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Abstract
Background: Molecular evolutionary studies share the common goal of elucidating historical
relationships, and the common challenge of adequately sampling taxa and characters. Particularly at
low taxonomic levels, recent divergence, rapid radiations, and conservative genome evolution yield
limited sequence variation, and dense taxon sampling is often desirable. Recent advances in
massively parallel sequencing make it possible to rapidly obtain large amounts of sequence data, and
multiplexing makes extensive sampling of megabase sequences feasible. Is it possible to efficiently
apply massively parallel sequencing to increase phylogenetic resolution at low taxonomic levels?

Results: We reconstruct the infrageneric phylogeny of Pinus from 37 nearly-complete chloroplast
genomes (average 109 kilobases each of an approximately 120 kilobase genome) generated using
multiplexed massively parallel sequencing. 30/33 ingroup nodes resolved with  95% bootstrap
support; this is a substantial improvement relative to prior studies, and shows massively parallel
sequencing-based strategies can produce sufficient high quality sequence to reach support levels
originally proposed for the phylogenetic bootstrap. Resampling simulations show that at least the
entire plastome is necessary to fully resolve Pinus, particularly in rapidly radiating clades. Meta-
analysis of 99 published infrageneric phylogenies shows that whole plastome analysis should provide
similar gains across a range of plant genera. A disproportionate amount of phylogenetic information
resides in two loci (ycf1, ycf2), highlighting their unusual evolutionary properties.

Conclusion: Plastome sequencing is now an efficient option for increasing phylogenetic resolution
at lower taxonomic levels in plant phylogenetic and population genetic analyses. With continuing
improvements in sequencing capacity, the strategies herein should revolutionize efforts requiring
dense taxon and character sampling, such as phylogeographic analyses and species-level DNA
barcoding.

Background
Molecular phylogenetic and phylogeographic analyses are
typically limited by DNA sequencing costs, and this forces
investigators to choose between dense taxon sampling
with a small number of maximally informative loci, or

genome-scale sampling across a sparse taxon sample [1-
4]. Balancing these choices is particularly difficult in stud-
ies focused on recently diverged taxa or ancient rapid radi-
ations, as taxon sampling needs to be sufficiently large to
define the magnitude of intraspecific variation and the
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phylogenetic depth of shared alleles [5,6]. Similarly,
broad genome sampling is necessary to offset the low level
of genetic divergence among individuals of recent co-
ancestry and to overcome low phylogenetic signal to noise
ratios characteristic of rapid radiations [6]. Next genera-
tion DNA sequencing is poised to bring the benefits of
affordable genome-scale data collection to such studies at
low taxonomic levels (genera, species, and populations).
Massively parallel sequencing (MPS) has increased per
instrument sequence output several orders of magnitude
relative to Sanger sequencing, with a proportional reduc-
tion in per-nucleotide sequencing costs [7,8]. In principle
this could allow the rapid sequencing of large numbers of
entire organellar genomes (chloroplast or mitochondria)
or nuclear loci, and result in greatly increased phyloge-
netic resolution [9]. To date, comparatively few plant or
animal evolutionary genetic analyses have utilized MPS
[10-12], due to associated costs and the technical chal-
lenge of assembling large contiguous sequences from
micro-reads. These barriers have been largely eliminated
through four innovations: development of strategies for
targeted isolation of large genomic regions [9,13-15]; har-
nessing the capacity of these platforms to sequence tar-
geted regions in multiplex [9,14,16]; streamlining sample
preparation and improving throughput [17]; and devel-
oping accurate de novo assemblers that reduce reliance
upon a predefined reference sequence [18,19].

In this paper we demonstrate the feasibility and effective-
ness of MPS-based chloroplast phylogenomics for one-
third of the world's pine species (Pinus), a lineage with
numerous unresolved relationships based on previous
cpDNA-based studies [20-22]. We also highlight the
broad applicability of our approach to other plant taxa,
and remark on the potential applications to similar mito-
chondrial-based studies in animals and plant DNA bar-
coding. Using multiplex MPS approaches, we sequenced
nearly-complete chloroplast genomes (120 kilobases (kb)
each total length) from 32 species in Pinus and four rela-
tives in Pinaceae. Our sampling of Pinus includes both
subgenera (subg. Pinus, 14 accessions; subg. Strobus, 21
accessions) and species exemplars chosen from all 11 tax-
onomic subsections [21] to evenly cover the phylogenetic
diversity of the genus. Taxon density is highest for a cho-
sen subsection (subsect. Strobus) as representative of a spe-
cies-rich clade lacking phylogenetic resolution in previous
studies [5,21-23]. Three species are also represented by
two chloroplast genomes each (P. lambertiana, P. thunber-
gii, P. torreyana).

