'central' genes [20]. Here we divide the HOX genes into seven gene families: the 'anterior' Hox1 and Hox2 gene families, the 'group 3' Hox3 gene family, the 'central' Hox4, Hox5 and Hox6-8 gene families, and the 'posterior' Hox9-13 gene family. Another type of exception relates to 'orphan' genes. These are genes that have been found in one species (for example human) but not in other species, or at least not in a wide diversity of Metazoa. Some of these will be ancient genes that have been secondarily lost from the genomes of some species, in which case these comply with our evolutionary definition of a gene family made above. Others, however, will be rapidly evolving genes that originated from another homeobox gene and then diverged to such an extent that their origins are unclear [21]. Whenever origins are unclear, we must define a new gene family to encompass those genes, even though they may not date back to the latest common ancestor of bilaterians. In these cases, the gene family is erected to recognize a set of distinct genes on the basis of DNA and protein sequence, rather than on evolutionary origins.

Using the aforementioned criteria, we recognize 102 homeobox gene families in the human genome (Table 1). We are aware that other homeobox gene families exist in bilaterians but have been lost from humans (for example, Nk7, Ro, Hbn, Repo and Cmp; [7]), and we recognize that some gene family boundaries will alter as new information is obtained. Nonetheless, at the present time the 102 gene families provide a sound framework for the study of human homeobox genes.

It is much more difficult to propose a rigorous evolutionary definition for the rank of gene class. Every attempt to classify genes above the level of gene family involves a degree of arbitrariness. We define gene classes by taking two principal criteria into account. First, gene classes should ideally be monophyletic assemblages of gene families. To identify probable monophyletic groups of gene families, we conducted molecular phylogenetic analyses of homeodomain sequences, and looked for sets of gene families that group together stably, regardless of the precise composition of the dataset used (Figures 1, 2, 3; Additional files 3, 4, 5). Some gene families were difficult to place from sequence data alone, and were found in different gene classes (or subclasses) depending on the precise dataset analyzed or the phylogenetic method employed. This is perhaps not surprising as trees that encompass many homeobox genes can only be built with a short sequence alignment (the homeodomain); under these conditions, phylogenetic trees can only be used as a guide to possible classification, not the absolute truth. In ambiguous cases, we used the chromosomal location of genes to guide possible resolution between alternative hypotheses. Second, some homeobox gene classes can be characterized by the presence of additional protein domains outside of the homeodomain [2]. Recognized protein domains associated with homeodomains include the PRD domain, LIM domain, POU-specific domain, POU-like domain, SIX domain, various MEINOX-related domains, the CUT domain, PROS domain, and various ZF domains [2].
https://static-content.springer.com/image/art%3A10.1186%2F1741-7007-5-47/MediaObjects/12915_2007_Article_143_Fig1_HTML.jpg
Figure 1

Maximum likelihood phylogenetic tree of human ANTP-class homeodomains. Arbitrarily rooted phylogenetic tree of human ANTP-class homeodomains constructed using the maximum likelihood method. Bootstrap values supporting internal nodes with over 70% are shown. Homeodomain sequences derived from pseudogenes are excluded. The proposed division between the HOXL and NKL subclasses is indicated. The position of EN1 and EN2 is unstable; this tree places them in the NKL subclass, whereas neighbor-joining analysis of the same dataset places them at the base of the two subclasses (Additional file 3). Interrelationships of genes in the Nk4 and Nk2.2 families are also unstable (in this tree and Additional file 3 respectively); in these cases synteny within and between genomes clearly resolves gene families. Detailed relationships between different gene families should not be inferred from this tree.

https://static-content.springer.com/image/art%3A10.1186%2F1741-7007-5-47/MediaObjects/12915_2007_Article_143_Fig2_HTML.jpg
Figure 2

Maximum likelihood phylogenetic tree of human PRD-class homeodomains. Arbitrarily rooted phylogenetic tree of human PRD-class homeodomains constructed using the maximum likelihood method. Bootstrap values supporting internal nodes with over 70% are shown. Homeodomain sequences derived from pseudogenes are excluded, as are the partial homeodomains of PAX2, PAX5 and PAX8, and the HOPX homeodomain because its extremely divergent sequence destabilizes the overall tree topology. Roman numeral suffixes are used to distinguish multiple homeodomains encoded by a single Dux-family gene. In this tree Dux-family homeodomains are not monophyletic, even within the same gene; however, monophyly is recovered by neighbor-joining analysis (Additional file 4). Detailed relationships between different gene families should not be inferred from this tree.

https://static-content.springer.com/image/art%3A10.1186%2F1741-7007-5-47/MediaObjects/12915_2007_Article_143_Fig3_HTML.jpg
Figure 3

Maximum likelihood phylogenetic tree of human homeodomains excluding ANTP and PRD classes. Arbitrarily rooted phylogenetic tree of human homeodomains excluding the ANTP and PRD classes constructed using the maximum likelihood method. Bootstrap values supporting internal nodes with over 70% are shown. Homeodomain sequences derived from pseudogenes are excluded. Roman numeral suffixes are used to distinguish multiple homeodomains encoded by a single gene. Classes and/or families are color coded as shown in the key. The LIM and ZF classes are not recovered as two distinct monophyletic groups, a result also found by neighbor-joining analysis (Additional file 5). The multiple homeodomains of Zfhx-family proteins and Zhx/Homez-family proteins are also dispersed in the tree, presumably artefactually. Detailed relationships between different gene families should not be inferred from this tree.

Using the aforementioned criteria, we recognize eleven homeobox gene classes in the human genome: ANTP, PRD, LIM, POU, HNF, SINE, TALE, CUT, PROS, ZF and CERS (Table 1). There is no expectation that the eleven gene classes will be of similar size, simply because some classes will have undergone more expansion by gene duplication than others. In the human genome, the ANTP and PRD classes are much larger than the other classes. Although gene classes should ideally be monophyletic, it is possible that the ZF homeobox gene class, characterized by the presence of zinc finger motifs in most of its members, is polyphyletic (Figure 3; Additional file 5). In other words, domain shuffling may have brought together a homeobox sequence and a zinc finger sequence on more than one occasion. The same may also be true for the LIM class; alternatively the apparent polyphyly of LIM-class homeodomains could be a consequence of LIM domain loss or artefactual placement of some ZF-class homeodomains in phylogenetic analyses (Figure 3; Additional file 5).

In theory, it is possible to recognize higher level associations above the level of the gene class, because the diversification of homeobox genes will have taken place by a continual series of gene duplication events. We do not propose names for hierarchical levels above the rank of class, and consider that gene name, gene family and gene class (and occasionally subclass) convey sufficient information for most purposes.

We use a consistent convention for writing gene classes and gene families. We present the names of all gene classes in abbreviated non-italicized upper case – for example, the ANTP and PRD classes – to avoid confusion with gene symbols (Antp and prd) or indeed gene names (Antennapedia and paired). In contrast, we present the names of all gene families in non-italicized title case; for example, the Cdx, En and Gsc gene families. We have used this style consistently in recent work [6, 2123] and note that several other authors have done likewise [4, 7, 24]. We suggest that this style, and most of these gene family names, can be used in other bilaterian genomes. Extending the scheme to non-bilaterians is more difficult, however, and awaits clarification of the relationship between the homeobox genes of sponges, placozoans, cnidarians and bilaterians [7, 25].

The ANTP homeobox class

The ANTP class derives its name from the Antennapedia (Antp) gene, one of the HOX genes within the ANT-C homeotic complex of Drosophila melanogaster. The human genome has 39 HOX genes, arranged into four Hox clusters. Here we divide the HOX genes into seven gene families: Hox1, Hox2, Hox3, Hox4, Hox5, Hox6-8 and Hox9-13. The HOX genes are not the only ANTP-class genes, and we recognize a total of 37 gene families in this class (Table 1). We divide these 37 gene families between two subclasses that are relatively well-supported in phylogenetic analyses: the HOXL and the NKL subclasses (Figure 1; Additional file 3). As previously discussed, the subclasses are largely consistent with the chromosomal positions of genes [26, 27]. The HOXL (HOX-Like or HOX-Linked) genes primarily map to two fourfold paralogous regions: the Hox paralogon (2q, 7p/q, 12q and 17q) and the ParaHox paralogon (4q, 5q, 13q and Xq) (Figure 4). The NKL (NK-Like or NK-Linked) genes are more dispersed, but there is a concentration on the NKL or MetaHox paralogon (2p/8p, 4p, 5q and 10q) (Figure 4). Somewhat aberrantly, the Dlx and En gene families group with the NKL subclass in phylogenetic analyses (Figure 1; Additional file 3), but with the HOXL subclass on the basis of chromosomal positions (Figure 4).
https://static-content.springer.com/image/art%3A10.1186%2F1741-7007-5-47/MediaObjects/12915_2007_Article_143_Fig4_HTML.jpg
Figure 4

Chromosomal distribution of human homeobox genes. Ideograms of human chromosomes showing the locations of human homeobox genes. Hox clusters are each shown as a single line for simplicity. Probable pseudogenes are not shown. Genes are color coded according to their class or family (see key). Map positions were obtained through the Ensembl Genome Browser.

Most of the 37 gene families in the ANTP class have been clearly defined before. We draw attention here to several cases that could cause confusion. Other details can be found in Table 2.
Table 2

Human ANTP class homeobox genes and pseudogenes

Human ANTP-class homeobox genes and pseudogenes

HOXL subclass

Family

Gene symbol

Gene name

Location

Entrez gene ID

Previous symbols

Cdx

CDX1

caudal type homeobox 1

5q32

1044

 
 

CDX2

caudal type homeobox 2

13q12.2

1045

CDX3

 

CDX4

caudal type homeobox 4

Xq13.2

1046

 

Evx

EVX1

even-skipped homeobox 1

7p15.2

2128

 
 

EVX2

even-skipped homeobox 2

2q31.1

344191

 

Gbx

GBX1

gastrulation brain homeobox 1

7q36.1

2636

 
 

GBX2

gastrulation brain homeobox 2

2q37.2

2637

 

Gsx

GSX1

GS homeobox 1

13q12.2

219409

GSH1

 

GSX2

GS homeobox 2

4q12

170825

GSH2

Hox1

HOXA1

homeobox A1

7p15.2

3198

HOX1F

 

HOXB1

homeobox B1

17q21.32

3211

HOX2I

 

HOXD1

homeobox D1

2q31.1

3231

HOX4G

Hox2

HOXA2

homeobox A2

7p15.2

3199

HOX1K

 

HOXB2

homeobox B2

17q21.32

3212

HOX2H

Hox3

HOXA3

homeobox A3

7p15.2

3200

HOX1E

 

HOXB3

homeobox B3

17q21.32

3213

HOX2G

 

HOXD3

homeobox D3

2q31.1

3232

HOX4A

Hox4

HOXA4

homeobox A4

7p15.2

3201

HOX1D

 

HOXB4

homeobox B4

17q21.32

3214

HOX2F

 

HOXC4

homeobox C4

12q13.13

3221

HOX3E

 

HOXD4

homeobox D4

2q31.1

3233

HOX4B

Hox5

HOXA5

homeobox A5

7p15.2

3202

HOX1C

 

HOXB5

homeobox B5

17q21.32

3215

HOX2A

 

HOXC5

homeobox C5

12q13.13

3222

HOX3D

Hox6-8

HOXA6

homeobox A6

7p15.2

3203

HOX1B

 

HOXB6

homeobox B6

17q21.32

3216

HOX2B

 

HOXC6

homeobox C6

12q13.13

3223

HOX3C

 

HOXA7

homeobox A7

7p15.2

3204

HOX1A

 

HOXB7

homeobox B7

17q21.32

3217

HOX2C

 

HOXB8

homeobox B8

17q21.32

3218

HOX2D

 

HOXC8

homeobox C8

12q13.13

3224

HOX3A

 

HOXD8

homeobox D8

2q31.1

3234

HOX4E

Hox9-13

HOXA9

homeobox A9

7p15.2

3205

HOX1G

 

HOXB9

homeobox B9

17q21.32

3219

HOX2E

 

HOXC9

homeobox C9

12q13.13

3225

HOX3B

 

HOXD9

homeobox D9

2q31.1

3235

HOX4C

 

HOXA10

homeobox A10

7p15.2

3206

HOX1H

 

HOXC10

homeobox C10

12q13.13

3226

HOX3I

 

HOXD10

homeobox D10

2q31.1

3236

HOX4D, HOX4E

 

HOXA11

homeobox A11

7p15.2

3207

HOX1I

 

HOXC11

homeobox C11

12q13.13

3227

HOX3H

 

HOXD11

homeobox D11

2q31.1

3237

HOX4F

 

HOXC12

homeobox C12

12q13.13

3228

HOX3F

 

HOXA13

homeobox A13

7p15.2

3209

HOX1J

 

HOXB13

homeobox B13

17q21.32

10481

 
 

HOXC13

homeobox C13

12q13.13

3229

HOX3G

 

HOXD13

homeobox D13

2q31.1

3239

HOX4I

Mnx

MNX1

motor neuron and pancreas homeobox 1

7q36.3

3110

HLXB9, HB9, HOXHB9

Meox

MEOX1

mesenchyme homeobox 1

17q21.31

4222

MOX1

 

MEOX2

mesenchyme homeobox 2

7p21.1

4223

MOX2, GAX

Pdx

PDX1

pancreatic and duodenal homeobox 1

13q12.2

3651

IPF1, IUF1, IDX1, STF1

NKL subclass

Barhl

BARHL1

BarH-like homeobox 1

9q34.13

56751

 
 

BARHL2

BarH-like homeobox 2

1p22.2

343472

 

Barx

BARX1

BARX homeobox 1

9q22.32

56033

 
 

BARX2

BARX homeobox 2

11q24.3

8538

 

Bsx

BSX

brain specific homeobox

11q24.1

390259

 

Dbx

DBX1

developing brain homeobox 1

11p15.1

120237

 
 

DBX2

developing brain homeobox 2

12q12

440097

 

Dlx

DLX1

distal-less homeobox 1

2q31.1

1745

 
 

DLX2

distal-less homeobox 2

2q31.1

1746

TES1

 

DLX3

distal-less homeobox 3

17q21.33

1747

 
 

DLX4

distal-less homeobox 4

17q21.33

1748

DLX7, DLX8, DLX9, BP1

 

DLX5

distal-less homeobox 5

7q21.3

1749

 
 

DLX6

distal-less homeobox 6

7q21.3

1750

 

Emx

EMX1

empty spiracles homeobox 1

2p13.2

2016

 
 

EMX2

empty spiracles homeobox 2

10q26.11

2018

 

En

EN1

engrailed homeobox 1

2q14.2

2019

 
 

EN2

engrailed homeobox 2

7q36.3

2020

 

Hhex

HHEX

hematopoietically expressed homeobox

10q23.33

3087

HEX, PRH, PRHX

Hlx

HLX

H2.0-like homeobox

1q41

3142

HLX1, HB24

Lbx

LBX1

ladybird homeobox 1

10q24.32

10660

LBX1H, HPX6

 

