
Vaccines represent the epitome of a preventive strategy 
to control disease [1,2]. In the individual, they confer 
direct protection and, if high enough immunization 
coverage of a population is achieved, unimmunized 
people may also be protected, indirectly, through ‘herd 
immunity’ [3,4]
as measles and polio vaccines, has interrupted indigenous 
transmission of those diseases in entire regions of the 
globe [5-8]. And one disease, smallpox, has been com-
pletely eradicated from the human population through 
the epidemiologically sound use of smallpox vaccine 
[9,10].

In developing countries, where two-thirds of the 
world’s population live, infectious diseases cause most of 
the mortality among children under 5 years of age [11] 
and constitute major health problems in older children 

and adults. Vaccines are among the most promising 
inter ventions to diminish the burden of specific infec-
tions in populations in developing countries [12-15].

The special advantages of oral vaccines
Oral vaccines are particularly attractive for immunizing 
populations in developing countries for several reasons. 
First, contaminated needles and syringes are major 
problems both for health workers and for environmental 
safety in many developing countries where there is a high 
prevalence of HIV and hepatitis B and C [16-18]. Because 
they obviate the need for needles and syringes, oral 
vaccines allow less qualified health workers to carry out 
immunization. Second, the simple logistics of oral 
vaccines are highly compatible with mass immunization 
campaigns [19,20]. Lastly, in most societies both adults 
and children generally prefer an oral vaccine to a 
parenteral injection.

Despite the attractions of oral vaccines for developing 
countries, many oral vaccines, both live and non-living, 
have proven to be less immunogenic or less protective 
when administered to infants, children or adults living in 
low socioeconomic conditions in less-developed coun-
tries than they are when used in industrialized countries 

barrier’ to successful immunization of people in less 
developed countries who receive oral vaccines. Here, I 
review this phenomenon, provide examples and possible 
explanations, and offer suggestions for establishing the 
basis of the phenomenon.

Immune responses to oral vaccines in developing 
countries
A prototype: Sabin oral polio vaccine

trivalent polio vaccine (tOPV), which eliminated trans-
mission of wild-type polioviruses in the Americas [21], 
the Western Pacific [22] and Europe [22] and has been 
the linchpin of the Global Polio Eradication Initiative 
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[23,24]. Of the three poliovirus serotypes (types 1 to 3), 
tOPV has interrupted transmission of type 2 poliovirus 
globally since 1999.

Despite the remarkable milestones of disease control 
achieved with tOPV, it has been recognized since the 
1960s that tOPV seems to be poorly and inconsistently 
immunogenic in some developing country populations 
[25-31]. Diminished immunogenicity has been a particu-
larly vexing problem in the states of Uttar Pradesh and 
Bihar in India [32,33], from which wild-type polioviruses 
have been disseminated to other states in India and 
elsewhere in South Asia. By late 2005, the average child 
under 5 years of age in Bihar and Uttar Pradesh had 
received about 15 doses of OPV compared with about 10 
doses for children of the same age elsewhere in India 
[34]. However, because of diminished immunogenicity, 
only an estimated 71% of children under age 5 years in 
these two states were successfully immunized against 
polio, compared with 85% of children elsewhere in India 
[34]. Diminished immune responses in children in these 
areas of India are correlated with poor sanitation, a high 
prevalence of diarrheal illness at the time of vaccination, 
competing enteric viruses and competition of type 2 with 
types 1 and 3 vaccine viruses [34]. Type 2 Sabin OPV 
strain colonizes the intestine better and is considerably 
more immunogenic than types 1 or 3. For this reason 
tOPV is formulated to contain less type 2 virus than the 
other two serotypes (ratio of 106:105:105.8 infectious units 
per dose) [35] to try and mute its dominance. 
Nevertheless, in some developing country populations, 
including Uttar Pradesh and Bihar, it was necessary to 
change from use of tOPV in mass campaigns to the 
selective use of monovalent type 1 and 3 vaccines or to 
bivalent type 1+3 vaccine to improve immune responses 
to these serotypes and to interrupt transmission [34,35].