Results
Genomic Assemblies and Alignment
Assemblies in subgenus Strobus averaged 117 kb, with an
estimated 8.8% missing data (compared to P. koraiensis
reference); subg. Pinus assemblies averaged just less than

120 kb (6% estimated missing data, compared to P. thun-
bergii reference). Outgroup assemblies averaged just over
119 kb (10.4% average estimated missing data compared
to P. thunbergii reference). Median coverage depth for
determined positions was variable but typically high
(range 21 to 156×) (Table 1, [also see additional file 1]).
Full alignment of all assemblies was 132,715 bp in length,
including 62,298 bp from exons encoding 71 conserved
protein coding genes (20,638 amino acids), 36 tRNAs and
4 rRNAs. A high degree of co-linearity is inferred for these
genomes due to the absence of major rearrangements
within de novo contigs, and by the overall success of the
polymerase chain reaction-based sequence isolation strat-
egy (indicating conservation of the order of anchor genes
containing primer sites). However, minor structural
changes (a tandem duplication in two species [24] and the
apparent loss of duplicate copies of psaM and rps4 in P.
koraiensis) could not be confirmed. No evidence of inter-
specific recombination was detected, consistent with the
rarity of recombination in plant plastomes [25].

The aligned matrix contained 7,761 parsimony informa-
tive ingroup substitutions (4,286 non-coding positions
and 3,475 coding positions) (Table 2). Over one-half of
parsimony informative sites (55.0%) in protein coding
regions resided in ycf1 and ycf2, two large genes of uncer-
tain function [26], that accounted for 22% of all exon
sequence (Figure 1A, B). No other exons in the pine plas-
tome exhibit such a disproportionate number of parsi-
mony informative sites (Figure 1C). These loci have an
elevated nonsynonymous substitution rate (Table 3) and
appear to have a substantial number of indels in Pinus,
although it was not possible in many cases to confidently
score indels in these loci due to the inherent limitations of
reference-guided assembly of short reads in length varia-
ble regions. Start codon position, overall length and stop
codon positions were nonetheless largely preserved in
these loci across the genus. In addition to substitutions in
exons, 48 ingroup exon indels and 23 ingroup stop codon
shifts were identified in 26 loci.

Phylogenetic Resolution in Non-Random and Randomized 
Data Partitions
Full alignment partitions yielded a higher proportion of
highly supported nodes, with 88 to 91% (29 to 30/33) of
ingroup nodes resolved with bootstrap support  95% in
likelihood analysis. The four largest data partitions tested
(full alignment and concatenated exon nucleotides, both
with and without ycf1 and ycf2) yielded results that were
topologically identical with the exception of four taxa (P.
albicaulis, P. krempfii, P. lambertiana N, P. parviflora) (Fig-
ures 2 and 3). In addition, support for the branching order
of P. cembra, P. koraiensis and P. sibirica was low in full
alignment partitions. Topological differences were found
to be significant according to Shimodaira-Hasegawa com-
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parisons of the full alignment topology to two of the other
major partitions (full alignment and exon nucleotides
without ycf1 and ycf2). Trends in significance were most
strongly influenced by the two alternative positions of P.
krempfii (Figure 2 vs. Figure 3A, C; Table 4). With the
exception of P. krempfii, areas of topological uncertainty
reside in a single clade that historically has lacked internal
resolution (subsection Strobus) [20-22]. Coalescent esti-
mations suggest that these poorly resolved subsection
Strobus haplotypes diverged in rapid succession relative to
the age of their shared nodes (0.009 to 0.44 coalescent
units, or ca. 90,000 to 450,000 years) (Table 5). A putative
chloroplast capture event in P. lambertiana previously doc-
umented [5] was also supported with whole-plastome
results. Substantial resolution was achieved in analyses of

ycf1 and ycf2 data partitions, however we observed several
topological differences from the full alignment with high
support (primarily involving the species discussed above)
(Figure 4).

Of the 71 exon coding indels and stop codon shifts iden-
tified, 35 mapped unambiguously to monophyletic
groups (that is, no accessions in a group were missing data
for that event) (Figures 5 and 6). All of these groups had
strong support in nucleotide-based phylogenetic analyses
(100% likelihood and parsimony bootstrap support). The
remainder of these events were primarily either putatively
monophyletic (missing data in one or more members of a
clade) or showed strong evidence of homoplasy (Figures
5 and 6).

Table 1: Multiplex tags and read count for sampled accession.

Accession Multiplex Tag Number of Reads Read Length
(bp, without tag)

Median coverage

Abies firma AGCT 3110857 36 116
Cedrus deodara CCCT 1338443 36 74
Larix occidentalis GGT 719060 33 30
Picea sitchensis ATT/AATT 1268688/710117 33/37 80
Pinus albicaulis AGCT 869509 36 54
P. aristata ACGT 1884108 36 100
P. armandii AGCT 1233280 36 109
P. attenuata ACGT 1230397 36 64
P. ayacahuite CCCT 1173420 36 96
P. banksiana AGCT 2307302 36 65
P. canariensis CCCT 1069293 36 95
P. cembra CTGT 1166707 36 40
P. contorta CCT 1423631/423905 33/37 65
P. chihuahuana CTGT 950336 36 21
P. flexilis GGGT 1545509 36 136
P. gerardiana GGT 1336725 33 98
P. krempfii AAT 1569301 33 112
P. lambertiana N ATT 1426598/1443555 33/37 99
P. lambertiana S CCCT 1180289 36 113
P. longaeva CCT 930078 33 89
P. merkusii ATT 632411/585832 33/37 37
P. monophylla GGT 1233556 33 145
P. monticola CTGT 1460934 36 75
P. nelsonii AAT 1139491/329838 33/37 81
P. parviflora CCCT 920102 36 45
P. peuce TACT 1402996 36 98
P. pinaster GGT 1745043 33 77
P. ponderosa CCT 16859450 33 44
P. resinosa GGGT 2145134 36 48
P. rzedowskii TACT 2419507 36 156
P. sibirica CTGT 947216 36 60
P. squamata TACT 1956311 36 97
P. strobus GGGT 864197 36 42
P. taeda CGT 1305703/1219158 33/37 90
P. thunbergii AAT 1850050/2690553 33/37 104
P. torreyana ssp. torreyana CTGT 1114111 36 76
P. torreyana ssp. insularis ACGT 1157851 36 88