LBX2

ladybird homeobox 2

2p13.1

85474

 

Msx

MSX1

msh homeobox 1

4p16.2

4487

HOX7

 

MSX2

msh homeobox 2

5q35.2

4488

HOX8, MSH

 

MSX2P1

msh homeobox 2 pseudogene

17q23.2

55545

HPX5, MSX2P

Nanog

NANOG

Nanog homeobox

12p13.31

79923

 
 

NANOGP1

Nanog homeobox pseudogene 1

12p13.31

404635

NANOG2

 

NANOGP2

Nanog homeobox pseudogene 2

2q36.1

414131

NANOGP4

 

NANOGP3

Nanog homeobox pseudogene 3

6p12.1

340217

 
 

NANOGP4

Nanog homeobox pseudogene 4

7p15.1

414132

NANOGP2

 

NANOGP5

Nanog homeobox pseudogene 5

9q31.1

414133

 
 

NANOGP6

Nanog homeobox pseudogene 6

10q24.2

414134

 
 

NANOGP7

Nanog homeobox pseudogene 7

14q32.12

414130

NANOGP3

 

NANOGP8

Nanog homeobox pseudogene 8

15q14

388112

NANOGP1

 

NANOGP9

Nanog homeobox pseudogene 9

Xq12

349386

NANOGP6

 

NANOGP10

Nanog homeobox pseudogene 10

Xp11.3

349372

NANOGP5

 

NANOGP11

Nanog homeobox pseudogene 11

6q25.2

414135

 

Nk1

NKX1-1

NK1 homeobox 1

4p16.3

54279

NKX1.1, HSPX153, HPX153

 

NKX1-2

NK1 homeobox 2

10q26.13

390010

NKX1.2, C10orf121

Nk2.1

NKX2-1

NK2 homeobox 1

14q13.3

7080

NKX2.1, NKX2A, TTF1, TITF1

 

NKX2-4

NK2 homeobox 4

20p11.22

4823

NKX2.4, NKX2D

Nk2.2

NKX2-2

NK2 homeobox 2

20p11.22

4821

NKX2.2, NKX2B

 

NKX2-8

NK2 homeobox 8

14q13.3

26257

NKX2.8, NKX2H

Nk3

NKX3-1

NK3 homeobox 1

8p21.2

4824

NKX3.1, NKX3A

 

NKX3-2

NK3 homeobox 2

4p15.33

579

NKX3.2, NKX3B, BAPX1

Nk4

NKX2-3

NK2 homeobox 3

10q24.2

159296

NKX2.3, NKX2C, NKX4-3, CSX3

 

NKX2-5

NK2 homeobox 5

5q35.1

1482

NKX2.5, NKX2E, NKX4-1, CSX, CSX1

 

NKX2-6

NK2 homeobox 6

8p21.2

137814

NKX2.6, NKX4-2, CSX2

Nk5/Hmx

HMX1

H6 family homeobox 1

4p16.1

3166

NKX5-3, H6

 

HMX2

H6 family homeobox 2

10q26.13

3167

NKX5-2, H6L

 

HMX3

H6 family homeobox 3

10q26.13

340784

NKX5-1

Nk6

NKX6-1

NK6 homeobox 1

4q21.23

4825

NKX6.1, NKX6A

 

NKX6-2

NK6 homeobox 2

10q26.3

84504

NKX6.2, NKX6B, GTX

 

NKX6-3

NK6 homeobox 3

8p11.21

157848

NKX6.3

Noto

NOTO

notochord homeobox

2p13.2

344022

 

Tlx

TLX1

T-cell leukemia homeobox 1

10q24.32

3195

HOX11, TCL3

 

TLX2

T-cell leukemia homeobox 2

2p13.1

3196

HOX11L1, NCX

 

TLX3

T-cell leukemia homeobox 3

5q35.1

30012

HOX11L2, RNX

Vax

VAX1

ventral anterior homeobox 1

10q26.11

11023

 
 

VAX2

ventral anterior homeobox 2

2p13.3

25806

 

Ventx

VENTX

VENT homeobox

10q26.3

27287

VENTX2, HPX42B

 

VENTXP1

VENT homeobox pseudogene 1

Xp21.3

139538

VENTX2P1, NA88A

 

VENTXP2

VENT homeobox pseudogene 2

13q31.1

347975

VENTX2P2

 

VENTXP3

VENT homeobox pseudogene 3

12q21.1

349814

VENTX2P3

 

VENTXP4

VENT homeobox pseudogene 4

3p24.2

152101

VENTX2P4

 

VENTXP5

VENT homeobox pseudogene 5

8p12

442384

 
 

VENTXP6

VENT homeobox pseudogene 6

8q21.11

552879

 
 

VENTXP7

VENT homeobox pseudogene 7

3p24.3

391518

VENTX1, HPX42

Human ANTP class homeobox genes and pseudogenes including full names, chromosomal locations, Entrez Gene IDs and previous symbols. NANOGP1 is a duplicate of NANOG.

Cdx, Gsx and Pdx gene families. Some authors refer to the Pdx gene family as the Xlox gene family [28]. One gene from each of these families (CDX2, GSX1 and PDX1) forms the ParaHox cluster at 13q12.2 (Figure 4), and clustering of Cdx, Gsx and Pdx genes is ancestral for chordates [28].

Mnx gene family. This gene family name derives from a previous study [29]. The family includes one gene in the human genome: MNX1 (formerly HLXB9), and two genes in the chicken genome: Mnx1 (formerly HB9) and Mnx2 (formerly MNR2). Some authors refer to the Mnx gene family as the Exex gene family due to the Drosophila ortholog exex [7].

Dlx gene family. It is currently unclear if this gene family is derived from one or more genes in the common ancestor of bilaterians [18]. Phylogenetic analyses place this gene family firmly within the NKL subclass (Figure 1; Additional file 3), but chromosomal positions (on the Hox chromosomes 2, 7 and 17) place it within the HOXL subclass (Figure 4). Here we favor placement of the Dlx gene family within the NKL subclass due to strong phylogenetic support.

En gene family. Phylogenetic analyses place this gene family either within the NKL subclass (maximum likelihood; Figure 1) or close to the division between the NKL and HOXL subclasses (neighbor-joining; Additional file 3). Here we place the En gene family within the NKL subclass, although we note that human EN2 maps close to the clear HOXL-subclass genes GBX1 and MNX1 on chromosome 7 (Figure 4).

Nk2.1 and Nk2.2 gene families. The genes NKX2-1 (formerly TITF1), NKX2-4, NKX2-2 and NKX2-8 divide into two distinct gene families each with an invertebrate ortholog, not a single Nk2 gene family. NKX2-1 and NKX2-4 are collectively orthologous to Drosophila scro and amphioxus AmphiNk2-1 [30, 31]; these comprise one gene family: Nk2.1. NKX2-2 and NKX2-8 are collectively orthologous to Drosophila vnd and amphioxus AmphiNk2-2 [31, 32]; these comprise a second gene family: Nk2.2.

Nk4 gene family. The genes NKX2-3, NKX2-5 and NKX2-6 form a gene family, quite distinct from other human genes that confusingly share the prefix NKX2. These three genes are actually orthologs of Drosophila tin (formerly NK4); they are not orthologs of Drosophila vnd (formerly NK2) or scro [33]. Therefore, they do not belong to the Nk2.1 or Nk2.2 gene families, but belong to a separate Nk4 gene family. As the three gene names have very extensive current usage, it may be difficult for revised names to be used consistently. In this situation, we don't alter the current names, but raise for discussion the possibility of these genes being renamed to the more logical NKX4-1 (NKX2-5), NKX4-2 (NKX2-6) and NKX4-3 (NKX2-3), or to CSX1 (NKX2-5), CSX2 (NKX2-6) and CSX3 (NKX2-3), based on the alternative name CSX1 for NKX2-5 [34].

Noto gene family. This gene family falls close to the division between the ANTP and PRD classes in phylogenetic analyses (Additional files 1 and 2). We favor placement within the ANTP class as the human NOTO gene is chromosomally linked to the clear ANTP-class (NKL-subclass) genes EMX1, LBX2, TLX2 and VAX2 on chromosome 2 (Figure 4), suggesting ancestry by ancient tandem duplication.

Most of the 100 genes in the ANTP class have been adequately named previously. However, several genes were unnamed or misnamed prior to this study. We have updated these as follows.

GSX2 [Entrez Gene ID: 170825] is the second of two human members of the Gsx gene family. This previously unnamed gene has clear orthology to mouse Gsh2, inferred from sequence identity and synteny. We designate the gene GSX2 and revise the nomenclature of the other human member of the family from GSH1 to GSX1 [Entrez Gene ID: 219409], in accordance with homeobox gene nomenclature convention.

MNX1 [Entrez Gene ID: 3110] is the only member of the Mnx gene family in the human genome. This gene was previously known as HLXB9; we rename it MNX1 because it is not part of a series of at least nine related genes.

PDX1 [Entrez Gene ID: 3651] is the only member of the Pdx gene family in the human genome. This gene was previously known as IPF1; we rename it PDX1 because the majority of published studies use this as the gene symbol.

BSX [Entrez Gene ID: 390259] is the only member of the Bsx gene family in the human genome. We designate this previously unnamed gene BSX on the basis of clear orthology to the mouse Bsx gene, inferred from sequence identity and synteny.

DBX1 [Entrez Gene ID: 120237] and DBX2 [Entrez Gene ID: 440097] are the only two members of the Dbx gene family in the human genome. We designate these previously unnamed genes DBX1 and DBX2 on the basis of clear orthology to mouse Dbx1 and Dbx2, inferred from sequence identity and synteny.

NKX1-1 [Entrez Gene ID: 54729] and NKX1-2 [Entrez Gene ID: 390010] are the only two members of the Nk1 gene family in the human genome. These genes were previously known as HSPX153 and C10orf121 respectively; we rename them NKX1-1 and NKX1-2 on the basis of clear orthology to mouse Nkx1-1 and Nkx1-2, inferred from sequence identity and synteny.

NKX2-1 [Entrez Gene ID: 7080] is the first of two human members of the Nk2.1 gene family. This gene was previously known as TITF1; we rename it NKX2-1 to show that it is a member of the Nk2.1 gene family.

NKX2-6 [Entrez Gene ID: 137814] is the third of three human members of the Nk4 gene family. We designate this previously unnamed gene NKX2-6 on the basis of clear orthology to mouse Nkx2-6, inferred from sequence identity and synteny, although nomenclature revision for the entire Nk4 gene family should be discussed (see above).

NKX3-2 [Entrez Gene ID: 579] is the second of two human members of the Nk3 gene family. This gene was previously known as BAPX1; we rename it NKX3-2 to show that it is a member of the Nk3 gene family.

NKX6-3 [Entrez Gene ID: 157848] is the third of three human members of the Nk6 gene family. We designate this previously unnamed gene NKX6-3 on the basis of clear orthology to mouse Nkx6-3, inferred from sequence identity and synteny.

VENTX [Entrez Gene ID: 27287] is the only functional member of the Ventx gene family in the human genome. This gene was previously known as VENTX2. We remove the numerical suffix from this gene symbol because we discovered that the sequence formerly known as VENTX1 is actually a retrotransposed pseudogene derived from this gene. Accordingly, we also replace the VENTX1 symbol with VENTXP7 (see below).

In contrast to the previous descriptions of probable functional genes, there has been much less research on pseudogenes within the ANTP class. Eleven pseudogenes derived from the human NANOG gene have been described previously [22], while four pseudogenes in the Ventx gene family have been reported following routine annotation of the human genome. We have identified two additional Ventx-family pseudogenes (VENTXP5 and VENTXP6), and also found two cases of pseudogenes that were originally mistaken for functional genes (MSX2P1 and VENTXP7). In all cases, we have clarified the origins and organization of these pseudogenes. This research brings the total number of ANTP-class pseudogenes in the human genome to 19.

MSX2P1 [Entrez Gene ID: 55545]. A short cDNA sequence [EMBL: X74862] related to the Msx gene family was reported previously [35]; the former Entrez Gene record labeled HSHPX5 was based on this sequence. This locus was later provisionally called MSX4, as it was distinct from human MSX1 and MSX2, and by synteny it was clearly not the ortholog of mouse Msx3 [27]. It is now clear that this locus was formed by retrotransposition of mRNA from MSX2 and hence we name it MSX2P1. The genomic sequence of MSX2P1 can now be accessed via the Reference Sequence collection [RefSeq: NR_002307]. The pseudogene shares 91% sequence identity with MSX2 mRNA, lacks intronic sequence, and has remnants of a 3' poly(A) tail. It is intriguing, but probably coincidental, that the MSX2P1 pseudogene has integrated at 17q23.2, close to several ANTP-class genes (HOXB cluster, MEOX1, DLX3 and DLX4).

NANOGP1 [Entrez Gene ID: 404635]. We follow Booth and Holland [22] and classify NANOGP1 as a pseudogene that arose by tandem duplication of NANOG. The alternative view, argued by Hart et al [36], is that this locus is a functional gene, and should be named NANOG2. There is evidence for transcription of this locus in human embryonic stem cells [36], and for selection-driven conservation of the open reading frame [37], but as yet no clear evidence for function.

NANOGP8 [Entrez Gene ID: 388112]. We follow Booth and Holland [22] and classify NANOGP8 as a retrotransposed pseudogene. The alternative view, argued by Zhang et al [38], is that this locus is a functional retrogene. There is evidence for transcription and translation of this locus in cancer cell lines and tumors [38], but no evidence yet for a role in normal tissues.

VENTXP1 [Entrez Gene ID: 139538], VENTXP2 [Entrez Gene ID: 347975], VENTXP3 [Entrez Gene ID: 349814] and VENTXP4 [Entrez Gene ID: 152101]. These four VENTX retrotransposed pseudogenes have been reported previously, and were originally known as VENTX2P1 to VENTX2P4. The correction of the VENTX2 gene symbol to simply VENTX (see above) means that each of the pseudogene names should also change; we rename them VENTXP1 to VENTXP4. VENTXP1 is transcribed but due to mutations it can no longer encode a homeodomain protein; it can however encode an antigenic peptide (NA88A) responsible for T-cell stimulation in response to melanoma [39].

VENTXP5 [Entrez Gene ID: 442384]. We designate this previously unnamed sequence VENTXP5 because it is clearly a retrotransposed pseudogene of VENTX. The genomic sequence of VENTXP5 can now be accessed via the Reference Sequence collection [RefSeq: NG_005091]. The pseudogene shares 83% identity with VENTX mRNA (after masking of an Alu element in the parental mRNA sequence), lacks intronic sequence, and has remnants of a 3' poly(A) tail.