Other oral vaccines with diminished immunogenicity or 

Table 1 lists various oral vaccines for which data from 
clinical trials have demonstrated either a diminished 
immune response or lower efficacy in developing countries 
than in industrialized country populations. Besides Sabin 
polio vaccine [25-31], these oral vaccines include rotavirus 
vaccines [36-40], CVD 103-HgR live cholera vaccine 
[41-44], B subunit-inactivated Vibrio cholerae whole cell 
combination vaccine [45] and SC602 live Shigella flexneri 
2a vaccine [46,47]
include both viral and bacterial and both live and non-
living vaccines. Moreover, the pheno menon has been 
observed in all age groups, from young infants to adults. 
To maximize the protective effects that can be achieved 
with oral vaccines in developing countries, it will be 
important to understand why immune responses and 
efficacy tend to be lower in such target populations than in 
populations in industrialized countries.

Oral vaccines in young infants
Some common factors probably contribute to lowering 
the immunogenicity and efficacy of live oral vaccines 
among people of all ages in developing countries. 
However, there are special confounding factors in the 
case of young infants. In that age group, there is likely to 
be some level of immunity due to maternal serum IgG 
antibodies transferred in utero, and to breast milk, which 
contains maternal secretory immunoglobulin A (sIgA) 
antibodies [48], immune cells and non-specific protective 
factors, such as lactoferrin [49,50] and oligosaccharides 
[51]
and modulate responses to vaccines.

Early studies with tOPV, RIT 4237 rotavirus vaccine 
[36], tetravalent rhesus reassortant rotavirus vaccine at 

 Target ages at which diminished   
 immunogenicity or protection Geographic locations  
Oral vaccine was observed where observed References

Sabin polio vaccine strains Infants, toddlers, preschool children,  India, sub-Saharan Africa [25-33] 
 school-age children

RIT 4237 rotavirus Infants Gambia [36]

Rotashield rotavirus vaccine  Infants Brazil and Peru [37,125] 
(104 plaque forming unit dosage)

Rotarix attenuated rotavirus Infants Malawi, South Africa, Bangladesh [38]

Rotateq pentavalent attenuated rotavirus Infants Ghana, Kenya, Mali [39]

MMU18006 (monovalent Rhesus rotavirus strain) Infants Pakistan [40]

CVD 103-HgR live cholera strain 24-59 months; 5-9 years; adults Indonesia, Thailand, Peru, Ecuador [41-43,64]

Dukoral non-living cholera vaccine  1-12 years Nicaragua [45] 
(killed V. cholerae O1 plus B subunit)

SC602 attenuated  strain Toddlers and school age children Bangladesh [46,47]
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the 104 plaque forming unit dosage level [52] and other 
candidate rotavirus vaccine strains [40] indicated a barrier 
to oral immunization. Two new rotavirus vaccines, 
Rotarix, the monovalent human G1P[8] strain attenuated 
by multiple passages in tissue culture [53], and Rotateq, a 
pentavalent vaccine based on reassortant bovine 
rotavirus expressing human rotavirus surface proteins G1 
to 4 and P[8] [54], have been shown to be safe, immuno-
genic and highly protective against severe rotavirus 
gastroenteritis in large-scale, placebo-controlled efficacy 
trials in infants in North America, Europe and South 
America. However, when tested in efficacy trials in Africa 
and Asia, these two vaccines showed much lower efficacy 
[38,39]. The level of efficacy tended to correlate with the 
level of development of the population in which the 
vaccines were tested. Although this may reflect 
environmental influences such as competing enteric viral, 
bacterial or protozoan infections, it is likely that higher 
titers of breast milk IgA and maternally derived serum 
IgG antibodies against rotavirus also played a role in the 
places where vaccine efficacy was lowest.