"/" indicates accession was multiplex sequenced in two sequencing runs. Median coverage is reported for determined positions (  2× coverage 
depth) in reference-guided analysis.
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In parsimony analyses of variable-sized jackknife samples
of our full alignment, nodal support showed a strong pos-
itive correlation with the length of the nucleotide matrix
(proportion nodes  95% = -1.0808 + 0.38497*log10
[matrix size, bp]; r2 = 0.915, P < 0.0001) (Figure 7A). Res-
olution of full alignment and exon nucleotide partitions
was indistinguishable from random jackknife samples of
comparable size, indicating similar phylogenetic content
of these partitions and corresponding similar-sized ran-
dom genomic subsamples. Partitions consisting of ycf1
and ycf2 - in particular ycf1, and ycf1 and ycf2 combined -
showed significantly higher resolution than the genome-
wide average (Figure 7A). The concatenated partition ycf1
+ ycf2 (13.1 kb; 77.4% nodes  95% bootstrap support)
yielded only slightly less phylogenetic resolution than all
exons combined (62.3 kb; 80.6% nodes  95% bootstrap
support) in parsimony analysis.

Comparisons to Previous Pinus Phylogenies
Previous cpDNA based estimates of infrageneric relation-
ships in Pinus [20-22] sampled the same species and/or
lineages as our study, and inferred relationships using
2.82 to 3.57 kb of chloroplast DNA. Results of these stud-
ies are largely consistent with our results, although highly
supported nodes (  95%) accounted for only 13 to 23%
of the total ingroup nodes (23% to 42% if [20,21]
adjusted to match our species composition). The empiri-
cal results of these studies fell within or close to the 95%
prediction intervals established from our jackknife resam-
pling response from our full genome alignment (Figure
7A), indicating that the loci used in prior studies (prima-
rily rbcL and matK) are similarly informative as a compa-
rable sample of random nucleotides from the chloroplast
genome.

Meta-Analysis of Published Infrageneric Studies
From our sampling, infrageneric analyses in plants pub-
lished from 2006 to 2008 were typically based on 2574

aligned bp (95% bootstrap confidence interval: 2,292,
2,864) of sequence data, evaluated 31.7 ingroup species
(95% bootstrap confidence interval: 20.2, 43.2), and
resolved 22.6% of nodes at  95% bootstrap support
(95% bootstrap confidence interval: 18.6, 26.5). Regres-
sion analysis shows that the proportion of highly resolved
nodes in these studies is significantly and positively corre-
lated with matrix length (F1,96 = 18.032; r2 = 0.149; P <
0.0001) but not the number of included taxa (F1,97 =
0.546; r2 = 0.006; P = 0.461), although there was a nega-
tive trend in the latter (Figure 7B, C). Our current sample
size is typical in the number of taxa sampled, but both
matrix length (132.7 kb) and the proportion of highly
bootstrap-supported nodes (84.8% parsimony, 90.3%
maximum likelihood) were substantially higher.

Discussion
Our results highlight that whole plastome sequencing is
now a feasible and effective option for inferring phyloge-
nies at low taxonomic levels. Compared to previous chlo-
roplast-based phylogenetic analyses in Pinus, our data
matrix contained approximately 60 times more phyloge-
netically informative characters resulting in an approxi-
mately two- to four-fold increase in the proportion of
highly resolved nodes (after adjusting results of previous
studies to match our species composition) (Figure 8,
Table 2). An important question arising from these com-
parisons is whether the difference in resolution is entirely
attributable to the increase in nucleotides, or whether the
genomic partitions sequenced in prior studies were less
informative on average than the rest of the genome. In
fact, the resolution provided by loci used in previous Pinus
studies is indistinguishable from or slightly greater than
that of comparably sized random genomic subsamples
from our full alignment. Combined with the strong corre-
lation between resolution and the size of random
genomic subsample, this suggests that the increase in res-
olution in this study is primarily due to the increase in

Table 2: Summary of variable and parsimony informative sites in data partitions.