VENTXP6 [Entrez Gene ID: 552879]. We designate this previously unannotated sequence VENTXP6 because it is clearly a retrotransposed pseudogene of VENTX. Its lack of annotation may reflect the fact that it is located within an intron of an unrelated and well characterized gene, STAU2. The genomic sequence of VENTXP6 can now be accessed via the Reference Sequence collection [RefSeq: NG_005090]. The pseudogene shares 87% identity with VENTX mRNA (after masking of an Alu element in the parental mRNA sequence) and lacks intronic sequence.

VENTXP7 [Entrez Gene ID: 391518]. A short cDNA sequence [EMBL: X74864] was reported previously and named HPX42 [35]. This was later renamed the VENTX1 gene, after it was found to be related to Xenopus Ventx-family genes. Our analysis of the genomic sequence at this locus reveals that it is actually a retrotransposed pseudogene of the VENTX gene (formerly VENTX2); thus we designate it VENTXP7. The genomic sequence of VENTXP7 can now be accessed via the Reference Sequence collection [RefSeq: NR_002311]. The pseudogene shares 86% identity with VENTX mRNA (after masking of an Alu element in the parental mRNA sequence), lacks intronic sequence, and has remnants of a 3' poly(A) tail.

One other gene could conceivably be included in the ANTP class, but is excluded from our survey. This gene [Entrez Gene ID: 360030; GenBank: AY151139], has been annotated as a homeobox gene and is located just 20 kb from NANOG. However, no homeodomain was detected when the deduced protein was analyzed for conserved domains. Also, secondary structure prediction did not predict the expected organisation of alpha helices. Alignment with the NANOG homeodomain reveals identity of the KQ and WF motifs, either side of the same intron position (44/45), but few other shared residues. It is possible, but unproven, that the locus arose by tandem duplication of part, or all, of the NANOG homeobox gene. This gene has generated two retrotransposed pseudogenes: one at 2q11.2 and another at 12q24.33.

The PRD homeobox class

The PRD class derives its name from the paired (prd) gene of Drosophila melanogaster. In previous studies, the PRD class has been subdivided in several different ways, often based on identify of the amino acid at residue 50 in the homeodomain, for example S50, K50 and Q50. These categories are not monophyletic groupings of genes and so can be misleading if we aim for a classification scheme that reflects evolution [5]. Here we divide the PRD class into two subclasses of unequal size: the PAX subclass (containing seven PAX genes, excluding PAX1 and PAX9), and the PAXL subclass (containing 43 non-PAX genes and many pseudogenes) (Table 1). PAX genes are defined by possession of a conserved paired-box motif, distinct from the homeobox, coding for the 128-amino-acid PRD domain. Of the nine human genes possessing a paired-box (PAX1 to PAX9), only four also contain a complete homeobox (PAX3, PAX7, PAX4 and PAX6). Three genes have a partial homeobox (PAX2, PAX5 and PAX8), while two lack a homeobox entirely (PAX1 and PAX9). Phylogenetic analyses using PAX genes from a range of species suggest that these are secondary conditions, and that the ancestral PAX gene probably possessed both motifs [40]. The PAX genes do not constitute a single gene family, because it is clear that the latest common ancestor of the Bilateria contained four PAX genes. Three of these are ancestors of the PRD-class homeobox gene families Pax2/5/8, Pax3/7 and Pax4/6; the fourth is the ancestor of PAX1 and PAX9. Thus the PAX subclass contains three gene families. We divide the PAXL subclass into 28 gene families, although as explained below not all of these date to the base of the Bilateria. Thus, we recognize a total of 31 gene families in the PRD class (Table 1).

Many of the 31 gene families in the PRD class have been clearly defined before. We draw attention here to newly defined gene families and cases that could cause confusion. Other details can be found in Table 3.
Table 3

Human PRD class homeobox genes and pseudogenes

Human PRD-class homeobox genes and pseudogenes

Family

Gene symbol

Gene name

Location

Entrez gene IDc

Previous symbols

Alx

ALX1

ALX homeobox 1

12q21.31

8092

CART1

 

ALX3

ALX homeobox 3

1p13.3

257

 
 

ALX4

ALX homeobox 4

11p11.2

6059

 

Argfx

ARGFX

arginine-fifty homeobox

3q13.33

503582

 
 

ARGFXP1

arginine-fifty homeobox pseudogene 1

5q23.2

503583

 
 

ARGFXP2

arginine-fifty homeobox pseudogene 2

17q11.2

503640

 

Arx

ARX

aristaless related homeobox

Xp21.3

170302

ISSX

Dmbx

DMBX1

diencephalon/mesencephalon brain homeobox 1

1p34.1

127343

MBX, OTX3, PAXB

Dprx

DPRX

divergent paired-related homeobox

19q13.42

503834

 
 

DPRXP1

divergent paired-related homeobox pseudogene 1

2q32.1

503641

 
 

DPRXP2

divergent paired-related homeobox pseudogene 2

6p21.31

503643

 
 

DPRXP3

divergent paired-related homeobox pseudogene 3

14q13.2

503644

 
 

DPRXP4

divergent paired-related homeobox pseudogene 4

17q11.2

503645

 
 

DPRXP5

divergent paired-related homeobox pseudogene 5

21q22.13

503646

 
 

DPRXP6

divergent paired-related homeobox pseudogene 6

Xp11.4

503647

 
 

DPRXP7

divergent paired-related homeobox pseudogene 7

Xq23

503648

 

Drgx

DRGX

dorsal root ganglia homeobox

10q11.23

644168

DRG11, PRRXL1

Dux

DUXA

double homeobox A

19q13.43

503835

 
 

DUXAP1

double homeobox A pseudogene 1

2p11.2

503630

 
 

DUXAP2

double homeobox A pseudogene 2

8q22.3

503631

 
 

DUXAP3

double homeobox A pseudogene 3

10q11.21

503632

 
 

DUXAP4

double homeobox A pseudogene 4

10q11.21

503633

 
 

DUXAP5

double homeobox A pseudogene 5

11q23.3

503634

 
 

DUXAP6

double homeobox A pseudogene 6

15q26.1

503635

 
 

DUXAP7

double homeobox A pseudogene 7

20p11.23

503636

 
 

DUXAP8

double homeobox A pseudogene 8

22q11.21

503637

 
 

DUXAP9

double homeobox A pseudogene 9

14qcen

503638

 
 

DUXAP10

double homeobox A pseudogene 10

14q11.2

503639

 
 

DUXB

double homeobox B

16q23.1

100033411

 

Esx

ESX1

ESX homeobox 1

Xq22.2

80712

ESX1L, ESXR1

Gsc

GSC

goosecoid homeobox

14q32.13

145258

GSC1

 

GSC2

goosecoid homeobox 2

22q11.21

2928

GSCL

Hesx

HESX1

HESX homeobox 1

3p14.3

8820

RPX, ANF

Hopx

HOPX

HOP homeobox

4q12

84525

HOP, OB1, LAGY, NECC1, SMAP31

Isx

ISX

intestine specific homeobox

22q12.3

91464

RAXLX

Leutx

LEUTX

Leucine twenty homeobox

19q13.2

342900

 

Mix

MIXL

Mix paired-like homeobox

1q42.12

83881

MIX, MIXL1, MILD1

Nobox

NOBOX

NOBOX oogenesis homeobox

7q35

135935

OG2, OG2X

Otp

OTP

orthopedia homeobox

5q14.1

23440

 

Otx

OTX1

orthodenticle homeobox 1

2p15

5013

 
 

OTX2

orthodenticle homeobox 2

14q22.3

5015

 
 

OTX2P1

orthodenticle homeobox 2 pseudogene

9q21.2

100033409

OTX2P

 

CRX

cone-rod homeobox

19q13.32

1406

OTX3

Pax2/5/8

PAX2

paired box 2

10q24.31

5076

 
 

PAX5

paired box 5

9p13.2

5079

BSAP

 

PAX8

paired box 8

2q13

7849

 

Pax3/7

PAX3

paired box 3

2q36.1

5077

HUP2

 

PAX7

paired box 7

1p36.13

5081

HUP1, PAX7B

Pax4/6

PAX4

paired box 4

7q32.1

5078

 
 

PAX6

paired box 6

11p13

5080

 

Phox

PHOX2A

paired-like homeobox 2a

11q13.4

401

PMX2A, ARIX

 

PHOX2B

paired-like homeobox 2b

4p13

8929

PMX2B, NBPhox

Pitx

PITX1

pituitary homeobox 1

5q31.1

5307

PTX1, POTX, BFT

 

PITX2

pituitary homeobox 2

4q25

5308

PTX2, ARP1, RGS, RIEG, RIEG1

 

PITX3

pituitary homeobox 3

10q24.32

5309

PTX3

Prop

PROP1

PROP paired-like homeobox 1

5q35.3

5626

 

Prrx

PRRX1

paired related homeobox 1

1q24.3

5396

PRX1, PMX1, PHOX1

 

PRRX2

paired related homeobox 2

9q34.11

51450

PRX2, PMX2

Rax

RAX

retina and anterior neural fold homeobox

18q21.31

30062

RX

 

RAX2

retina and anterior neural fold homeobox 2

19p13.3

84839

QRX, RAXL1

Rhox

RHOXF1

Rhox homeobox family, member 1

Xq24

158800

PEPP1, OTEX

 

RHOXF2

Rhox homeobox family, member 2

Xq24

84528

PEPP2

 

RHOXF2B

Rhox homeobox family, member 2B

Xq24

727940

PEPP2L

Sebox

SEBOX

SEBOX homeobox

17q11.2

645832

OG9, OG9X

Shox

SHOX

short stature homeobox

Xp22.33/ Yp11.32

6473

SHOXY, GCFX, PHOG

 

SHOX2

short stature homeobox 2

3q25.32

6474

SHOT, OG12, OG12X

Tprx

TPRX1

tetra-peptide repeat homeobox 1

19q13.32

284355

 
 

TPRX2P

tetra-peptide repeat homeobox 2 pseudogene

19q13.32

503627

 
 

TPRX1P1

tetra-peptide repeat homeobox 1 pseudogene 1

10q22.3

503628

 
 

TPRX1P2

tetra-peptide repeat homeobox 1 pseudogene 2

10q22.3

503629

 
 

TPRXL

tetra-peptide repeat homeobox-like

3p25.1

348825

 

Uncx

UNCX

UNC homeobox

7p22.3

340260

PHD1, UNCX4.1

Vsx

VSX1

visual system homeobox 1

20p11.21

30813

KTCN, RINX

 

VSX2

visual system homeobox 2

14q24.3

338917

RET1, HOX10, CHX10

Human PRD class homeobox genes and pseudogenes including full names, chromosomal locations, Entrez Gene IDs and previous symbols. Pax2/5/8-family genes contain a partial homeobox. RHOXF2B is a duplicate of RHOXF2. TPRX2P is a duplicate of TPRX1.

Argfx, Dprx and Tprx gene families. There are no known invertebrate members of these three gene families. Therefore, these are exceptions to the rule defining gene families as dating to the base of the Bilateria. The Dprx and Tprx gene families may have arisen by duplication and very extensive divergence from CRX, a member of the Otx gene family, during mammalian evolution; origins of ARGFX are obscure [21].

Dux gene family. Members of this gene family are characterized by the presence of two closely-linked homeobox motifs. Most members are intronless sequences present in multiple polymorphic copies within the 3.3 kb family of tandemly repeated elements associated with heterochromatin. These comprise the sequences known as DUX1 to DUX5 reported in previous studies [1214] and numerous DUX4 copies detected in this study (see below). The absence of introns suggests that these sequences may have originated by retrotransposition from an mRNA transcript, thus they are probably non-functional. There are two noticeable exceptions; these members known as DUXA and DUXB possess introns, thus either one could be the progenitor for the large number of intronless Dux-family sequences found in the human genome. DUXA has spawned 10 retrotransposed pseudogenes and has been described previously [21]. DUXB is described here (see below).

Hopx gene family. Phylogenetic analyses places this gene family, containing a single very divergent homeobox gene HOPX (formerly HOP), either within the PRD class (maximum likelihood; Additional file 1) or close to Zhx/Homez-family genes (neighbor-joining; Additional file 2). We favor placement in the PRD class for three reasons. First, the HOPX homeodomain has highest sequence identity with PRD-class homeodomains (GSC: 38% and PAX6: 36%). Second, the HOPX homeodomain possesses the same combination of residues that are invariably conserved across human PRD-class homeodomains (Additional file 6). Third, the HOPX homeodomain shares the 46/47 intron position seen in many PRD-class homeodomains. HOPX does not map particularly near any other homeobox genes, although the closest is GSX2 in the ANTP class at 4q12 (Figure 4). HOPX is not a typical PRD-class homeobox gene; the homeodomain has a single amino acid insertion between helix I and helix II (Additional file 6), and lacks the ability to bind DNA [41, 42].

Leutx gene family. This gene family contains a single gene in the human genome, LEUTX, and no known invertebrate members. We place LEUTX in the PRD class for four reasons. First, there is weak phylogenetic support for this placement (Additional files 1 and 2). Second, the LEUTX homeodomain possesses the same combination of residues that are invariably conserved across human PRD-class homeodomains (except for a leucine at position 20; Additional file 6). Third, the LEUTX homeodomain shares the 46/47 intron position seen in many PRD-class homeodomains. Fourth, the LEUTX gene is located close to the PRD-class genes TPRX1, CRX, DPRX and DUXA on the distal end of the long arm of chromosome 19 (Figure 4). This fourth observation leads us to hypothesize that this gene family arose by tandem duplication and extensive divergence during mammalian evolution.

Nobox gene family. This gene family falls close to the division between the ANTP and PRD classes in both maximum likelihood and neighbor-joining phylogenetic analyses (Additional files 1 and 2). We favor placement within the PRD class because the NOBOX homeodomain has higher sequence identity with PRD-class homeodomains (up to 55%) than with ANTP-class homeodomains (up to 46%). Chromosomal position does not shed light on the issue, as its location at 7q35 is close to both ANTP- and PRD-class genes (Figure 4).

Otx gene family. This very well known gene family was originally considered to contain human OTX1 and OTX2 (and their mouse orthologs) and the Drosophila otd gene [43]. Later, it was shown that the CRX gene is a member of the same gene family, deriving from the same ancestral gene. Thus, CRX could be considered the true OTX3 gene [44]. Unfortunately, the OTX3 symbol was formerly used erroneously for a gene in a different family, now called DMBX1, thus complicating its future use. The gene family name Otx is derived by majority rule from the constituent genes.

Pax2/5/8 gene family. This gene family is also known as Pax group II; it contains PAX2, PAX5 and PAX8, clearly derived from a single ancestral gene [45]. These genes have partial homeoboxes.

Pax3/7 gene family. This gene family is also known as Pax group III; it contains PAX3 and PAX7, clearly derived from a single ancestral gene [46].

Pax4/6 gene family. This gene family is also known as Pax group IV; it contains PAX4 and PAX6. There is confusion as to whether this should be split into two gene families, because invertebrate homologs generally group with PAX6 in phylogenetic analyses and not as an outgroup to the two genes as might be expected. We follow the generally accepted view and group PAX4 and PAX6 into a single gene family, proposing that PAX4 is a divergent member, not an ancient gene [40].