Oral vaccines in older age groups
Various oral vaccines have demonstrated diminished 
immunogenicity or efficacy in older age groups, including 
in pre-school and school-age children and adults. By 
focusing on vaccines in these age groups, it is possible to 
identify and study environmental and host factors with-
out the confounding effects of breast milk and maternal 
antibodies. The vaccine that has been most intensively 
studied for these factors is live oral cholera vaccine strain 
CVD 103-HgR, a genetically engineered vaccine derived 
from a wild-type V. cholerae O1 classical biotype, Inaba 
serotype strain. In this vaccine, 94% of the gene encoding 
the enzymatically active A subunit of cholera toxin has 
been deleted and a gene encoding mercury ion resistance 
inserted into the hemolysin A locus as an indelible 
marker [55-57]. Our experience, and that of other groups, 
with CVD 103-HgR is reviewed below to illustrate how 
factors associated with diminished immunogenicity to 
oral vaccines in developing country populations can be 
identified and examined in order to devise ways to 
overcome the barrier.

The CVD 103-HgR live oral cholera vaccine as a 
paradigm
Two O serogroups of V. cholerae, O1 and O139, can cause 
epidemics of cholera gravis. V. cholerae O1 is by far the 
more important as O139 infections are found in just a 
few areas of Asia (where they are responsible for only a 
few percent of cases) and O139 has not been reported 
from Africa. Two biotypes of V. cholerae O1 exist, El Tor 
and classical, although presently only El Tor strains are 
prevalent. Recently, highly virulent El Tor strains have 

emerged that produce classical biotype cholera entero-
toxin. Within each biotype of O1 are found two main 
serotypes, Inaba and Ogawa. For a cholera vaccine to be a 
useful public health tool, it must protect against both 
serotypes and biotypes. In North American adults, a 
single oral dose of about 5 × 108 colony forming units 
(cfu) of CVD 103-HgR elicits significant (four-fold or 
greater) rises in serum vibriocidal antibody (that is, 
seroconversion) in over 90% of those vaccinated [56,58] 
and vaccine organisms are excreted by about 25% [56,58]. 
A single dose of CVD 103-HgR significantly protects 
North Americans against cholera caused by V. cholerae 
O1 of either classical or El Tor biotype and either Inaba 
or Ogawa serotype [56,59-61].

The first study in a developing country examining the 
safety and immunogenicity of CVD 103-HgR was carried 
out among young adult students on a Research Isolation 
Ward at Mahidol University, Bangkok, Thailand [62], 
with immunogenicity results closely resembling those 
seen in healthy North Americans and Europeans. There-
fore, bolstered by the promising results of this (small) 
trial, a pediatric study was initiated in children 5 to 

in North Jakarta, Indonesia [41] (Figure 1a). In these 
children, the 5 × 108 cfu dose of CVD 103-HgR that had 
been so highly immunogenic in North American [56,58] 
and Swiss [63] adults and higher socioeconomic level 
Thai university students [62] elicited significant increases 
in serum vibriocidal antibody in only 16% of the 5- to 
9-year-old Indonesian children living in poverty [41]. 
This was the first demonstration that diminished immuno-
genicity in developing country situations could also be 
encountered with oral bacterial vaccines [41], as had 
been recognized for many years with oral viral vaccines.

Fortunately, by administering a tenfold higher dose of 
CVD 103-HgR (5 × 109 cfu) to children 5 to 9 years of age 
in North Jakarta, it was possible to achieve a high rate of 
seroconversion [41]. Moreover, the few non-responders 
were shown to be children who had high baseline titers of 
serum vibriocidal antibody and therefore were apparently 
already immune to cholera. Results with children 2 to 
4 years of age living in the same area were similar [64]. In 
studies with both adults and children, those who did not 
seroconvert had a significantly higher baseline vibriocidal 
titer than those who did seroconvert [41-43,64], indicat-
ing that such individuals are already immune and their 
serum titers are not typically boosted by vaccination.