Treatment Aligned length Pines only
Variable positions

(% of total)

PI positions
(% of total)

Pines and outgroups
Variable positions

(% of total)

PI positions
(% of total)

All Nucleotides 132085 11179 (8.5) 7761 (5.9) 22834 (17.3) 11534 (8.7)
All Nucleotides without ycf1, ycf2 118935 8755 (7.4) 5852 (4.9) 18978 (16.0) 9038 (7.6)
Exon Nucleotides 62298 4716 (7.6) 3475 (5.6) 8346 (13.4) 4867 (7.8)
Exon Nucleotides without ycf1, ycf2 49044 2291 (4.7) 1566 (3.2) 4489 (9.2) 2381 (4.9)
ycf1 6355 1514 (23.8) 1227 (19.3) 2165 (34.1) 1507 (23.7)
ycf2 6794 910 (13.4) 682 (10.0) 1686 (24.8) 987 (14.5)
ycf1+ycf2 13149 2424 (18.4) 1909 (14.5) 3851 (29.3) 2494 (19.0)
Wang et al. [22] 3513 196 (5.6) 127 (3.6) 482 (13.5) 243 (6.8)
Gernandt et al. [21] 2817 197 (7.0) 128 (4.5) 345 (12.2) 167 (5.9)
Eckert and Hall [20] 3288 217 (6.6) 123 (3.7) 411 (12.5) 206 (6.3)

Data from Gernandt et al. [21] and Eckert and Hall [20] pruned to include only ingroup species and outgroup genera common to our study. (PI = 
parsimony informative.)
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matrix length. This is further supported by a significant
relationship between resolution and matrix length in a
broad sampling of chloroplast-based infrageneric phylog-
enies. Based on these results, we predict that whole-plas-
tome analysis will yield similar gains in phylogenetic
resolution not only in the genus Pinus but for most land
plant genera. On the other hand, it is apparent that even
the entire chloroplast genome may be insufficient to fully
resolve the most rapidly radiating lineages. In this regard,
our results are reflective of previous analyses of ancient
rapid radiations wherein nodal resolution does not scale
proportionately to the length of sequence analyzed
[27,28]. Notably, the position of P. krempfii was signifi-
cantly different between the four largest data partitions
(Table 4), even though this species does not appear to be
associated with a rapid radiation (Table 5). This result is

not completely unexpected, as this species has previously
been difficult to place phylogenetically [29,30]. An une-
quivocal resolution of this species will likely require the
inclusion of multiple nuclear loci [30].

When considering recent divergence, the disproportion-
ately high mutation rate in ycf1 (and ycf2, to a lesser
extent) demonstrated here is of importance, and mirrors
findings in other plant taxa [31,32] and recently in Pinus
subsection Ponderosae [33]. These loci should be informa-
tive for phylogenetic studies in recently-diverged clades or
in population-level studies in a range of plant species. Dis-
cretion is advised, however, as ycf1 (and possibly ycf2)
appears to be a target of positive selection at least in Pinus
and may reflect adaptive episodes rather than neutral
genealogies. In likelihood analyses of ycf1 and ycf2, we

Table 3: Codon-based Z-test for selection results for exon sequences.

exon P value
HA:

dN > dS

P value
HA:

dN < dS

test statistic exon P value
HA:

dN > dS

P value
HA:

dN < dS

test statistic

accD 1 0.2013 0.8400 psbK 0.3925 1 0.2735
atpA 1 0.0146 2.2071 psbL 0.0922 1 1.3350
atpB 1 0.0007 3.2809 psbM 0.0125 1 2.2697
atpE 0.0632 1 1.5390 psbN 1 0.1632 0.9854
atpF 0.0888 1 1.3559 psbT 1 0.1193 1.1842
atpH 1 0.0210 2.0561 psbZ 1 0.0783 1.4253
atpI 1 0.0622 1.5477 rbcL 1 0.0000 4.5278
ccsA 1 0.1785 0.9248 rpl2 1 0.0031 2.7867
cemA 1 0.2453 0.6915 rpl14 1 0.0234 2.0097
chlB 1 0.0002 3.6305 rpl16 1 0.0463 1.6957
chlL 1 0.0039 2.7022 rpl20 1 0.0359 1.8161
chlN 1 0.0000 5.9654 rpl22 1 0.0057 2.5720
clpP 0.4634 1 0.0920 rpl23 1 0.2150 0.7919
infA 1 0.1554 1.0177 rpl32 1 0.1692 0.9613
matK 1 0.1628 0.9871 rpl33 1 0.0695 1.4893
petA 1 0.0140 2.2233 rpl36 1 0.1550 1.0194
petB 1 0.0022 2.9021 rpoA 1 0.0691 1.4928
petD 1 0.1025 1.2742 rpoB 1 0.0000 4.2298
petG 1 0.0697 1.4881 rpoC1 1 0.0103 2.3448
petL 0.0791 1 1.4197 rpoC2 1 0.0017 2.9858
petN 1 0.1594 0.9990 rps2 1 0.0583 1.5804
psaA 1 0.0000 5.5339 rps3 1 0.0019 2.9447
psaB 1 0.0000 5.3084 rps4 1 0.0062 2.5373
psaC 1 0.1711 0.9537 rps7 0.0130 1 2.2541
psaI 0.0482 1 1.6756 rps8 1 0.3590 0.3619
psaJ 1 0.4104 0.2270 rps11 1 0.0638 1.5339
psaM 0.4967 1 0.0084 rps12 1 0.1016 1.2795
psbA 1 0.0004 3.4212 rps14 1 0.0984 1.2977
psbB 1 0.0003 3.5747 rps15 1 0.0070 2.4949
psbC 1 0.0002 3.6848 rps18 1 0.1515 1.0343
psbD 1 0.0045 2.6582 rps19 1 0.0863 1.3722
psbE 1 0.0642 1.5310 ycf1 0.0000 1 4.0848
psbF 0.0587 1 1.5769 ycf2 0.0156 1 2.1793
psbH 0.0124 1 2.2732 ycf3 1 0.0813 1.4051
psbI 1 0.1810 0.9151 ycf4 1 0.0531 1.6274
psbJ 0.0916 1 1.3389