Rhox gene family. The mouse Rhox cluster was first described as comprising twelve X-linked homeobox genes, all selectively expressed in reproductive tissues [47]. Subsequent studies reported a total of 32 genes in the cluster, with the additional genes attributed to recent tandem duplications [4851]. The human genome contains three homeobox genes at Xq24 that are clearly members of the Rhox gene family based on sequence identity, molecular phylogenetics, intron positions and chromosomal location. These are RHOXF1 (formerly OTEX/PEPP1), RHOXF2 (formerly PEPP2) and RHOXF2B (formerly PEPP2b/PEPP3).

Most of the 50 genes in the PRD class have been adequately named previously. However, several genes were unnamed or misnamed prior to this study. We have updated these as follows.

ALX1 [Entrez Gene ID: 8092] is the first of three human members of the Alx gene family. This gene was previously known as CART1; we rename it ALX1 because it is related to ALX3 and ALX4; all three genes were formed by duplication from a single ancestral invertebrate gene [52].

DRGX [Entrez Gene ID: 117065] is the only member of the newly defined Drgx gene family in the human genome. This gene was previously known as PRRXL1 and DRG11, and there is a clear mouse ortholog (Prrxl1). The symbol PRRXL1 is misleading because it infers membership of the Prrx gene family, containing PRRX1 and PRRX2 in the human genome. Several lines of evidence suggest it belongs to a different gene family. First, this gene (at 10q11.23) is not located in the same paralogon as PRRX1 (1q24.3) and PRRX2 (9q34.11) so they are not three paralogs generated during genome duplication in early vertebrate evolution. Second, it has a completely different exon-intron structure from the Prrx-family genes, and it does not contain a Prrx domain or an OAR domain (present in PRRX1 and PRRX2; [53]). Third, the homeodomain is only 73% identical to PRRX1 and PRRX2 homeodomains, much lower than the 80-100% usually encountered for members of the same gene family in humans. Finally, we have identified the Drosophila ortholog, IP09201. The homeodomains of Drosophila IP09201 and human DRGX form a highly supported monophyletic group in our maximum likelihood (90%; Additional file 1) and neighbor-joining (97%; Additional file 2) phylogenetic analyses. The new symbol DRGX (dorsal root ganglia homeobox) incorporates the root of the former symbol DRG11, referring to expression of the rodent ortholog in dorsal root ganglia neurons [54].

DUXB [Entrez Gene ID: 100033411] is a human member of the Dux (double homeobox) gene family. As previously discussed, most members of this gene family are intronless and are probably derived by retrotransposition of an mRNA transcript from a functional intron-containing Dux gene (or duplication of such an integrant). Booth and Holland [21] described the DUXA gene containing five introns (including one within each homeobox), and noted the existence of a second intron-containing human Dux-family gene provisionally designated DUXB. The DUXB nomenclature is endorsed here. No cDNA or EST sequences have been reported for DUXB.

GSC2 [Entrez Gene ID: 2928] is the second of two human members of the Gsc gene family. This gene was previously known as GSCL; we rename it GSC2 to remove the inadvertent implication that it is not a true gene, and also to reflect the clear orthology to chick Gsc2 as inferred by phylogenetic analysis and synteny.

HOPX [Entrez Gene ID: 84525] is the only member of the newly defined Hopx gene family in the human genome. The mouse version of the gene was first identified first and named Hop (homeodomain only protein) because the encoded protein is just 73 amino acids long, with 61 of these making up the homeodomain [41, 42]. The HOP gene symbol is not ideal as it is also used for unrelated genes, including hopscotch in Drosophila and hop-sterile in mouse. Therefore, we revise the gene symbol from HOP to HOPX (HOP homeobox) in accordance with homeobox gene nomenclature convention.

LEUTX [Entrez Gene ID: 342900] is the only member of the newly defined Leutx gene family in the human genome. We designate this previously unnamed gene LEUTX (leucine twenty homeobox) to reflect the presence of a leucine residue at the otherwise highly conserved homeodomain position 20; other PRD-class homeodomains have a phenylalanine at this position (Additional file 6). Studies of mutations in other homeobox genes suggest that mutation to leucine alters transcriptional activity of a homeodomain protein [55].

RAX2 [Entrez Gene ID: 84839] is the second of two human members of the Rax gene family. This gene was previously known as RAXL1; we rename it RAX2 to standardize nomenclature.

RHOXF1 [Entrez Gene ID: 158800] and RHOXF2 [Entrez Gene ID: 84528] are two of three human members of the Rhox gene family. These genes were previously known as OTEX/PEPP1 and PEPP2 respectively. The prefix PEPP is not suitable as it is used for numerous aminopeptidase P-encoding genes. Thus, we replace the gene symbols OTEX/PEPP1 and PEPP2 with RHOXF1 and RHOXF2 respectively, to reflect their orthologous relationship with the mouse Rhox cluster (containing 32 genes, see above) whilst avoiding inadvertent equivalence to specific genes within the cluster.

RHOXF2B [Entrez Gene ID: 727940] is the third human member of the Rhox gene family. This locus was referred to in previous studies as PEPP2b [56] and PEPP3 [51]. The prefix PEPP cannot be approved for reasons noted above. RHOXF2B is located very close to RHOXF1 and RHOXF2 at Xq24 and is clearly a very recent duplicate of RHOXF2. The genomic sequences at these two loci share 99% identity over exonic, intronic and approximately 20 kb flanking regions. Over the coding region, there are just two nucleotide substitutions (both nonsynonymous); one of these results in an unusual change within the homeodomain (arginine to cysteine at position 18). We currently list RHOXF2B as a functional gene, although it is possible that it is a duplicated pseudogene.

SEBOX [Entrez Gene ID: 645832] is the only member of the Sebox gene family in the human genome. The human gene is the ortholog of mouse Sebox based on their locations in syntenic chromosomal regions (17q11.2 and 11B5 respectively) and presence of the same intron positions. However, sequence identity is lower than normal for orthologous genes in mouse and human (78% amino acid identity over the homeodomain) and there is evidence that the human gene has undergone divergence. Most surprisingly, the human sequence has two unusual substitutions in the homeodomain [57]. At homeodomain position 51, the human sequence codes for lysine whereas mouse has asparagine; an earlier analysis of 346 homeodomain sequences found asparagine to be invariant at this position [1, 2]. Similarly, at homeodomain position 53, human has tryptophan whereas mouse has arginine; this position is almost invariably arginine [1, 2]. These sequence changes in the important third helix raise the possibility that human SEBOX could have accumulated mutations as a non-functional pseudogene. Until this is shown more clearly we consider it to be a functional, but divergent, gene. This gene was previously known as OG9X with SEBOX as the alternative symbol; we favor SEBOX because the OG prefix was originally used for several unrelated homeobox genes.

UNCX [Entrez Gene ID: 340260] is the only member of the Uncx gene family in the human genome. This gene was previously known as UNCX4.1; we remove the numerals to give UNCX as these do not denote a series within a gene family.

VSX2 [Entrez Gene ID: 338917] is the second of two human members of the Vsx gene family. This gene was previously known as CHX10; we rename it VSX2 to better reflect its paralogous relationship to VSX1. VSX2 has been used as an alias for this gene in other vertebrate species and the gene symbol CHX10 has the disadvantage of implicitly suggesting presence of at least nine paralogs in human (CHX1 to CHX9), which do not exist.

Unlike the situation with the ANTP class, many of the pseudogenes within the PRD class have been well characterized. A previous study has described and named two pseudogenes in the Argfx gene family, seven pseudogenes in the Dprx gene family, four pseudogenes in the Tprx gene family, and 10 pseudogenes derived from the DUXA gene [21]. There is also a possibility that the SEBOX and RHOXF2B loci are non-functional pseudogenes, as described above. We have identified a previously undescribed pseudogene from the Otx gene family (OTX2P1), and argue that the majority of Dux-family sequences are pseudogenes.

OTX2P1 [Entrez Gene ID: 100033409]. We designate this previously undescribed sequence OTX2P1 because it is clearly a retrotransposed pseudogene of OTX2. The genomic DNA sequence of OTX2P1 shares significant homology with OTX2 transcript variant 2 [RefSeq: NM_172337]. There is an Alu element (AluSx subfamily) insertion, a Made1 (Mariner derived element 1) insertion, and a 1182-nucleotide deletion in OTX2P1 compared to OTX2. The OTX2P1 sequence lacks introns, ends with a poly(A) tail, and harbors critical sequence alterations (including a three-nucleotide insertion introducing a stop codon into the deduced homeodomain).

DUX1 [EMBL: AJ001481], DUX2 [GenBank: AF068744], DUX3 [GenBank: AF133130] and DUX5 [GenBank: AF133131]. These sequences have been cloned in previous studies [12, 13]. We detected no matches with 100% identity to DUX1, DUX2, DUX3 or DUX5 in build 35.1 of the human genome sequence, which covers the euchromatic regions of each chromosome. This concurs with previous studies indicating that DUX1, DUX2, DUX3 and DUX5 are found in heterochromatin on human acrocentric chromosomes; each is apparently present in multiple copies within members of the 3.3 kb family of tandemly repeated DNA elements [12, 13]. Because the majority of human heterochromatin has not been sequenced, and may be variable between individuals, the exact number of copies of DUX1, DUX2, DUX3 and DUX5 is unknown. It is also debatable whether these loci encode functional proteins. These sequences lack introns and, as discussed above, are most likely derived from intron-containing genes in the Dux family, such as DUXA or DUXB.

DUX4 [GenBank: AF117653]. This sequence has been extensively studied as some of its multiple copies exist within the 3.3 kb repetitive elements of the D4Z4 locus at 4q35 [14]. The polymorphic D4Z4 locus is linked to facioscapulohumeral muscular dystrophy (FSHD); between 12 and 96 tandem copies of 3.3 kb elements are present in unaffected individuals and deletions leaving a maximum of eight such elements have been associated with FSHD [58]. In build 35.1 of the human genome sequence, we identified 35 loci at 10 chromosomal locations containing a total of 58 DUX4 (and highly similar) homeobox sequences. This should not be taken as a precise figure due to copy number polymorphism and the possibility of additional copies existing in currently unsequenced heterochromatic regions. Some of the copies are 100% identical to the previously reported DUX4 sequence over the homeobox regions, others have single nucleotide polymorphisms, some have critical sequence mutations, and others have just a single homeobox. Most of the copies are located in tandemly repeated arrays (for example, on chromosomes 4, 10 and 16) and others are alone in the genome (for example, a single copy resides at 3p12.3). The majority of DUX4 copies are unlikely to encode functional proteins as suggested by their intronless, mutated and tandemly repeated nature. The lack of introns indicates they are most likely derived from intron-containing genes in the Dux family, such as DUXA or DUXB.

The LIM homeobox class

The LIM class encodes proteins with two LIM domains (named from the nematode lin-11, mammalian Isl1 and nematode mec-3 genes) N-terminal to a typical (i.e. 60-amino-acid) homeodomain. The LIM domain is a protein-protein interaction domain of approximately 55 amino acids comprising two specialised cysteine-rich zinc fingers in tandem [59]. Importantly, human genes also exist that encode LIM domains but not homeodomains. These LIM domains are divergent from the LIM domains encoded by LIM homeobox genes, and hence these genes are unlikely to be derived by loss of the homeobox. There is one exception: the human Lmo gene family encodes LIM domains that have been grouped by sequence similarity and domain arrangement with the LIM domains of the LIM homeobox gene class [59]. Thus, this gene family may have secondarily lost the homeobox, although this remains untested. Only genes encoding both LIM domains and homeodomains are included in our LIM homeobox gene count.

We have identified a total of twelve LIM-class homeobox genes in the human genome (Tables 1 and 4), consistent with previous work [60]. Phylogenetic analyses of homeodomains do not always recover the LIM class as a monophyletic group, depending on the dataset and method used (Figure 3; Additional files 1, 2 and 5), but it is likely that the class evolved from a single fusion event that brought together LIM domains and a homeodomain. Phylogenetic analyses of homeodomains divide the LIM class into six gene families (Figure 3; Additional files 1, 2 and 5), consistent with previous studies [60]. Each gene family has two human members and dates to a single ancestral gene in the most recent common ancestor of bilaterians [60]. We have not found any human LIM-class pseudogenes.
Table 4

Human LIM, POU, HNF, SINE, TALE, CUT, PROS, ZF AND CERS class homeobox genes and pseudogenes

Human LIM-class homeobox genes

Family

Gene symbol

Gene name

Location

Entrez gene ID

Previous symbols

Isl

ISL1

ISL LIM homeobox 1

5q11.2

3670

 
 

ISL2

ISL LIM homeobox 2

15q24.3

64843

 

Lhx1/5

LHX1

LIM homeobox 1

17q12

3975

LIM1

 

LHX5

LIM homeobox 5

12q24.13

64211

 

Lhx2/9

LHX2

LIM homeobox 2

9q33.3

9355

LH2

 

LHX9

LIM homeobox 9

1q31.3

56956

 

Lhx3/4

LHX3

LIM homeobox 3

9q34.3

8022

M2-LHX3

 

LHX4

LIM homeobox 4

1q25.3

89884

GSH4

Lhx6/8

LHX6

LIM homeobox 6

9q33.2

26468

LHX6.1

 

LHX8

LIM homeobox 8

1p31.1

431707

LHX7

Lmx

LMX1A

LMX LIM homeobox 1A

1q24.1

4009

LMX1, LMX1.1

 

LMX1B

LMX LIM homeobox 1B

9q33.3

4010

LMX2, LMX1.2

Human POU-class homeobox genes and pseudogenes

Hdx

HDX

highly divergent homeobox

Xq21.1

139324

CXorf43

Pou1

POU1F1

POU class 1 homeobox 1

3p11.2

5449

PIT1, GHF1

Pou2

POU2F1

POU class 2 homeobox 1

1q24.2

5451

OCT1, OTF1

 

POU2F2

POU class 2 homeobox 2

19q13.2

5452

OCT2, OTF2

 

POU2F3

POU class 2 homeobox 3

11q23.3

25833

OCT11, PLA1, EPOC1, SKN1A

Pou3

POU3F1

POU class 3 homeobox 1

1p34.3

5453

OCT6, OTF6, SCIP

 

POU3F2

POU class 3 homeobox 2

6q16.2

5454

OCT7, OTF7, BRN2, POUF3

 

POU3F3

POU class 3 homeobox 3

2q12.1

5455

OTF8, BRN1

 

POU3F4

POU class 3 homeobox 4

Xq21.1

5456

OTF9, BRN4

Pou4

POU4F1

POU class 4 homeobox 1

13q31.1

5457

BRN3A, RDC1, Oct-T1

 

POU4F2

POU class 4 homeobox 2

4q31.22

5458

BRN3B, BRN3.2

 