It is worth noting that oral vaccines are expected to 
elicit locally produced intestinal antibodies and tests of 
serum antibodies do not detect these local antibodies. It 
is thus conceivable that intestinal antibodies may have 
increased in these studies. Indeed, it has long been 
surmised that rises in serum vibriocidal antibodies serve 
as a proxy for the elicitation of immune responses in the 
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small intestine. It is also possible that some individuals 
may have baseline intestinal immunity not reflected by an 
elevated serum vibriocidal titer.

A series of additional immunogenicity studies with 
CVD 103-HgR were undertaken in Asia [42], South 
America [43,65-69] (after the El Tor pandemic of cholera 
reached that continent in 1991) and Africa [70]. From 
this composite of clinical trials, we identified several 
factors that modulated the magnitude of the vibriocidal 
antibody response. The first of these is prior exposure to 
V. cholerae O1, resulting in high baseline vibriocidal 
antibody titers: titers are not usually boosted in individ-
uals with high baseline titers [41-43,64]. The second 
factor is blood group O: people with blood group O (a 
well recognized host risk factor for development of 
cholera gravis [71,72]) mount stronger serum vibriocidal 
responses [66], especially if immunologically naïve - that 
is, with no prior exposure to V. cholerae O1. The third 

factor is socioeconomic level: populations in under-
privileged conditions show lower antibody titers, inde-
pen dent of blood group or prior contact with V. cholerae 
O1 [42,43]. The fourth factor is small bowel bacterial 
overgrowth (SBBO) [44] that often accompanies environ-
mental enteropathy (see below) [73,74], which in turn is 
related to living in poverty-associated fecally contami-
nated conditions. The fifth factor is heavy infection with 
intestinal helminths [75,76]. The sixth factor is HIV 
status: although the rates of seroconversion are not 
significantly different, the antibody titers of HIV-positive 
individuals are significantly lower than those of HIV-
negative individuals [70].

To achieve high seroconversion rates of vibriocidal 
antibody in Peruvian and Thai adults living in under-
privileged conditions, as with Indonesian children living 
in poverty, it was necessary to give a tenfold higher dose 
(5 × 109 cfu) of CVD 103-HgR [41-43] than the dosage 
level (5 × 108 cfu) that was consistently immunogenic in 
North Americans and Europeans [56,58]. This 109 cfu 
dosage level was also well tolerated and immunogenic in 
pre-school children [64,67], toddlers [68] and infants as 
young as 3 months of age [68].

The role of environmental enteropathy and small 
bowel bacterial overgrowth
The proximal small intestines of healthy children and 
adults who live in relatively pristine environments in 
industrialized countries show only modest bacterial 
loads, whether measured by aerobic and anaerobic culture 
or by molecular techniques based on analysis of 16S 
rDNA sequencing of DNA from appropriate clinical 
specimens [77,78]. Common known bacterial genera 
identi fied include Streptococcus, Veillonella, Neisseria, 
Gemella, Rothia and Hemophilus; in contrast, fecal genera, 
such as are found in the colon or terminal ileum (where 
microbiota densities are enormous), are uncommon. 
Duodenal biopsies show that the mucosa of healthy 
children is characterized histologically by the presence of 
long, finger-like villi, ample columnar epithelial cells, a 
crypt to villus ratio of 1:3 or 1:4, less than 25 intra-
epithelial lymphocytes per 100 columnar cells and only a 
moderate number of mononuclear cells in the lamina 
propria (Figure 2). In contrast, the gut of children living 
in poverty in developing countries often reflects their 
continual exposure to fecally contaminated environ-
ments, and many such children have SBBO and ‘environ-
men tal enteropathy’ [73,74,79-81].

The term environmental enteropathy was coined by 
Fagundes Neto [73,74,80] to describe a syndrome that 
includes non-specific histopathological and functional 
changes of the small intestine in children of poor families 
living in conditions lacking basic sanitary facilities and 
chronically exposed to fecal contamination (Figure 1b). 