Results shown are overall average of all ingroup pairwise comparisons, with significance at P  0.05 indicated in bold.
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Length and information content of 71 exons common to Pinus accessions sampled in this studyFigure 1
Length and information content of 71 exons common to Pinus accessions sampled in this study. A) Exon contri-
butions to length as proportion of total exome length. B) Exon contributions to parsimony informative sites as proportion of 
total exome parsimony informative sites. C) Distribution of exons in relation to length and parsimony informative sites. In A) 
and B) most exons are shown by functional group (i.e., atp(), psb(); number of corresponding loci indicated in parentheses) for 
visualization purposes. In C) all exons were treated individually (N = 71). Trendline in C) based on all exons with exception of 
ycf1 and ycf2 to emphasize their departure from trend in other exons.
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observed several topological differences from the full
alignment at the subsectional level, further demonstrating
that caution must be taken in drawing phylogenetic con-
clusions from these two loci. Although we were able to
confidently score small structural changes (indels and
stop codon shifts) for all other exons, it was not possible
to score indels for ycf1 and ycf2 due to the apparent high
rate of indel formation in these loci. In all other loci exam-
ined, small structural changes only delineated clades with
concurrent high support from nucleotide-based analyses
(both in present study and [20-22]), and thus are likely to
be of limited use in species or population level discrimi-
nation. It is not clear whether this will also be the case in
ycf1 and ycf2.

It is reasonable to ask whether increased resolution is
worth the effort of assembling whole plastomes. Consid-
ering the conservative nature of bootstrap measures [34-
37], systematists often accept bootstrap values of  70% as

reliable indicators of accurate topology [36]. Simulation
studies [34], however, have demonstrated greatly
increased accuracy (approximately 42×) with bootstrap
values  95% versus  70%, and the initial formulation of
the phylogenetic bootstrap used  95% as the threshold
for topological significance [38]. Our results similarly
support using a 95% bootstrap support cutoff for conclu-
sive evidence as in both areas of topological differences,
more than one clade received bootstrap support  70% by
analysis of alternate data partitions. It is probable that
conflicting topologies with  70% but < 95% bootstrap
support accurately reflect data partitions yet may not rep-
resent the plastome phylogeny, and here the use of entire
organelle genomes makes it possible to adopt more con-
servative criteria of nodal support. There are further bio-
logical reasons why an organellar phylogeny (essentially a
single-gene estimate) may not accurately represent the
organismal phylogeny; these include interspecific hybrid-
ization, incomplete lineage sorting, and stochastic proper-

Table 4: Shimodaira-Hasegawa test results.

P. krempfii topologies P. albicaulis, P. lambertiana N, P. parviflora topologies P-value

Figure 2 vs. 3A 2 vs. 3A 0.011*
Figure 2 vs. 2 2 vs. 3A 0.153
Figure 2 vs. 3A 2 vs. 2 0.024*

Figure 2 vs. 3B 2 vs. 3B 0.351
Figure 2 vs. 3A 2 vs. 3B 0.063
Figure 2 vs. 3A 2 vs. 2 0.063

Figure 2 vs. 3C 2 vs. 3C 0.005*
Figure 2 vs. 2 2 vs. 3C 0.050
Figure 2 vs. 3C 2 vs. 2 0.024*

Results of significance testing for topology comparisons of the full alignment (Figure 2) versus the three other largest data partitions (Figure 3). For 
each set of comparisons, the first row represents comparison of unmodified maximum likelihood topologies. In the second and third rows the 
positions of P. krempfii and P. albicaulis - P. lambertiana N - P. parviflora were modified as indicated. Topologies that differ within a comparison are 
indicated in bold. Significant topological differences at P < 0.05 are indicated with an asterisk.