POU4F3

POU class 4 homeobox 3

5q32

5459

BRN3C

Pou5

POU5F1

POU class 5 homeobox 1

6p21.33

5460

OCT3, OTF3, OCT4, OTF4

 

POU5F1P1

POU class 5 homeobox 1 pseudogene 1

8q24.21

5462

OTF3C, OTF3P1, POU5FLC8

 

POU5F1P2

POU class 5 homeobox 1 pseudogene 2

8q22.3

100009665

 
 

POU5F1P3

POU class 5 homeobox 1 pseudogene 3

12p13.31

642559

OTF3L, POU5F1L, POU5FLC12

 

POU5F1P4

POU class 5 homeobox 1 pseudogene 4

1q22

645682

POU5FLC1

 

POU5F1P5

POU class 5 homeobox 1 pseudogene 5

10q21.3

100009667

 
 

POU5F1P6

POU class 5 homeobox 1 pseudogene 6

3q21.3

100009668

 
 

POU5F1P7

POU class 5 homeobox 1 pseudogene 7

3q12.1

100009669

 
 

POU5F1P8

POU class 5 homeobox 1 pseudogene 8

17q25.3

100009670

 
 

POU5F2

POU class 5 homeobox 2

5q15

134187

SPRM1

Pou6

POU6F1

POU class 6 homeobox 1

12q13.13

5463

BRN5, MPOU, TCFB1

 

POU6F2

POU class 6 homeobox 2

7p14.1

11281

WT5, WTSL, RPF1

Human HNF-class homeobox genes

Hmbox

HMBOX1

homeobox containing 1

8p12

79618

HNF1LA, PBHNF

Hnf1

HNF1A

HNF1 homeobox A

12q24.31

6927

TCF1, HNF1, LFB1

 

HNF1B

HNF1 homeobox B

17q12

6928

TCF2, LFB3, VHNF1

Human SINE-class homeobox genes

Six1/2

SIX1

SIX homeobox 1

14q23.1

6495

 
 

SIX2

SIX homeobox 2

2p21

10736

 

Six3/6

SIX3

SIX homeobox 3

2p21

6496

 
 

SIX6

SIX homeobox 6

14q23.1

4990

OPTX2, Six9

Six4/5

SIX4

SIX homeobox 4

14q23.1

51804

AREC3

 

SIX5

SIX homeobox 5

19q13.32

147912

DMAHP

Human TALE-class homeobox genes and pseudogenes

Irx

IRX1

iroquois homeobox 1

5p15.33

 

IRX-5

 

IRX1P1

iroquois homeobox 1 pseudogene 1

13q12.12

79192

IRXA1

 

IRX2

iroquois homeobox 2

5p15.33

646390

 
 

IRX3

iroquois homeobox 3

16q12.2

153572

IRX-1

 

IRX4

iroquois homeobox 4

5p15.33

50805

 
 

IRX4P1

iroquois homeobox 4 pseudogene 1

18p11.22

100009671

 
 

IRX5

iroquois homeobox 5

16q12.2

79190

IRX2A

 

IRX6

iroquois homeobox 6

16q12.2

 

IRX-3, IRX7

Meis

MEIS1

Meis homeobox 1

2p14

4211

 
 

MEIS2

Meis homeobox 2

15q14

4212

MRG1

 

MEIS3

Meis homeobox 3

19q13.32

56917

MRG2

 

MEIS3P1

Meis homeobox 3 pseudogene 1

17p12

4213

MRG2, MEIS3, MEIS4

 

MEIS3P2

Meis homeobox 3 pseudogene 2

17p11.2

257468

 

Mkx

MKX

mohawk homeobox

10p12.1

283078

IRXL1, IFRX, C10orf48

Pbx

PBX1

pre-B-cell leukemia homeobox 1

1q23.3

5087

 
 

PBX2

pre-B-cell leukemia homeobox 2

6p21.32

5089

G17, HOX12, PBX2MHC

 

PBX2P1

pre-B-cell leukemia homeobox 2 pseudogene 1

3q24

5088

PBXP1, PBX2

 

PBX3

pre-B-cell leukemia homeobox 3

9q33.3

5090

 
 

PBX4

pre-B-cell leukemia homeobox 4

19p13.11

80714

 

Pknox

PKNOX1

PBX/knotted homeobox 1

21q22.3

5316

PREP1, PKNOX1C

 

PKNOX2

PBX/knotted homeobox 2

11q24.2

63876

PREP2

Tgif

TGIF1

TGFB-induced factor homeobox 1

18p11.31

7050

TGIF, HPE4

 

TGIF1P1

TGFB-induced factor homeobox1 pseudogene 1

19q13.32

126052

 
 

TGIF2

TGFB-induced factor homeobox 2

20q11.23

60436

 
 

TGIF2P1

TGFB-induced factor homeobox 2 pseudogene 1

1q44

126826

 
 

TGIF2P2

TGFB-induced factor homeobox 2 pseudogene 2

15q21.1

100009674

 
 

TGIF2P3

TGFB-induced factor homeobox 2 pseudogene 3

15q21.1

100009672

 
 

TGIF2P4

TGFB-induced factor homeobox 2 pseudogene 4

14q24.2

100009673

 
 

TGIF2LX

TGFB-induced factor homeobox 2-like, X-linked

Xq21.31

90316

TGIFLX (retrogene)

 

TGIF2LY

TGFB-induced factor homeobox 2-like, Y-linked

Yp11.2

90655

TGIFLY (retrogene)

Human CUT-class homeobox genes and pseudogenes

Onecut

ONECUT1

one cut homeobox 1

15q21.3

3175

HNF6, HNF6A

 

ONECUT2

one cut homeobox 2

18q21.31

9480

OC2

 

ONECUT3

one cut homeobox 3

19p13.3

390874

 

Cux

CUX1

cut-like homeobox 1

7q22.1

1523

CUTL1, CUX, CDP, COY1

 

CUX2

cut-like homeobox 2

12q24.12

23316

CUTL2

 

CUX2P1

cut-like homeobox 2 pseudogene 1

10p14

-

 
 

CUX2P2

cut-like homeobox 2 pseudogene 2

4q32.1

-

 

Satb

SATB1

SATB homeobox 1

3p24.3

6304

 
 

SATB2

SATB homeobox 2

2q33.1

23314

 

Human PROS-class homeobox genes

Prox

PROX1

prospero homeobox 1

1q41

5629

 
 

PROX2

prospero homeobox 2

14q24.3

283571

 

Human ZF-class homeobox genes and pseudogenes

Adnp

ADNP

activity-dependent neuroprotector homeobox

20q13.13

23394

ADNP1

 

ADNP2

ADNP homeobox 2

18q23

22850

ZNF508

Tshz

TSHZ1

teashirt zinc finger homeobox 1

18q22.3

10194

TSH1

 

TSHZ2

teashirt zinc finger homeobox 2

20q13.2

128553

TSH2, ZNF218, ZABC2, OVC10-2

 

TSHZ3

teashirt zinc finger homeobox 3

19q12

57616

TSH3, ZNF537

Zeb

ZEB1

zinc finger E-box binding homeobox 1

10p11.22

6935

ZFHX1A, deltaEF1, TCF8, ZEB

 

ZEB2

zinc finger E-box binding homeobox 2

2q22.3

9839

ZFHX1B, SIP1, SMADIP1

 

ZEB2P1

zinc finger E-box binding homeobox 2 pseudogene 1

4p15.32

100033412

 

Zfhx

ZFHX2

zinc finger homeobox 2

14q11.2

85446

 
 

ZFHX3

zinc finger homeobox 3

16q22.3

463

ATBT, ATBF1

 

ZFHX4

zinc finger homeobox 4

8q21.11

79776

ZFH4

Zhx/

ZHX1

zinc fingers and homeoboxes 1

8q24.13

11244

 

Homez

ZHX2

zinc fingers and homeoboxes 2

8q24.13

22882

 
 

ZHX3

zinc fingers and homeoboxes 3

20q12

23051

TIX1

 

HOMEZ

homeobox and leucine zipper encoding

14q11.2

57594

 

Human CERS-class homeobox genes

Cers

CERS2

ceramide synthase 2

1p36.13-q24.1

29956

LASS2, TRH3, TMSG1

 

CERS3

ceramide synthase 3

15q26.3

204219

LASS3

 

CERS4

ceramide synthase 4

19p13.3

79603

LASS4, TRH1

 

CERS5

ceramide synthase 5

12q13.12

91012

LASS5, TRH4

 

CERS6

ceramide synthase 6

2q31

253782

LASS6

Human homeobox genes and pseudogenes, excepting the ANTP and PRD classes, including full names, chromosomal locations, Entrez Gene IDs and previous symbols. The HOMEZ gene is in the ZF class but encodes a protein with leucine zippers instead of zinc fingers.

The POU homeobox class

The POU class generally encodes proteins with a POU-specific domain (named from the mammalian genes Pit1 (now Pou1f1), OCT1 and OCT2 (now POU2F1 and POU2F2), andnematode unc-86) N-terminal to a typical homeodomain. The POU-specific domain is a DNA-binding domain of approximately 75 amino acids; the POU-specific domain and the homeodomain are collectively known as the bipartite POU domain [61].

We have identified a total of 16 POU-class homeobox genes in the human genome (Tables 1 and 4). The genes form a distinct grouping even if the POU-specific domain is disregarded – phylogenetic analyses of homeodomains recover the POU class as a monophyletic group (Figure 3; Additional files 1, 2 and 5). There are six widely recognized gene families within the POU class (Pou1 to Pou6), and nomenclature revisions approximately 10 years ago clarified which genes belong to which gene family [62]. We have placed two additional genes (HDX and POU5F2) in the POU class on the basis of their deduced homeodomain sequences, even though one of these genes (HDX) does not encode a POU-specific domain. We have erected a new gene family for this gene, bringing the total number of gene families in the POU class to seven. We have also identified a total of eight POU-class pseudogenes in the human genome (Tables 1 and 4); we have named six of these (POU5F1P2, POU5F1P4 to POU5F1P8), and revised the nomenclature of one other (POU5F1P3).

HDX [Entrez Gene ID: 139324]. This gene was previously known as CXorf43. The gene encodes a highly divergent atypical (68-amino-acid) homeodomain but not a POU-specific domain, and thus it is debatable whether it should be placed within the POU class. Phylogenetic analyses of homeodomains place it basally in a clade with the POU class (Figure 3; Additional files 1 and 5), or within the POU class (Additional file 2), suggesting that the HDX protein either diverged before the POU-specific domain became associated with the homeodomain or lost the POU-specific domain during evolution. Further information on this gene may allow this tentative classification to be revisited.

POU5F2 [Entrez Gene ID: 134187]. We designate this previously unnamed gene POU5F2 on the basis of clear orthology to the mouse Sprm1 gene, which has been assigned the second member of the Pou5 gene family [63]. The symbol POU5F2 ensures the gene conforms with standardized nomenclature for the POU class.

POU5F1P2 [GeneID: 100009665], POU5F1P3 (formerly POUF51L) [GeneID: 5461], POU5F1P4 [GeneID: 100009666], POU5F1P5 [GeneID: 100009667], POU5F1P6 [GeneID: 100009668], POU5F1P7 [GeneID: 100009669] and POU5F1P8 [GeneID: 100009670]. Prior to this study, a single retrotransposed pseudogene of the POU5F1 gene had been annotated and designated POU5F1P1 [Entrez Gene ID: 5462]. Another POU5F1-related sequence of unknown status had been annotated and designated POUF5F1L [GeneID: 5461]. We replace the gene symbol POUF5F1L with POU5F1P3 as this sequence is a retrotransposed pseudogene of POUF51. Our analyses of the human genome sequence identified a further six pseudogenes of POU5F1, which we name sequentially POU5F1P2, POU5F1P4 through to POU5F1P8. Each clearly aligns to the mRNA sequence of POU5F1 but with sequence alterations, indicating origin by retrotransposition. POU5F1P2 and POU5F1P6 have frameshift mutations in the homeobox. POU5F1P5 and POU5F1P6 have stop codons in the homeobox. POU5F1P7 and POU5F1P8 are partial integrants of POU5F1 mRNA excluding the homeobox – POU5F1P7 covers part of the 3' untranslated region and POU5F1P8 a short region around the start codon.

The HNF homeobox class

The HNF class (named after the rat gene Hnf1) encodes proteins with a POU-like domain N-terminal to a highly atypical homeodomain. The POU-like domain, as its name indicates, is weakly similar in sequence to the POU-specific domain [64]; more importantly, it has nearly the same three-dimensional structure and mode of DNA binding as the POU-specific domain [65].

We have identified a total of three HNF-class homeobox genes in the human genome (Tables 1 and 4), consistent with previous work [66, 67]. The homeodomains encoded by the human HNF1A and HNF1B genes are atypical in possessing 21 extra amino acid residues between the second and third alpha helices (Additional file 6). We place these two genes in a single gene family (Hnf1) within the HNF class, implying derivation from a single invertebrate gene. Examination of their chromosomal locations concurs with this view. HNF1A and HNF1B map to parts of the genome known to have duplicated in early vertebrate evolution, namely 12q24.31 (HNF1A, near LHX5 and on the same arm as the HOXC cluster) and 17q12 (HNF1B, between LHX1 and the HOXB cluster) (Figure 4). The use of the A and B suffixes is unfortunate, as numerals are generally used to distinguish paralogs of this age, but is retained at present due to widespread and stable use. The homeodomain encoded by the human HMBOX1 gene is atypical in possessing 15 extra amino acid residues between the second and third alpha helices (Additional file 6). Phylogenetic analyses confirm previous suggestions [67] that HMBOX1 is more distantly related to HNF1A and HNF1B (Figure 3; Additional files 1, 2 and 5). We place this gene in a separate gene family (Hmbox) within the same class. We have not found any human HNF-class pseudogenes.

The SINE homeobox class

The SINE class (named after the Drosophila gene so: sine oculis) encodes proteins with a SIX domain N-terminal to a typical homeodomain. The SIX domain is a DNA-binding domain of approximately 115 amino acids; both the SIX domain and the homeodomain are required for DNA binding [68].

We have identified a total of six SINE-class homeobox genes in the human genome (Tables 1 and 4), consistent with previous work [68, 69]. The genes form a distinct grouping even if the SIX domain is disregarded – phylogenetic analyses of homeodomains recover the SIX class as a monophyletic group (Figure 3; Additional files 1, 2 and 5). Phylogenetic analyses of homeodomains divide the SIX class into three gene families (Figure 3; Additional files 1, 2 and 5), consistent with previous studies [68, 69]. Each gene family has two human members and dates to a single ancestral gene in the most recent common ancestor of bilaterians [68, 69]. We have not found any human SINE-class pseudogenes.

The TALE homeobox class

TALE (three amino acid loop extension) class genes are distinguished by the presence of three extra amino acids between the first and second alpha helices of the encoded homeodomain [1, 2, 70]. Genes belonging to the TALE class encode proteins with various domains outside of the atypical homeodomain.