Figure 1. Cholera-endemic living conditions. (a) Conditions 
of ramshackle housing, poor sanitation and widespread fecal 
contamination prevalent in North Jakarta in the early 1990s when 
phase 2 pediatric clinical trials with CVD 103-HgR live oral cholera 
vaccine were carried out. (b) Similar conditions of inadequate 
housing, lack of sanitation and fecally contaminated surface waters 
in a favella (periurban slum) in São Paulo, Brazil of the type in which 
environmental enteropathy was first described by Fagundes Neto. 
Photograph kindly provided by Ulysses Fagundes Neto, Universidade 
Federal de São Paulo.

(a)

(b)
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The prominent histopathological features of environ men-
tal enteropathy include blunted villi, abnormal crypt to 
villus ratio, an increased number of intraepithelial 
lymphocytes and a marked increase of lymphocytes and 
plasmacytes in the lamina propria (Figure 3a,b). A key 
feature of environmental enteropathy is the presence of 
SBBO that includes fecal bacterial species usually 
restricted to the terminal ileum and colon. Another 
salient feature of environmental enteropathy is its dis-
appearance over time following the individual’s transfer 
to a clean environment characterized by improved food 
hygiene and modern sanitation [80]. Environmental 
enteropathy is similar (and perhaps identical) to the 
syndrome of ‘tropical enteropathy’ described by Linden-
baum et al. [82] in US Peace Corps volunteers who lived 
among indigenous populations for about two or more 
years, often in conditions characterized by heavy fecal 
contamination. The intestinal lesions observed in most of 
these young adults also slowly returned to normal several 
months after the volunteers returned to the USA [82].

The presence of SBBO can be detected by having 
fasting children ingest the disaccharide lactulose and 
detecting H2 in expired breath by gas chromatography at 
various time points; measurements are typically made at 
baseline and 15, 30, 40, 60, 90 and 120 minutes after 
ingestion of the lactulose [44,80,83]. Human intestinal 
enzymes cannot cleave lactulose but bacterial enzymes 
can. Therefore, the detection of H2 in ‘small bowel’ 

specimens - that is, those taken 15 or 30 minutes after 
lactulose ingestion -indicates SBBO [44,80,83]. The 
advantage of the lactulose breath H2 test is that it is 
amenable to field studies involving hundreds of children 
[44,80,83].

When the relationship between SBBO and vibriocidal 
response to CVD 103-HgR was investigated in 202 
fasting Chilean schoolchildren aged 5 to 9 years who had 
lactulose breath H2 tests one day before ingesting CVD 
103-HgR [44], florid small bowel overgrowth was 
observed in 10 out of 178 analyzable children (5.6%), and 
logistic regression analysis showed that increased peak 
breath H2 at ‘small bowel’ time points was associated with 

Figure 2. Normal intestinal mucosa. Biopsy of the second portion 
of the duodenum of an 8-year-old US child showing normal histology 
of the intestinal mucosa. Long, finger-like villi and relatively shallow 
crypts are evident. The villi are populated with columnar epithelial 
cells (enterocytes) that have brush borders containing enzymes 
for digestion and absorption; mucus-producing goblet cells are 
interspersed among the enterocytes. Less than 20 intraepithelial 
lymphocytes per 100 enterocytes are present. Photomicrograph 
kindly provided by Steven Czinn, University of Maryland Medical 
Center.

Figure 3. Intestinal mucosa showing environmental 
enteropathy. (a) Biopsy of the distal duodenum of a 36-month 
old Brazilian child with environmental enteropathy. Moderate 
villous atrophy is seen with blunted, flat villi and enterocytes that 
seem somewhat cuboidal rather than columnar. Elongated crypts 
can be seen, which result in an abnormal crypt to villus ratio. Most 
prominent is the striking increase in the number of lymphocytes 
and plasmacytes present in the lamina propria. (b) Biopsy of the 
distal duodenum of another Brazilian pre-school age child with 
environmental enteropathy. The changes are as described for (a) but 
the villous blunting and hypercellularity within the lamina propria 
are even more prominent. Photomicrographs kindly provided by 
Ulysses Fagundes Neto, Universidade Federal de São Paulo.