Table 5: Estimated divergence times of poorly resolved nodes

Node ML branch length (substitutions/site) Estimated divergence
time

P. krempfii - section Quinquefoliae 0.000370 1126539
22531

0.113/1.13
P. parviflora -
P. albicaulis

0.000144 442057
8841

0.044/0.44
P. albicaulis -

P. lambertiana N
0.000030 92095

1842
0.009/0.09

P. cembra -
P. koraiensis/sibirica

0.000085 260936
5219

0.026/0.26

All divergence time estimates assume a chloroplast mutation rate of 3.26 × 10-10 substitutions/site/year. Coalescent units reported are based on 
either high (100,000) or low (10,000) effective population (Ne) sizes. Maximum likelihood (ML) branch lengths are shown as substitutions/site. 
Estimated divergence times are presented in years (top), generations (middle) and coalescent units for high/low Ne (bottom).
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Phylogenetic relationships of 35 pines and four outgroups as determined from full plastome sequencesFigure 2
Phylogenetic relationships of 35 pines and four outgroups as determined from full plastome sequences. Support 
values are only shown for nodes with bootstrap/posterior probability values less than 100%/1.0, and are shown as ML boot-
strap/MP bootstrap/BI posterior probability. Branch lengths calculated through RAxML analysis, and correspond to scale bar (in 
units of changes/nucleotide position). Inset shows topology of outgroups relative to ingroup accessions.
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Phylogenetic relationships of 35 pines and four outgroups as determined from different data partitionsFigure 3
Phylogenetic relationships of 35 pines and four outgroups as determined from different data partitions. A) Full 
alignment without ycf1 and ycf2. B) Exon nucleotide sequences. C) Exon nucleotide sequences without ycf1 and ycf2. Support 
values are only shown for nodes with bootstrap/posterior probability values less than 100%/1.0, and are shown as ML boot-
strap/MP bootstrap/BI posterior probability. Dashes indicate < 50% bootstrap support or < .50 posterior probability. Acces-
sions whose position differs from that in full alignment analysis indicated in bold.
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Phylogenetic relationships of 35 pines and four outgroups as determined from ycf1 and ycf2 partitionsFigure 4
Phylogenetic relationships of 35 pines and four outgroups as determined from ycf1 and ycf2 partitions. A) ycf1 
only. B) ycf2 only. C) ycf1 and ycf2 combined. Support values are only shown for nodes with bootstrap/posterior probability 
values less than 100%/1.0, and are shown as ML bootstrap/MP bootstrap/BI posterior probability. Dashes indicate < 50% boot-
strap support or < .50 posterior probability, * indicates topological difference between either parsimony or Bayesian analyses 
and ML. Accessions whose position differs from that in full alignment analysis indicated in bold.
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Phylogenetic distribution of exon coding indel mutations in sampled Pinus accessionsFigure 5
Phylogenetic distribution of exon coding indel mutations in sampled Pinus accessions. Exon names given above 
boxes, size of indel (bp) and polarity ("+" = insertion, "-" = deletion) given below boxes. Polarity of events determined by com-
parison to most distant outgroups. Due to the apparent high rate of indel formation in ycf1 and ycf2, these loci were not able 
to be confidently scored for indels and are not included in this diagram. Events for only the first copy of psaM are reported. 
Branching order of tree corresponds to RAxML analysis of complete alignment. Diagonal lines represent putative reversals of 
indel events. * indicates missing data for one or more accessions of clade. Thin internal branches correspond to ML bootstrap 
support < 95% or topological difference in four largest data partitions (full alignment and exon nucleotides, with and without 
ycf1 and ycf2).
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Phylogenetic distribution of stop codon mutations in sampled Pinus accessionsFigure 6
Phylogenetic distribution of stop codon mutations in sampled Pinus accessions. Exon names given above boxes, 
amino acid shift relative to stop codon position in outgroups given below boxes. Polarity of events determined by comparison 
to most distant outgroups; "+" signifies extension of coding region due to stop codon mutation, "-" signifies shortening. The 
value of zero for the psbH- and psaM-associated events corresponds to events that alter the original stop codon without alter-
ing the total number of codons in the locus. Events for only the first copy of psaM are reported. Diagonal line represents a 
putative reversal in psaJ of P. parviflora. Branching order of tree corresponds to RAxML analysis of complete alignment. * indi-
cates missing data for one or more accessions of clade. Thin internal branches correspond to ML bootstrap support < 95% or 
topological difference in four largest data partitions (full alignment and exon nucleotides, with and without ycf1 and ycf2).
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ties of the coalescent process. Nonetheless, phylogenetic
reconstruction based on complete organellar sequences
may facilitate the detection of such phenomena, by reduc-
ing errors and uncertainty due to insufficient sampling of
DNA sequence.

Conclusion
Plastome sequencing is now a reasonable option for
increasing resolution in phylogenetic studies at low taxo-
nomic levels and will continue to become an increasingly
simple process. As sequencers evolve to even higher capac-
ity and multiplexing becomes routine in the near future,
this will allow more extensive taxon and genomic sam-
pling in phylogenetic studies at all taxonomic levels. It is
estimated that sequencing capacity on next generation
platforms will approach 100 gigabase pairs per sequenc-
ing run by the end of 2009. For perspective, this is suffi-
cient sequence capacity to produce all 100 genus-level
data sets used in our meta-analysis (including ours) at
greater than 100× coverage depth in a single sequencing
run. Based on the estimates of Cronn et al. [9], this
sequencing capacity would also allow the simultaneous
sequencing of several thousands of animal mitochondria,
which could greatly benefit low-level taxonomic or popu-
lation-based studies in animals that currently tend to rely
on relatively short sequences from many individuals [39].
It is also clear that these improvements could enable other
pursuits that are currently hindered by limited sequencing
capacity, such as identification of plants by diagnostic
DNA sequences (DNA barcoding). The recently agreed

Relationships between matrix size and resolution in current study and meta-analysis of published studiesFigure 7
Relationships between matrix size and resolution in 
current study and meta-analysis of published studies. 
A) Parsimony resolution of jackknifed partitions (black cir-
cle) of full alignment of current study. Labelled data points 
(triangle) represent resolution of the following: a - Wang et 
al. [22], b - Gernandt et al. [21], c - Eckert and Hall [20], d - 
ycf2, e - ycf1, f - combined ycf1 and ycf2, g - exon nucleotides, 
h - complete alignment. B) Relationship between matrix 
length and phylogenetic resolution in published studies (N = 
99). C) Relationship between number of taxa and phyloge-
netic resolution in published studies (N = 99). Regression 
lines are shown in red; 95% confidence intervals shown in 
blue. X-axes of A, B and C and Y-axes of B and C are in log 
scale.