We have identified a total of 20 TALE-class homeobox genes in the human genome (Tables 1 and 4). The genes form a distinct grouping in phylogenetic analyses even when the three extra homeodomain residues are excluded from the sequence alignment (Figure 3; Additional file 5). Bürglin [2] has given the TALE group the rank of 'superclass' and distinguished between several 'classes' by the presence of distinct domains outside of the homeodomain. These are the IRX domain, MKX domains, the MEIS domain, the PBC domain and TGIF domains [2, 7173]. Along with some others [4, 7, 24], we have given the TALE group the rank of 'class' containing several 'gene families'; this maintains consistent terminology throughout the present paper. Phylogenetic analyses of homeodomains divide the TALE class into six gene families (Figure 3; Additional files 1, 2 and 5), including an Mkx family containing the recently described MKX gene, which is distinguished from Irx-family genes phylogenetically and by absence of an IRX domain [73, 74]. It should be noted that the established name of the Pknox gene family does not indicate orthology with Knox-family genes of plants. We have also identified a total of 10 TALE-class pseudogenes in the human genome (Tables 1 and 4); we have named six of these (IRX4P1, TGIF1P1 and TGIF2P1 to TGIF2P4), and revised the nomenclature of two others (IRX1P1 and PBX2P1).

IRX1P1 [Entrez Gene ID: 646390]. This sequence was previously known as IRXA1; we rename it IRX1P1 because it is clearly a retrotransposed pseudogene of IRX1 and not a functional gene. The IRX1P1 sequence aligns to the mRNA of IRX1 but has a frameshift mutation and two stop codons in the homeobox.

IRX4P1 [Entrez Gene ID: 100009671]. We designate this previously unannotated sequence IRX4P1 because it is clearly a retrotransposed pseudogene of IRX4. The IRX4P1 sequence is a partial integrant derived from a region of the IRX4 mRNA around the stop codon; it lacks the homeobox.

PBX2P1 [Entrez Gene ID: 5088]. This sequence was previously known as PBXP1; we rename it PBX2P1 because it is clearly a retrotransposed pseudogene of PBX2. The former name of PBXP1 did not indicate its transcript of origin. The PBX2P1 sequence aligns to the mRNA of PBX2 but has a frameshift mutation in the coding region.

TGIF1P1 [Entrez Gene ID: 126052]. We designate this previously unannotated sequence TGIF1P1 because it is clearly a retrotransposed pseudogene of TGIF1. The locus has many sequence alterations when compared to TGIF1 mRNA, including a 48 nucleotide insertion within the homeobox.

TGIF2P1 [GeneID: 126826], TGIF2P2 [GeneID: 100009674], TGIF2P3 [GeneID: 100009672] and TGIF2P4 [GeneID: 100009673]. These four sequences were unannotated prior to this study. We designate them TGIF2P1 to TGIF2P4 because they are clearly pseudogenes of TGIF2. Each aligns to the mRNA sequence of TGIF2 but with sequence alterations, indicating origin by retrotransposition. TGIF2P1 has many sequence alterations, including a frameshift mutation in the homeobox. TGIF2P2 and TGIF2P3 are very similar neighboring loci that must have originated by tandem duplication of a retrotransposed TGIF2 mRNA; neither includes the homeobox. TGIF2P4 is a short partial integrant derived from part of the 3' untranslated region of TGIF2 mRNA.

The CUT homeobox class

The CUT class (named after the Drosophila gene cut) generally encodes proteins with one or more CUT domains N-terminal to a typical homeodomain. The CUT domain is a DNA-binding domain of approximately 75 amino acids [75]. There are three widely recognized gene families within the CUT class in humans (Onecut, Cux, Satb; [76]). A fourth gene family (Cmp), lacking a CUT domain but sharing a CMP domain with the Satb gene family, is absent from vertebrates. Bürglin and Cassata [76] have proposed that the vertebrate Satb gene family evolved from the invertebrate Cmp gene family.

We have identified a total of seven CUT-class homeobox genes in the human genome (Tables 1 and 4). Although grouped together by presence of CUT domains, the homeodomains of the Onecut, Cux and Satb gene families are quite divergent and do not always form a monophyletic group in phylogenetic analyses (Additional files 2 and 5). Topologies that separate the gene families are also only weakly supported, so it is most parsimonious to assume that the class is actually monophyletic but the constituent genes underwent rapid sequence divergence following their initial duplications. We have revised the nomenclature of two CUT-class genes (CUX1 and CUX2). We have also identified a total of three CUT-class pseudogenes in the human genome (Tables 1 and 4); we have named all of these (CUX2P1, CUX2P2 and SATB1P1).

CUX1 [Entrez Gene ID: 1523] and CUX2 [Entrez Gene ID: 23316]. These genes were previously known as CUTL1 and CUTL2 respectively. We rename them CUX1 and CUX2 in accordance with homeobox gene nomenclature convention.

CUX2P1 and CUX2P2. These sequences were unannotated prior to this study. We designate them CUX2P1 and CUX2P2 because they are clearly retrotransposed pseudogenes of CUX2. Both are short partial integrants derived from CUX2 mRNA, excluding the homeobox – CUX2P1 covers part of the coding region at the 5' end and CUX2P2 part of the 3' untranslated region.

SATB1P1 [Entrez Gene ID: 100033410]. We designate this previously unannotated sequence SATB1P1 because it is clearly a retrotransposed pseudogene of SATB1. SATB1P1 is a short partial integrant derived from part of the 3' untranslated region of SATB1 mRNA; it does not encompass the homeobox.

The PROS homeobox class

The PROS class (named after the Drosophila gene pros) encodes proteins with a PROS domain C-terminal to an atypical homeodomain. The PROS domain is a DNA-binding domain of approximately 100 amino acids [77]. PROS-class genes encode a highly divergent homeodomain with three extra amino acids. These additional residues are inserted at a different position compared to the TALE class, being between the second and third alpha helices (Additional file 6).

We have identified a total of two PROS-class homeobox genes in the human genome (Tables 1 and 4), which we have placed in a single gene family (Prox). The highly divergent homeodomain sequence and unusual structural features provide justification for PROS being a separate gene class, despite the small number of genes. In phylogenetic analyses, PROS-class homeodomains are situated on a long branch, very distant from other classes (Figure 3; Additional files 1, 2 and 5). The human PROX1 gene is well characterized; we have identified and named its paralog, PROX2. We have not found any human PROS-class pseudogenes.

PROX2 [Entrez Gene ID: 283571]. We designate this previously unannotated gene PROX2 on the basis of clear orthology to the mouse Prox2 gene, inferred from sequence identity and synteny. The homeobox of human PROX2 has two introns and unusually the splice sites of the first (5') intron (AT-AA) do not follow the GT-AG donor-acceptor rule. This has also been noted for mouse Prox2 [78].

The ZF homeobox class

The ZF (zinc finger) class generally encodes proteins with zinc finger motifs, in addition to one or more homeodomains. As noted earlier, phylogenetic analyses of homeodomains does not recover the ZF class as a monophyletic group (Figure 3; Additional files 1, 2 and 5). We recognize that this suggests that zinc finger motifs and homeodomains may have been brought together on three separate occasions in evolution; nonetheless, it is convenient and informative to group these into a single class. Inclusion of the HOMEZ gene in the ZF class may be surprising, as this gene does not encode zinc fingers. However, as previously noted [79] and reproduced in our phylogenetic analyses (Figure 3; Additional files 1, 2 and 5), the multiple homeodomain sequences of this gene are clearly related to those encoded by the ZHX1, ZHX2 and ZHX3 genes.

We have identified a total of 14 ZF-class homeobox genes in the human genome (Tables 1 and 4), which we have placed in five gene families (Adnp, Tshz, Zeb, Zfhx and Zhx/Homez). We have also identified one ZF-class pseudogenes in the human genome (Tables 1 and 4). We have revised the nomenclature of five of these loci (ADNP2, ZEB1, ZEB2, ZEB2P1 and ZFHX3).

ADNP2 [Entrez Gene ID 22850]. This gene was previously known as ZNF508; we rename it ADNP2 to reflect its paralogous relationship to ADNP.

ZEB1 [Entrez Gene ID: 6935] and ZEB2 [Entrez Gene ID: 9839]. These genes were previously known as ZFHX1A and ZFHX1B respectively. We rename them ZEB1 and ZEB2 to distinguish them from genes belonging to the distantly related Zfhx gene family.

ZEB2P1 [Entrez Gene ID: 100033412]. This retrotransposed pseudogene of ZEB2 has been described previously [80]. Our new nomenclature (ZEB2P1) reflects the origin of this locus.

ZFHX3 [Entrez Gene ID: 463]. This gene was previously known as ATBF1; we rename it ZFHX3 to reflect its close relationship to ZFHX2 and ZFHX4; indeed ZFHX3 was a synonym for this gene.

The CERS homeobox class

The highly unusual CERS (ceramide synthase) class, also known as the LASS (longevity assurance) class, comprises a single gene family that is highly conserved amongst eukaryotes and includes the yeast gene and original member LAG1. There are six CERS-class genes in the human genome (CERS1 to CERS6) and five of these (CERS2 to CERS6) encode proteins with a homeodomain sequence [81, 82]. These are, however, extremely divergent from the homeodomains of other gene classes. Secondary structure prediction analyses suggest these sequences have the potential to encode three alpha helices in the appropriate positions (data not shown). The most surprising characteristic of these genes is that biochemical studies predict them to encode transmembrane proteins, with the homeodomain on the cytosolic side of the endoplasmic reticulum membrane, and hence they could not act as DNA-binding proteins or transcription factors [81, 82]. It is possible that an ancestor of these genes gained a homeobox through exon shuffling, or alternatively this could represent convergent evolution. We include only CERS2 to CERS6 in our comprehensive compilation of human homeobox genes, as CERS1 lacks a homeobox motif.

Chromosomal distribution of human homeobox genes

The chromosomal locations of genes can give clues to evolutionary ancestry, including patterns of gene duplication, and the possible existence of gene clusters. In Figure 4, we show the chromosomal locations of all human homeobox genes. We do not include probable pseudogenes on these ideograms, because most of these have originated by reverse transcription of mRNA and secondary integration into the genome, and hence give no insight into ancestral locations of genes. The highly repetitive DUX1 to DUX5 sequences are also not shown, as these have undergone secondary amplification and are also most likely non-functional (see above).

The first observation is that there are homeobox genes on every human chromosome. Even the two sex chromosomes harbor homeobox genes, with SHOX (short stature homeobox) in the PAR1 pseudoautosomal region at the tip of the short arms of X and Y being the best known. Haploinsufficiency of SHOX is implicated in the short stature phenotype of Turner syndrome patients who lack one copy of the X chromosome [83]. There are also nine other homeobox genes in non-pseudoautosomal regions of the X chromosome, including three tandemly-arranged members of the Rhox gene family, collectively homologous to the multiple Rhox (reproductive homeobox) genes of mouse. Only one of the homeobox genes on the X chromosome, the TALE-class gene TGIF2LX, has a distinct homolog on the Y chromosome, called TGIF2LY. These genes map to the largest homology block shared by the unique regions of the X and Y chromosomes, spanning 3.5 Mb. It has been proposed that the ancestor of these two genes arose by retrotransposition of TGIF2 mRNA [84].

The autosomes with the lowest number of homeobox genes are chromosomes 21 (with just PKNOX1) and 22 (with GSC2 and ISX). Examination of the remaining autosomes reveals that homeobox genes are quite dispersed with some interesting regional accumulations. The best known examples of close linkage between homeobox genes are the four Hox clusters on human chromosomes 2, 7, 12 and 17, comprising 9, 11, 9 and 10 genes respectively; each of these is shown as just a single line on each ideogram for simplicity (Figure 4). These should not be considered in isolation, however, because many other ANTP-class genes map in the vicinity of the Hox clusters [26, 27]. These include genes very tightly linked to the Hox clusters, notably the Evx-family genes (on chromosomes 2 and 7), Dlx-family genes (on chromosomes 2 and 17), and Meox-family genes (on chromosomes 2 and 17).

There are other concentrations of ANTP-class genes away from the Hox clusters. These are the ParaHox cluster (GSX1, PDX1, CDX2) on chromosome 13, and four sets of NKL-subclass genes on 2p/8p (split), 4p, 5q and 10q, hypothesized to be derived from an ancestral array by duplication [26, 33]. The accumulation on the distal half of the long arm of chromosome 10 is particularly striking, comprising eleven ANTP-class genes from 10 gene families. This is not a tight gene cluster, but it is compatible with ancestry by extensive tandem gene duplication followed by dispersal. Discounting the rather aberrant case of the Hox clusters, this region of the long arm of chromosome 10 is the most homeobox-rich region of the human genome.

There are additional groupings of homeobox genes outside the ANTP class. These include two TALE-class Irx clusters on chromosomes 5 and 16 homologous to the described mouse Irx clusters [19], and a set of PRD-class genes on chromosome 19 proposed to be derived from the CRX homeobox gene by duplication and rapid divergence [21]. Perhaps the most interesting case, however, is found on the tip of the long arm of chromosome 9, where there is a concentration of homeobox genes from disparate gene classes. Four LIM-class genes, one ANTP-class gene, one PRD-class gene and one TALE-class gene are found in this location. Although dispersed over a large region, and not forming a tight gene cluster, the linkages are nonetheless intriguing. It is possible that these linkages reflect ancestry from the very ancient gene duplications that must have generated the distinctive homeobox gene classes found within animal genomes.

Conclusion

We identified 300 homeobox loci in the euchromatic regions of the human genome, and divide these into 235 probable functional genes and 65 probable pseudogenes. Not all of these loci possess a homeobox because for completeness we include all sequences derived from homeobox-containing genes. The number of homeobox sequences is also different from the number of loci because several genes contain multiple homeobox motifs. The figures exclude the repetitive DUX1 to DUX5 homeobox sequences of which we identified 35 probable pseudogenes, with many more expected in heterochromatic regions.

New or revised nomenclature is proposed for approximately 70 of the 300 homeobox loci in order to clarify orthologous relationships between human and mouse, to indicate evolutionary relationships within a gene family, to distinguish genes from pseudogenes, and to indicate pseudogene origins. The loci are also classified into a simple hierarchical scheme, comprising 102 gene families within eleven gene classes. The classification scheme proposed may be widely applicable to homeobox genes from other animals.

The 235 probable functional homeobox genes map to every human chromosome with some interesting regional concentrations of genes. These include a large number of ANTP-class genes on the distal end of the long arm of chromosome 10, and a combination of LIM-, ANTP-, PRD- and TALE-class genes on the distal end of the long arm of chromosome 9. These associations may be remnants of common ancestry early in animal evolution.