(a)

(b)
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diminished vibriocidal antibody seroconversion, as was 
the interaction of peak breath H2 and weight (P = 0.02) 
[44].

SBBO could blunt the immune response to CVD 
103-HgR by the production of short chain fatty acids 
(such as butyric and propionic acids) [84] or other small 
molecules [85] that directly inhibit the V. cholerae O1 
vaccine, thereby markedly decreasing the actual dose of 
vaccine organisms. Immune responses to cross-reacting 
surface antigens of intestinal flora may also blunt the 
vibriocidal response to CVD 103-HgR. Alternatively, the 
effect may be indirect. Individuals with SBBO typically 
have abnormal intestinal architecture [73,74] and 
increased lymphocytes and plasmacytes in the mucosa 
[73,74], perhaps with activated T cells [86]. One possible 
explanation is that under conditions of repetitive expo-
sure to fecal contamination, the innate immune system of 
the child’s gut is maximally activated and in a pro-
inflammatory state. This may constitute an important 
non-specific defense in the proximal small intestine, 
rendering it generally hostile to incoming bacterial (and 
viral and protozoal) pathogens. Indeed, this may be what 
allows many children to survive repeated exposures to 
enteric pathogens. By extrapolation, attenuated bacterial 
or viral oral vaccines must also face this hostile, innate 
immune system-activated ecologic niche when they 
reach the proximal small intestine, resulting in inhibition 
of the vaccine organisms and poor induction of specific 
adaptive immune responses. Live vaccines might then, 
instead of activating the innate immune system to 
enhance adaptive immune responses (as would happen in 
an industrialized country gut), be destroyed by an already 
highly activated innate immune response.

Supporting this hypothesis is the observation that 
although people in developing countries show moderate 
or high rates of seroconversion following ingestion of the 
109 cfu dosage level of CVD 103-HgR, they also show 
significantly lower rates of excretion of the vaccine strain 
[41,43,64,67,68]. It is increasingly recognized that normal 
gut homeostasis (including gut immunity) involves 
‘crosstalk’ among the microbiota present in the outer 
layer of the mucus biofilm covering the mucosa, entero-
cytes and cells of the immune system [87-91].

An alternative explanation for the decreased immune 
responses is that the mononuclear cell hypercellularity 
observed in the mucosa of patients with environmental 
enteropathy may indicate altered regulatory T cell and 
dendritic cell function that contributes to dampening of 
immune responses [81,92,93]. It is possible that environ-
mental enteropathy modifies the proximal small bowel 
ecology so much that it begins to resemble the colon not 
only in its microbiota but in the immunological function-
ing of its mucosa (immune structures commonly form in 
chronically infected mucosa). Collectively, these ideas 

may be considered the obverse of the ‘hygiene hypo the-
sis’  - the widely popularized notion that the increasing 
prevalence of allergies in industrialized countries reflects 
a failure to develop the normal regulatory balance of the 
adaptive immune response when exposure to environ-
mental pathogens is limited [94-96].

Further evidence of a role for intestinal infection in the 
diminished vibriocidal antibody response to the CVD 
103-HgR vaccine has been gathered in studies on school 
age children in rural Ecuador with documented heavy 
helminthic (Ascaris lumbricoides) infection [75,76]. 
These children were randomly allocated to receive two 
courses of an anti-helminthic (albendazole) or placebo 
and were then immunized with a single 5 × 108 cfu dose 
of CVD 103-HgR [75]. For children of blood group O, 
there was no difference in the vibriocidal responses 
observed in the albendazole versus the placebo groups. 
However, for children of non-O blood groups, those 
treated with albendazole had a significantly higher 
vibriocidal antibody response than those given placebo.