Comparative phylogenetic resolution of Pinus species used in this studyFigure 8
Comparative phylogenetic resolution of Pinus species 
used in this study. Resolution from A) two chloroplast loci 
[21] and B) our complete alignment. Distance bar corre-
sponds to 100 nucleotide changes, and is scaled for either 
tree. * indicate branches with < 95% (likelihood) bootstrap 
support in B) (likelihood and parsimony topologies were 
completely congruent).
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upon two locus chloroplast barcode for plants claims only
72% unique identification to species level[40]. Based on
results herein, whole plastome sequences have the poten-
tial to be more highly discriminating and efficient plant
DNA barcodes; in fact, the possibility of plastome- and
mitome-scale barcodes has been raised previously [41].
Results in this area (as well as in phylogenetic and phylo-
geographic analyses) will be impacted particularly if
advances in target isolation and enrichment [13-15] and
streamlining sample preparation [17] prove globally
effective.

Methods
DNA Extraction, Amplification and Sequencing
DNA extraction, amplification and sequencing are
described in and followed Cronn et al. [9], with 4 bp mul-
tiplex tags, replacing the original 3 bp tags (Table 1). For
one sample, P. ponderosa, additional reads from three non-
multiplexed lanes of genomic DNA were also included.

Sequence Assembly and Genome Alignments
Sequence assembly and alignment are described in and
followed Whittall et al. [42]. An analysis of interspecific
recombination was conducted using RDP(Recombination
Detection Program) v. 3.27 [43]. Rather than using the
full genomic alignment, which was too memory-inten-
sive, concatenated nucleotide sequences for 71 exons
common to all accessions were used (reflective of order on
the plastome). Subgenera were investigated separately as
members of opposing subgenera appear incapable of
hybridization [44]. Each subgenus was checked for
recombination events using standard settings for several
recombination-detection strategies, including: RDP [45],
GeneConv [46], Chimaera [47], MaxChi [48], BootScan
[49], and SiScan [50]. A total of 24 putative recombina-
tion events were identified. On close investigation, all
events involved one or more of the following: misalign-
ment, autapomorphic noise coupled with missing data,
and amplification of pseudogenes. In cases of misalign-
ment, alignments were corrected prior to subsequent phy-
logenetic analyses. In cases of amplification of
pseudogenes, the entire amplicon for the accession
involved was turned to Ns. Inspection of the alignment
also revealed that some amplicons in some accessions had
failed to amplify, or amplified apparently paralogous loci
(evidenced by substantially higher divergence). These
regions were masked in affected accessions. The locus
matK was determined to be a putative paralog in several
accessions, and in four (P. armandii, P. lambertiana S, P.
albicaulis, and P. ayacahuite) it was replaced with Sanger
sequence [5]. We also replaced 2180 bp of poor quality
sequence of the locus ycf1 in P. ponderosa with Sanger
sequence. In all accessions amplified by PCR, the regions
adjacent to primer sites typically had low coverage, while
primers had very high coverage, thus primer-flanking

regions (where problematic) and the primers were also
excluded. It was also determined through Sanger sequenc-
ing that a 600 bp region of the previously published P.
koraiensis plastome (positions 48808 to 49634 in Gen-
Bank AY228468) is apparently erroneous. This region was
removed and reference guided analysis was rerun for this
amplicon.

Aligned sequences were annotated using DOGMA (Dual
Organellar Genome Annotator) [51] with manual adjust-
ments to match gene predictions from GenBank and the
Chloroplast Genome Database http://chloro
plast.cbio.psu.edu/. Exons were evaluated for reading
frame and translations, and validity of exon mutations
was judged based on presence in de novo sequence, effect
on the resulting polypeptide sequence, and sequence cov-
erage depth.

Phylogenetic Analyses
Sequence data was analyzed using all genome positions
and concatenated nucleotide sequence from 71 exons
common to all pine accessions; both partitions were ana-
lyzed with and without the loci ycf1 and ycf2. A relatively
short (approximately 630 bp) repetitive stretch of the
locus ycf1 of subgenus Strobus accessions was masked in
all analyses due to alignment ambiguity. The loci ycf1 and
ycf2 (ca. 14 kb combined) were also analyzed individually
and together.