Methods

The finished human genome sequence (build 35.1) was subjected to a series of tBLASTn searches [85, 86] using known homeodomain sequences from the ANTP, PRD, LIM, POU, HNF, SINE, TALE, CUT, PROS and ZF classes. No arbitrary E-value cut-off was selected, but instead each list of hits was analyzed manually until true homeodomain sequences ceased to be detected. Definition of a homeodomain used a combination of CD-search for conserved protein domains implemented through BLASTp [85, 86] and secondary structure prediction by JPred implemented through the Barton Group, University of Dundee [87]. Each time a new or divergent homeodomain match was found, the tBLASTn process was repeated. Six very divergent gene families were undetected by this method but found by text searching: Hopx, Adnp, Tshz, Zeb, Zhx/Homez and Cers. To ensure that every pseudogene was detected, including truncated or decayed versions lacking the homeobox, the full mRNA sequence of each gene was deduced and used in a BLASTn search of the human genome sequence [85, 86]. Pseudogenes were recognized as those genomic regions with similarity to non-repetitive DNA sequences of the parent gene, even if aligning to only part of the locus. Pseudogenes undergo mutational decay and would eventually become unrecognizable, but in practice ambiguous cases were not encountered. Exon-intron structures of novel loci were deduced by comparison between genomic sequence and cDNA, EST or retrotransposed pseudogene sequences, as previously described [21]. Several unnamed human loci were identified as probable orthologs of known mouse genes; orthology was deduced by a combination of homeodomain sequence similarity and synteny, examined through the mouse genome sequence (build 34.1) and the Ensembl Genome Browser [88].

Phylogenetic analyses were performed with homeodomain sequences, after each had been edited to an alignment of 60 amino acids (Additional file 7), using the maximum likelihood [89] and neighbor-joining [90] methods. Maximum likelihood trees were constructed using PhyML [91], with a JTT model of amino acid substitution, four categories of between-site rate heterogeneity, a gamma distribution parameter estimated from the data and 500 bootstrap resamplings. Neighbor-joining trees were constructed using PHYLIP (.)[92], with a JTT model of amino acid substitution and 1000 bootstrap resamplings. For defining human gene families, all Drosophila homeodomains were first combined with all human homeodomains in maximum likelihood and neighbor-joining analyses to enable divergent Drosophila genes to be identified and removed. These include genes lost from human, as well genes known to have undergone unusually rapid evolution in Drosophila. For the Hox3 family the rapidly evolving Drosophila genes bcd, zen and zen2 were then replaced by an ortholog from centipede (Sm Hox3b), and for the Nk4 family the rapid evolving Drosophila gene tin was replaced by an ortholog from annelid (Pd NK4). In addition, six genes from other protostome or cnidarian genomes were added to represent gene families known to be missing from Drosophila (Pdx family: Ps Xlox; Alx family: Nv CART1; Dmbx family: Hv manacle; Pou1 family: Nv POU1; Hnf1 family: Nv HNF; Pknox family: Am Prep). Only 100 bootstrap resamplings were performed on this dataset because of its large size (354 homeodomains). Trees were displayed using TreeExplorer [93]. Genes encoding partial homeodomains, and probable pseudogenes, were not included in the phylogenetic analyses. With short alignments, phylogenetic trees can only be used as guides to relationships, not absolute indicators of evolutionary history, and the trees presented in this paper should be interpreted in this light.

Notes

Declarations

Acknowledgements

We thank Rebecca Furlong, Tokiharu Takahashi, Hidetoshi Saiga, Naohito Takatori, David Ferrier, Mario Pestarino, Thomas Bürglin and reviewers for helpful advice. Research undertaken by PWHH and HAFB was supported by the BBSRC and the Wellcome Trust. The work of EAB and the HUGO Gene Nomenclature Committee is supported by NHGRI grant P41 HG003345 and the Wellcome Trust.

Authors’ Affiliations

(1)
Department of Zoology, University of Oxford
(2)
HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus

References

  1. Bürglin TR: A comprehensive classification of homeobox genes. Guidebook to the Homeobox Genes. Edited by: Duboule D. 1994, Oxford: Oxford University Press, 25-71.Google Scholar
  2. Bürglin TR: Homeodomain proteins. Encyclopedia of Molecular Cell Biology and Molecular Medicine. Edited by: Meyers RA. 2005, Weinheim: Wiley-VCH Verlag GmbH & Co, 6: 179-222. 2Google Scholar
  3. Boncinelli E: Homeobox genes and disease. Curr Op Genet Dev. 1997, 7: 331-337. 10.1016/S0959-437X(97)80146-3.View ArticlePubMedGoogle Scholar
  4. Edvardsen RB, Seo H-C, Jensen MF, Mialon A, Mikhaleva J, Bjordal M, Cartry J, Reinhardt R, Weissenbach J, Wincker P, et al: Remodelling of the homeobox gene complement in the tunicate Oikopleura dioica. Curr Biol. 2005, 15: R12-R13. 10.1016/j.cub.2004.12.010.View ArticlePubMedGoogle Scholar
  5. Galliot B, de Vargas C, Miller D: Evolution of homeobox genes: Q50 Paired-like genes founded the Paired class. Dev Genes Evol. 1999, 209: 186-197. 10.1007/s004270050243.View ArticlePubMedGoogle Scholar
  6. Holland PWH, Takahashi T: The evolution of homeobox genes: implications for the study of brain development. Brain Res Bull. 2005, 66: 484-490. 10.1016/j.brainresbull.2005.06.003.View ArticlePubMedGoogle Scholar
  7. Ryan JF, Burton PM, Mazza ME, Kwong GK, Mullikin JC, Finnerty JR: The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis. Genome Biol. 2006, 7: R64-10.1186/gb-2006-7-7-r64.PubMed CentralView ArticlePubMedGoogle Scholar
  8. Banerjee-Basu S, Baxevanis AD: Molecular evolution of the homeodomain family of transcription factors. Nucleic Acids Res. 2001, 29: 3258-3269. 10.1093/nar/29.15.3258.PubMed CentralView ArticlePubMedGoogle Scholar
  9. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, et al: The sequence of the human genome. Science. 2001, 291: 1304-1351. 10.1126/science.1058040.View ArticlePubMedGoogle Scholar
  10. IHGSC: Initial sequencing and analysis of the human genome. Nature. 2001, 409: 860-921. 10.1038/35057062.View ArticleGoogle Scholar
  11. Nam J, Nei M: Evolutionary change of the numbers of homeobox genes in bilateral animals. Mo Bio Evol. 2005, 22: 2386-2394. 10.1093/molbev/msi229.View ArticleGoogle Scholar
  12. Beckers M-C, Gabriëls J, van der Maarel S, De Vriese A, Frants RR, Collen D, Belayew A: Active genes in junk DNA? Characterization of DUX genes embedded within 3.3 kb repeated elements. Gene. 2001, 264: 51-57. 10.1016/S0378-1119(00)00602-8.View ArticlePubMedGoogle Scholar
  13. Ding H, Beckers M-C, Plaisance S, Marynen P, Collen D, Belayew A: Characterization of a double homeodomain protein (DUX1) encoded by a cDNA homologous to 3.3 kb dispersed repeated elements. Hum Mol Genet. 1998, 7: 1681-1694. 10.1093/hmg/7.11.1681.View ArticlePubMedGoogle Scholar
  14. Gabriëls J, Beckers M-C, Ding H, De Vriese A, Plaisance S, van der Maarel SM, Padberg GW, Frants RR, Hewitt JE, Collen D, et al: Nucleotide sequence of the partially deleted D4Z4 locus in a patient with FSHD identifies a putative gene within each 3.3 kb element. Gene. 1999, 236: 25-32. 10.1016/S0378-1119(99)00267-X.View ArticlePubMedGoogle Scholar
  15. Akam ME, Holland PWH, Ingham PW, Wray G: The evolution of developmental mechanisms. Development. 1994, 135-142. Suppl
  16. Joyner AL, Hanks M: The engrailed genes: evolution of function. Semin Dev Bio. 1991, 2: 435-445.Google Scholar
  17. Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP: Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell. 1993, 75: 1417-1430. 10.1016/0092-8674(93)90627-3.View ArticlePubMedGoogle Scholar
  18. Stock DW, Ellies DL, Zhao Z, Ekker M, Ruddle FH, Weiss KM: The evolution of the vertebrate Dlx genefamily. Proc Natl Acad Sci USA. 1996, 93: 10858-10863. 10.1073/pnas.93.20.10858.PubMed CentralView ArticlePubMedGoogle Scholar
  19. Peters T, Dildrop R, Ausmeier K, Ruther U: Organization of mouse Iroquois homeobox genes in two clusters suggests a conserved regulation and function in vertebrate development. Genome Res. 2000, 10: 1453-1462. 10.1101/gr.144100.PubMed CentralView ArticlePubMedGoogle Scholar
  20. de Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Akam M, Carroll SB, Balavoine G: Hox genes in brachiopods and priapulids and protostome evolution. Nature. 1999, 399: 772-776. 10.1038/21631.View ArticlePubMedGoogle Scholar
  21. Booth HAF, Holland PWH: Annotation, nomenclature and evolution of four novel homeobox genes expressed in the human germ line. Gene. 2007, 387: 7-14. 10.1016/j.gene.2006.07.034.View ArticlePubMedGoogle Scholar
  22. Booth HAF, Holland PWH: Eleven daughters of NANOG. Genomics. 2004, 84: 229-238. 10.1016/j.ygeno.2004.02.014.View ArticlePubMedGoogle Scholar
  23. Castro LFC, Rasmussen SLK, Holland PWH, Holland ND, Holland LZ: A Gbx homeobox gene in amphioxus: insights into ancestry of the ANTP class and evolution of the midbrain/hindbrain boundary. Dev Biol. 2006, 295: 40-51. 10.1016/j.ydbio.2006.03.003.View ArticlePubMedGoogle Scholar
  24. Dearden PK, Wilson MJ, Sablan L, Osborne PW, Havler M, McNaughton E, Kimura K, Milshina NV, Hasselmann M, Gempe T, et al: Patterns of conservation and change in honey bee developmental genes. Genome Res. 2006, 16: 1376-1384. 10.1101/gr.5108606.PubMed CentralView ArticlePubMedGoogle Scholar
  25. Monteiro AS, Schierwater B, Dellaporta SL, Holland PWH: A low diversity of ANTP class homeobox genes in Placozoa. Evol Dev. 2006, 8: 174-182. 10.1111/j.1525-142X.2006.00087.x.View ArticlePubMedGoogle Scholar
  26. Castro LFC, Holland PWH: Chromosomal mapping of ANTP class homeobox genes in amphioxus: piecing together ancestral genomes. Evol Dev. 2003, 5: 459-465. 10.1046/j.1525-142X.2003.03052.x.View ArticlePubMedGoogle Scholar
  27. Pollard SL, Holland PWH: Evidence for 14 homeobox gene clusters in human genome ancestry. Curr Biol. 2000, 10: 1059-1062. 10.1016/S0960-9822(00)00676-X.View ArticlePubMedGoogle Scholar
  28. Brooke NM, Garcia-Fernàndez J, Holland PWH: The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature. 1998, 392: 920-922. 10.1038/31933.View ArticlePubMedGoogle Scholar
  29. Ferrier DEK, Brooke NM, Panopoulou G, Holland PWH: The Mnx homeobox gene class defined by HB9, MNR2 and amphioxus AmphiMnx. Dev Genes Evol. 2001, 211: 103-107. 10.1007/s004270000124.View ArticlePubMedGoogle Scholar
  30. Venkatesh TV, Holland ND, Holland LZ, Su M-T, Bodmer R: Sequence and developmental expression of amphioxus AmphiNk2-1: insights into the evolutionary origin of the vertebrate thyroid gland and forebrain. Dev Genes Evol. 1999, 209: 254-259. 10.1007/s004270050250.View ArticlePubMedGoogle Scholar
  31. Holland ND, Venkatesh TV, Holland LZ, Jacobs DK, Bodmer R: Amphink2-tin, an amphioxus homeobox gene expressed in myocardial progenitors: insights into evolution of the vertebrate heart. Dev Biol. 2003, 255: 128-137. 10.1016/S0012-1606(02)00050-7.View ArticlePubMedGoogle Scholar
  32. Hislop NR, de Jong D, Hayward DC, Ball EE, Miller DJ: Tandem organization of independently duplicated homeobox genes in the basal cnidarian Acropora millepora. Dev Genes Evol. 2005, 215: 268-273. 10.1007/s00427-005-0468-y.View ArticlePubMedGoogle Scholar
  33. Luke GN, Castro LFC, McLay K, Bird C, Coulson A, Holland PWH: Dispersal of NK homeobox gene clusters in amphioxus and humans. Proc Natl Acad Sci USA. 2003, 100: 5292-5295. 10.1073/pnas.0836141100.PubMed CentralView ArticlePubMedGoogle Scholar
  34. Shiojima I, Komuro I, Mizuno T, Aikawa R, Akazawa H, Oka T, Yamazaki T, Yazaki Y: Molecular cloning and characterization of human cardiac homeobox gene CSX1. Circulation Res. 1996, 79: 920-929.View ArticlePubMedGoogle Scholar
  35. Moretti P, Simmons P, Thomas P, Haylock D, Rathjen P, Vadas M, D'Andrea R: Identification of homeobox genes expressed in human haemopoietic progenitor cells. Gene. 1994, 144: 213-219. 10.1016/0378-1119(94)90380-8.View ArticlePubMedGoogle Scholar
  36. Hart AH, Hartley L, Ibrahim M, Robb L: Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev Dynamics. 2004, 230: 187-198. 10.1002/dvdy.20034.View ArticleGoogle Scholar
  37. Fairbanks D, Maughan P: Evolution of the NANOG pseudogene family in the human and chimpanzee genomes. BMC Evol Biol. 2006, 6: 12-10.1186/1471-2148-6-12.PubMed CentralView ArticlePubMedGoogle Scholar
  38. Zhang J, Wang X, Li M, Han J, Chen B, Wang B, Dai J: NANOGP8 is a retrogene expressed in cancers. FEBS J. 2006, 273 (8): 1723-1730. 10.1111/j.1742-4658.2006.05186.x.View ArticlePubMedGoogle Scholar
  39. Moreau-Aubry A, Le Guiner S, Labarrière N, Gesnel M-C, Jotereau F, Breathnach R: A processed pseudogene codes for a new antigen recognized by a CD8+ T cell clone on melanoma. J Exp Med. 2000, 191: 1617-1623. 10.1084/jem.191.9.1617.PubMed CentralView ArticlePubMedGoogle Scholar
  40. Balczarek KA, Lai Z-C, Kumar S: Evolution and functional diversification of the paired box (Pax) DNA-binding domains. Mol Biol Evol. 1997, 14: 829-842.View ArticlePubMedGoogle Scholar
  41. Chen F, Kook H, Milewski R, Gitler AD, Lu MM, Li J, Nazarian R, Schnepp R, Jen K, Biben C, et al: Hop is an unusual homeobox gene that modulates cardiac development. Cell. 2002, 110: 713-723. 10.1016/S0092-8674(02)00932-7.View ArticlePubMedGoogle Scholar
  42. Shin CH, Liu Z-P, Passier R, Zhang C-L, Wang D-Z, Harris TM, Yamagishi H, Richardson JA, Childs G, Olson EN: Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Cell. 2002, 110: 725-735. 10.1016/S0092-8674(02)00933-9.View ArticlePubMedGoogle Scholar
  43. Simeone A, Acampora D, Gulisano M, Stornaiuolo A, Boncinelli E: Nested expression domains of four homeobox genes in developing rostral brain. Nature. 1992, 358: 687-690. 10.1038/358687a0.View ArticlePubMedGoogle Scholar
  44. Plouhinec J-L, Sauka-Spengler T, Germot A, Le Mentec C, Cabana T, Harrison G, Pieau C, Sire J-Y, Véron G, Mazan S: The mammalian Crx genes are highly divergent representatives of the Otx5 gene family, a gnathostome orthology class of orthodenticle-related homeogenes involved in the differentiation of retinal photoreceptors and circadian entrainment. Mol Biol Evol. 2003, 20: 513-521. 10.1093/molbev/msg085.View ArticlePubMedGoogle Scholar
  45. Wada H, Saiga H, Satoh N, Holland PWH: Tripartite organization of the ancestral chordate brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, Hox and Otx genes. Development. 1998, 125: 1113-1122.PubMedGoogle Scholar
  46. Wada H, Holland PWH, Sato S, Yamamoto H, Satoh N: Neural tube is partially dorsalized by overexpression of HrPax-37: the ascidian homologue of Pax-3 and Pax-7. Dev Biol. 1997, 187: 240-252. 10.1006/dbio.1997.8626.View ArticlePubMedGoogle Scholar
  47. MacLean JA, Chen MA, Wayne CM, Bruce SR, Rao M, Meistrich ML, Macleod C, Wilkinson MF: Rhox: a new homeobox gene cluster. Cell. 2005, 120: 369-382. 10.1016/j.cell.2004.12.022.View ArticlePubMedGoogle Scholar
  48. Jackson M, Watt AJ, Gautier P, Gilchrist D, Driehaus J, Graham GJ, Keebler J, Prugnolle F, Awadalla P, Forrester LM: A murine specific expansion of the Rhox cluster involved in embryonic stem cell biology is under natural selection. BMC Genom. 2006, 7: 212-10.1186/1471-2164-7-212.View ArticleGoogle Scholar
  49. MacLean JA, Lorenzetti D, Hu Z, Salerno WJ, Miller J, Wilkinson MF: Rhox homeobox gene cluster: recent duplication of three family members. Genesis. 2006, 44: 122-129. 10.1002/gene.20193.View ArticlePubMedGoogle Scholar
  50. Morris L, Gordon J, Blackburn CC: Identification of a tandem duplicated array in the Rhox alpha locus on mouse chromosome X. Mamm Genome. 2006, 17: 178-187. 10.1007/s00335-005-0138-4.View ArticlePubMedGoogle Scholar
  51. Wang X, Zhang J: Remarkable expansions of an X-linked reproductive homeobox gene cluster in rodent evolution. Genomics. 2006, 88: 34-43. 10.1016/j.ygeno.2006.02.007.View ArticlePubMedGoogle Scholar
  52. Wimmer K, Zhu X-X, Rouillard JM, Ambros PF, Lamb BJ, Kuick R, Eckart M, Weinhäusl A, Fonatsch C, Hanash SM: Combined restriction landmark genomic scanning and virtual genome scans identify a novel human homeobox gene, ALX3, that is hypermethylated in neuroblastoma. Genes Chromosomes Cancer. 2002, 33: 285-294. 10.1002/gcc.10030.View ArticlePubMedGoogle Scholar
  53. Norris RA, Scott KK, Moore CS, Stetten G, Brown CR, Jabs EW, Wulfsberg EA, Yu J, Kern MJ: Human PRRX1 and PRRX2 genes: cloning, expression, genomic localization, and exclusion as disease genes for Nager syndrome. Mamm Genome. 2000, 11: 1000-1005. 10.1007/s003350010193.View ArticlePubMedGoogle Scholar
  54. Saito T, Greenwood A, Sun Q, Anderson DJ: Identification by differential RT-PCR of a novel paired homeodomain protein specifically expressed in sensory neurons and a subset of their CNS targets. Mol Cell Neurosci. 1995, 6: 280-292. 10.1006/mcne.1995.1022.View ArticlePubMedGoogle Scholar
  55. Heathcote K, Braybrook C, Abushaban L, Guy M, Khetyar ME, Patton MA, Carter ND, Scambler PJ, Syrris P: Common arterial trunk associated with a homeodomain mutation of NKX2.6. Hum Mol Genet. 2005, 14: 585-593. 10.1093/hmg/ddi055.View ArticlePubMedGoogle Scholar
  56. Wayne CM, MacLean JA, Cornwall G, Wilkinson MF: Two novel human X-linked homeobox genes, hPEPP1 and hPEPP2, selectively expressed in the testis. Gene. 2002, 301: 1-11. 10.1016/S0378-1119(02)01087-9.View ArticlePubMedGoogle Scholar
  57. Cinquanta M, Rovescalli AC, Kozak CA, Nirenberg M: Mouse Sebox homeobox gene expression in skin, brain, oocytes, and two-cell embryos. Proc Natl Acad Sci USA. 2000, 97: 8904-8909. 10.1073/pnas.97.16.8904.PubMed CentralView ArticlePubMedGoogle Scholar
  58. Wijmenga C, Frants RR, Hewitt JE, van Deutekom JCT, van Geel M, Wright TJ, Padberg GW, Hofker MH, van Ommen G-JB: Molecular genetics of facioscapulohumeral muscular dystrophy. Neuromusc Dis. 1993, 3: 487-491. 10.1016/0960-8966(93)90102-P.View ArticlePubMedGoogle Scholar
  59. Kadrmas JL, Beckerle MC: The LIM domain: from the cytoskeleton to the nucleus. Nat Rev Mol Cell Biol. 2004, 5: 920-931. 10.1038/nrm1499.View ArticlePubMedGoogle Scholar
  60. Hobert O, Westphal H: Functions of LIM-homeobox genes. Trends Genet. 2000, 16: 75-83. 10.1016/S0168-9525(99)01883-1.View ArticlePubMedGoogle Scholar
  61. Phillips K, Luisi B: The virtuoso of versatility: POU proteins that flex to fit. J Mol Biol. 2000, 302: 1023-1039. 10.1006/jmbi.2000.4107.View ArticlePubMedGoogle Scholar
  62. Ryan AK, Rosenfeld MG: POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev. 1997, 11: 1207-1225. 10.1101/gad.11.10.1207.View ArticlePubMedGoogle Scholar
  63. Andersen B, Rosenfeld MG: POU domain factors in the neuroendocrine system: lessons from developmental biology provide insights into human disease. Endocrine Rev. 2001, 22: 2-35. 10.1210/er.22.1.2.Google Scholar
  64. Baumhueter S, Mendel DB, Conley PB, Kuo CJ, Turk C, Graves MK, Edwards CA, Courtois G, Crabtree GR: HNF-1 shares three sequence motifs with the POU domain proteins and is identical to LF-B1 and APF. Genes Dev. 1990, 4: 372-379. 10.1101/gad.4.3.372.View ArticlePubMedGoogle Scholar
  65. Chi Y-I, Frantz JD, Oh B-C, Hansen L, Dhe-Paganon S, Shoelson SE: Diabetes mutations delineate an atypical POU domain in HNF-1alpha. Mol Cell. 2002, 10: 1129-1137. 10.1016/S1097-2765(02)00704-9.View ArticlePubMedGoogle Scholar
  66. Bach I, Mattei M-G, Cereghini S, Yaniv M: Two members of an HNF1 homeoprotein family are expressed in human liver. Nucleic Acids Res. 1991, 19: 3553-3559. 10.1093/nar/19.13.3553.PubMed CentralView ArticlePubMedGoogle Scholar
  67. Chen S, Saiyin H, Zeng X, Xi J, Liu X, Li X, Yu L: Isolation and functional analysis of human HMBOX1, a homeobox containing protein with transcriptional repressor activity. Cytogen Genome Res. 2006, 114: 131-136. 10.1159/000093328.View ArticleGoogle Scholar
  68. Kawakami K, Sato S, Ozaki H, Ikeda K: Six family genes-structure and function as transcription factors and their roles in development. BioEssays. 2000, 22: 616-626. 10.1002/1521-1878(200007)22:7<616::AID-BIES4>3.0.CO;2-R.View ArticlePubMedGoogle Scholar
  69. Gallardo ME, Lopez-Rios J, Fernaud-Espinosa I, Granadino B, Sanz R, Ramos C, Ayuso C, Seller MJ, Brunner HG, Bovolenta P, et al: Genomic cloning and characterization of the human homeobox gene SIX6 reveals a cluster of SIX genes in chromosome 14 and associates SIX6 hemizygosity with bilateral anophthalmia and pituitary anomalies. Genomics. 1999, 61: 82-91. 10.1006/geno.1999.5916.View ArticlePubMedGoogle Scholar
  70. Bertolino E, Reimund B, Wildt-Perinic D, Clerc RG: A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem. 1995, 270: 31178-31188. 10.1074/jbc.270.52.31178.View ArticlePubMedGoogle Scholar
  71. Bürglin TR: Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res. 1997, 25: 4173-4180. 10.1093/nar/25.21.4173.PubMed CentralView ArticlePubMedGoogle Scholar
  72. Bürglin TR: The PBC domain contains a MEINOX domain: coevolution of Hox and TALE homeobox genes?. Dev Genes Evol. 1998, 208: 113-116. 10.1007/s004270050161.View ArticlePubMedGoogle Scholar
  73. Bürglin TR, Mukherjee K: Comprehensive analysis of animal TALE homeobox genes: new conserved motifs and cases of accelerated evolution. J Mol Evol. 2007, 65: 137-153. 10.1007/s00239-006-0023-0.View ArticlePubMedGoogle Scholar
  74. Anderson DM, Arredondo J, Hahn K, Valente G, Martin JF, Wilson-Rawls J, Rawls A: Mohawk is a novel homeobox gene expressed in the developing mouse embryo. Dev Dynam. 2006, 235: 792-801. 10.1002/dvdy.20671.View ArticleGoogle Scholar
  75. Harada R, Bérubé G, Tamplin OJ, Denis-Larose C, Nepveu A: DNA-binding specificity of the cut repeats from the human cut-like protein. Mol Cell Biol. 1995, 15: 129-140.PubMed CentralView ArticlePubMedGoogle Scholar
  76. Bürglin TR, Cassata G: Loss and gain of domains during evolution of cut superclass homeobox genes. Int J Dev Biol. 2002, 46: 115-123.PubMedGoogle Scholar
  77. Yousef MS, Matthews BW: Structural basis of prospero-DNA interaction: implications for transcription regulation in developing cells. Structure. 2005, 13: 601-607. 10.1016/j.str.2005.01.023.View ArticlePubMedGoogle Scholar
  78. Nishijima I, Ohtoshi A: Characterization of a novel prospero-related homeobox gene, Prox2. Mol Gen Genom. 2006, 275: 471-478. 10.1007/s00438-006-0105-0.View ArticleGoogle Scholar
  79. Bayarsaihan D, Enkhmandakh B, Makeyev A, Greally JM, Leckman JF, Ruddle FH: Homez, a homeobox leucine zipper gene specific to the vertebrate lineage. Proc Natl Acad Sci USA. 2003, 100: 10358-10363. 10.1073/pnas.1834010100.PubMed CentralView ArticlePubMedGoogle Scholar
  80. Nelles L, Van de Putte T, van Grunsven L, Huylebroeck D, Verschueren K: Organization of the mouse Zfhx1b gene encoding the two-handed zinc finger repressor Smad-interacting protein-1. Genomics. 2003, 82: 460-469. 10.1016/S0888-7543(03)00169-1.View ArticlePubMedGoogle Scholar
  81. Mizutani Y, Kihara A, Igarashi Y: Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem J. 2005, 390: 263-271. 10.1042/BJ20050291.PubMed CentralView ArticlePubMedGoogle Scholar
  82. Pewzner-Jung Y, Ben-Dor S, Futerman AH: When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: Insights into the regulation of ceramide synthesis. J Biol Chem. 2006, 281: 25001-25005. 10.1074/jbc.R600010200.View ArticlePubMedGoogle Scholar
  83. Rao E, Weiss B, Fukami M, RumpAndreas , Niesler B, Mertz A, Muroya K, Binder G, Kirsch S, Winkelmann M, et al: Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat Genet. 1997, 16: 54-63. 10.1038/ng0597-54.View ArticlePubMedGoogle Scholar
  84. Blanco-Arias P, Sargent CA, Affara NA: The human-specific Yp11.2/Xq21.3 homology block encodes a potentially functional testis-specific TGIF-like retroposon. Mamm Genome. 2002, 13: 463-468. 10.1007/s00335-002-3010-9.View ArticlePubMedGoogle Scholar
  85. NCBI BLAST. [http://www.ncbi.nlm.nih.gov/BLAST/]
  86. McGinnis S, Madden TL: BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004, 32: W20-W25. 10.1093/nar/gkh435.PubMed CentralView ArticlePubMedGoogle Scholar
  87. JPred. [http://www.compbio.dundee.ac.uk/Software/JPred/jpred.html]
  88. Ensembl Genome Browser. [http://www.ensembl.org/]
  89. Felsenstein J: Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981, 17: 368-376. 10.1007/BF01734359.View ArticlePubMedGoogle Scholar
  90. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987, 4: 406-425.PubMedGoogle Scholar
  91. Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52: 696-704. 10.1080/10635150390235520.View ArticlePubMedGoogle Scholar
  92. Felsenstein J: PHYLIP: Phylogeny Inference Package (version 3.2). Cladistics. 1989, 5: 164-166.Google Scholar
  93. TreeExplorer. [http://evolgen.biol.metro-u.ac.jp/TE/TE_man.html]
  94. Liu M, Su M, Lyons GE, Bodmer R: Functional conservation of zinc-finger homeodomain gene zfh1/SIP1 in Drosophila heart development. Dev Genes Evol. 2006, 216: 683-693. 10.1007/s00427-006-0096-1.View ArticlePubMedGoogle Scholar
  95. Manfroid I, Caubit X, Kerridge S, Fasano L: Three putative murine Teashirt orthologues specify trunk structures in Drosophila in the same way as the Drosophilateashirt gene. Development. 2004, 131: 1065-1073. 10.1242/dev.00977.View ArticlePubMedGoogle Scholar
  96. Caubit X, Coré N, Boned A, Kerridge S, Djabali M, Fasano L: Vertebrate orthologues of the Drosophila region-specific patterning gene teashirt. Mech Dev. 2000, 91: 445-448. 10.1016/S0925-4773(99)00318-4.View ArticlePubMedGoogle Scholar

Copyright

© Holland et al; licensee BioMed Central Ltd. 2007

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.