Extrapolating to other oral vaccines
Some of the factors that seem to contribute to the 
diminished immunogenicity of CVD 103-HgR may be 
relevant to other oral live vaccines. Live oral Shigella 
flexneri 2a candidate SC602 was reactogenic in North 
American volunteers when ≥106 cfu were ingested [97]. 
However, ingestion of a lower, better tolerated dose 
(104 cfu) was followed by heavy excretion, strong immune 
responses and protection against experimental challenge 
with wild-type S. flexneri 2a [97]. In contrast, when tested 
in a phase 1 trial in Bangladeshi toddlers, neither vaccine 
excretion nor immune responses were observed follow-
ing ingestion of 104, 105 or 106 cfu of SC602 [47].

Licensed live oral typhoid vaccine Ty21a may be a 
notable exception. This live oral vaccine does not elicit 
strong (that is, high titer) serum antibody responses 
[98,99] but does stimulate intestinal IgA antibodies [100] 
as well as robust B [101] and T cell-mediated [102-105] 
immune responses, and appropriate formulations and 
immuni zation schedules of Ty21a have conferred 
significant protection on school-age children for up to 
7  years in large-scale, randomized, controlled efficacy 
trials in Egypt [106], Chile [107-110] and Indonesia [111]. 
This may be a function of the way Salmonella Typhi 
interacts with the small intestinal mucosa, as this 
organism effectively targets the M cells that overlie gut-
associated lymphoid tissue [112,113] and is then readily 
taken up by the underlying dendritic cells and macro-
phages. Thus, Ty21a easily and rapidly gains access to 
inductive sites of the immune system. This may hold true 
for several markedly more immunogenic modern recom-
binant S. Typhi single-dose vaccine candidates that are in 
development [114-117].
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A way forward
Now that the poor response of many people in developing 
countries to a variety of oral vaccines has been docu-
mented and widely recognized, a consensus is emerging 
that action should be initiated to study the phenomenon, 
with a view to counteracting the factors responsible for 
the intestinal barrier [118]. With respect to the role of 
SBBO and the alterations of the intestinal mucosa that 
characterize environmental enteropathy, there is much to 
be done. A first step should be to separate any direct 
inhibitory role of the bacterial flora itself, whether in 
mucus-associated biofilm or in the lumen, from the 
broader defects that may be consequent on the altered 
architecture and function of the intestinal mucosa. A 
controlled trial should be undertaken to determine 
whether temporarily eliminating SBBO with oral anti-
biotics before oral immunization enhances immune 
responses to the vaccine [119]. If this has a positive effect, 
then non-antibiotic interventions (such as competing 
probiotic bacteria) should be studied.

Giardia infections are highly prevalent among children 
in developing countries but are increasingly recognized 
not to be associated with either diarrhea or adverse 
nutritional consequences [120]. Nevertheless, Giardia 
may have an impact on mucosal integrity and function 

would advocate a randomized, placebo-controlled trial in 
which half the participants receive metronidazole to 
eradicate Giardia before oral vaccination.

If eliminating SBBO with antibiotics or Giardia with 
metronidazole has no impact, then ways should be 
explored to repair the integrity and function of the 
intestinal mucosa. Vitamin A modestly improved immune 
responses to type 1 poliovirus vaccine but did not 
enhance serum vibriocidal responses to a killed oral 
cholera vaccine [121]. Two studies investigated zinc 
supplementation and responses to a non-living oral 
cholera vaccine; one [121] showed slight improvement of 
vibriocidal responses following zinc supplementation, 
whereas the other [122]
suggests that further evaluation of zinc is needed. Alanyl-
glutamine may improve gut integrity in patients with 
environmental enteropathy [123]. Lastly, modifying the 
innate immune system of the gut in relation to oral 
vaccination should be studied with increased stimulation 
(vaccine plus a mucosal adjuvant such as Escherichia coli 
double mutant LT [124]) to counteract possible tolerance, 
or with dampening of the innate immunity (vaccine plus 
a suppressive agent) to determine which approach, if any, 
has an ameliorating effect.

Published: 4 October 2010
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