Maximum Likelihood (ML) phylogenetic analyses were
performed through the Cipres Web Portal http://
www.phylo.org/portal/Home.do using RAxML bootstrap-
ping with the general model of nucleotide evolution
(GTR+G) [52] and automatically determined numbers of
bootstrap replicates. Bayesian inference analyses (BI) were
performed using MrBayes v. 3.1.2 [53] using the GTR+G+I
model, which was selected using MrModelTest v. 2.3 [54]
under both Aikake Information Criterion and Hierarchi-
cal Likelihood Ratio Test frameworks. Each analysis con-
sisted of two runs with four chains each (three hot and
one cold chain), run for 1000000 generations with trees
sampled every 100 generations. The first 25% percent of
trees from all runs were discarded as burn-in. Unweighted
maximum parsimony analyses (MP) of data partitions
were conducted in PAUP* (Phylogenetic Analysis Using
Parsimony (*and other methods)) v. 4.0b10 [55] by heu-
ristic search with 10 replicates of random sequence addi-
tion, tree bisection and reconnection branch swapping
and a maxtrees limit of 1,000. Non-parametric bootstrap
analysis was conducted under the same conditions for
1,000 replicates to determine branch support.

Topological differences between the full alignment topol-
ogy and each of the three other largest data partitions (full
alignment without ycf1 and ycf2, and exon nucleotides
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both with and without ycf1 and ycf2) were tested for sig-
nificance using the Shimodaira-Hasegawa test [56] with
resampling estimated log-likelihood (RELL) bootstrap-
ping (1,000 replicates) under the GTR+G model of evolu-
tion. To further determine which topological differences
were most influential, tests were repeated with the posi-
tions of topology-variable accessions alternately modified
to match the full alignment topology. In total, the full
alignment data set was compared to nine different topol-
ogies.

Exon indels and stop codon shifts were mapped onto the
topology determined by ML analysis of the full alignment
by parsimony mapping using Mesquite v. 2.6 (Maddison
and Maddison, http://mesquiteproject.org). Tests of selec-
tion for exons were performed in MEGA v. 4.0 [57] using
the codon-based Z-test for selection, with pairwise dele-
tion and the Nei-Gojobori (P-distance) model; variance of
the differences were computed using the bootstrap
method with 500 replicates.

Estimation of Divergence Times for Poorly Resolved Nodes
Divergence times for four nodes with topological uncer-
tainty (P. albicaulis - P. lambertiana N - P. parviflora, P. sibir-
ica - P. cembra - P. koraiensis, P. krempfii-section
Quinquefoliae of subgenus Strobus) were estimated accord-
ing to Pollard et al. [58]. Chloroplast mutation rate was
estimated by averaging maximum and minimum muta-
tion rates for Pinaceae chloroplast genomes from two pre-
vious studies [59,60] and assuming a generation time of
50 years [61]. Two estimates were calculated for each node
using either low (10,000) or high (100,000) effective pop-
ulation size [23].

Effect of Character Number on Phylogenetic Resolution
Empirical data from Pinus genomes
Variable-size random subsamples of the full alignment
were tested under the parsimony criteria using PAUP* v.
4.0b10 (the faststep option was used for all but the two
smallest partitions due to time considerations). Eleven
partition sizes were tested (2.5, 5, 10, 20, 30, 40, 50, 60,
80, 100 and 120 kb) in five replicates each, with resolu-
tion measured as the percentage of ingroup nodes pro-
duced with  95% jackknife support. Relationships
between partition size and ingroup resolution were esti-
mated using least squares regressions, and 95% confi-
dence limits for individual points were estimated based
on linear regression using SAS JMP 7.0.1 (S.A.S. Institute,
Inc., http://www.jmp.com/). Our full alignment, exon
nucleotides and ycf1/ycf2 partitions were analyzed under
the same parsimony criteria for comparison, as were the
alignments of [20-22]. Accessions from Gernandt et al.
and Eckert et al. [20,21] were pruned to include only taxa
common to our sampling; the original analysis of Wang et

al. [22] was used since this data matrix was not available
for alternative phylogenetic analyses.

Meta-Analysis of Published Studies
We evaluated 99 phylogenetic analyses from 86 studies
published between 2006 and 2008 in Systematic Botany,
Systematic Biology, American Journal of Botany, Taxon,
Molecular Phylogenetics and Evolution, and Annals of the
Missouri Botanical Garden [see additional file 2]. Analy-
ses were selected based on: 1) the presented phylogeny
was based solely on chloroplast DNA sequence; 2) the
analysis included  10 species from a monophyletic
genus; 3) there were more inter- than intra-specific taxa
analyzed within the genus; 4) parsimony-based bootstrap
or jackknife values were presented. Ingroup branches with
bootstrap support  95%, the number of ingroup taxa and
the aligned base pairs used in the analysis were recorded
for each case. The authors' taxonomic interpretations were
accepted in instances of taxonomic uncertainty. Conspe-
cific clades were treated as one taxon unless clearly differ-
entiated from one another, and internal bootstrap values
were disregarded. The number of branches with bootstrap
support  95% was regressed both on the number of
aligned base pairs and the number of taxa (both log-trans-
formed to meet assumptions of normality and equal vari-
ances).

Data Deposition
Illumina sequencing reads and quality scores have been
deposited in the NCBI SRA database as accession
SRA009802. New sequences have been deposited in Gen-
Bank as accessions FJ899555-FJ899583.

Accession numbers cited in manuscript
[GenBank FJ899555-FJ899583, EU998739-EU998746,
SRA009802]
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