
Tiurina et al. BMC Biology           (2024) 22:28  
https://doi.org/10.1186/s12915-024-01822-3

RESEARCH ARTICLE Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Biology

The functional role of spatial anisotropies 
in ensemble perception
Natalia A. Tiurina1,2*  , Yuri A. Markov1,3, David Whitney4,5,6 and David Pascucci1 

Abstract 

Background The human brain can rapidly represent sets of similar stimuli by their ensemble summary statistics, 
like the average orientation or size. Classic models assume that ensemble statistics are computed by integrating all 
elements with equal weight. Challenging this view, here, we show that ensemble statistics are estimated by combin-
ing parafoveal and foveal statistics in proportion to their reliability. In a series of experiments, observers reproduced 
the average orientation of an ensemble of stimuli under varying levels of visual uncertainty.

Results Ensemble statistics were affected by multiple spatial biases, in particular, a strong and persistent bias 
towards the center of the visual field. This bias, evident in the majority of subjects and in all experiments, scaled 
with uncertainty: the higher the uncertainty in the ensemble statistics, the larger the bias towards the element shown 
at the fovea.

Conclusion Our findings indicate that ensemble perception cannot be explained by simple uniform pooling. The 
visual system weights information anisotropically from both the parafovea and the fovea, taking the intrinsic spatial 
anisotropies of vision into account to compensate for visual uncertainty.

Keywords Ensemble perception, Ensemble coding, Summary statistics, Statistical perception, Visual uncertainty, 
Spatial biases

Background
The visual world is extremely rich and complex. Yet, 
much of the information it contains is redundant and 
can be easily compressed without loss, imagine a natural 

scene, like a park full of trees (Fig. 1). Despite the huge 
number of details, many features look alike. It takes only 
a split-second to recognize the group of trees, their aver-
age color, orientation, or even typology, without inspect-
ing the scene in detail. This process is known as ensemble 
perception [1–3].

In ensemble perception, the brain combines informa-
tion from multiple stimuli to represent their ensemble sta-
tistics, like the average and variability [1–3]. It is believed 
that ensemble statistics are extracted within a few mil-
liseconds and beyond the bottleneck of attention and 
single-object recognition [2, 4–9]. The rapid extraction 
of ensemble statistics supports fundamental visual func-
tions, such as gist perception [10, 11], grouping [12–16], 
and visual search [17–19], but the underlying mechanisms 
are still debated [3, 20]. In particular, it remains unclear 
how the visual system integrates information from local 
elements dispersed over the entire visual field.
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One prevailing view argues that ensemble statistics are 
extracted via mechanisms that operate in parallel treating 
all elements the same [6, 21, 22]. For example, in one class 
of models, ensemble statistics are computed by pooling 
over many local features that are initially processed in 
parallel (Fig. 1) [23–26], but see [27–30]. Models of this 
kind rest on the implicit assumption that ensemble per-
ception operates in a spatially uniform field—i.e., that 
elements at the fovea or far in the periphery contribute 
equally to ensemble perception (Fig. 1A).

There are several reasons to question this assumption. 
Firstly, spatial vision is not uniform. Visual resolution is 
higher at the fovea (Fig.  1B) [31–33], there is receptive 
field scaling [34–36] and well-known left–right and up-
down asymmetries (Fig.  1C) [37–40]. Secondly, several 
studies have reported systematic biases in ensemble sta-
tistics due to factors such as the temporal order of ele-
ment presentation [41] and the spatial location [42–44], 
suggesting that the underlying mechanisms may indeed 
operate non-uniformly in space and time.

However, not all known anisotropies in visual process-
ing are evident in ensemble perception, but rather some 
specific ones. For example, upper and lower visual field 

anisotropies, which strongly affect phenomena like visual 
crowding, do not seem to affect ensemble perception 
[45]. Instead, there is consistent evidence of systematic 
biases towards the center and left-hand side of the vis-
ual field, with foveal regions receiving more weight than 
parafoveal and peripheral ones [43, 44, 46, 47]. Several 
studies have proposed that such spatial biases, common 
in many other domains of vision research [48–52], might 
be beneficial for ensemble perception [43, 44, 46, 47], 
but their nature remains largely unknown. For instance, 
it is unclear whether spatial biases reflect idiosyncratic 
aspects of how the visual system processes information 
across the visual field or efficient strategies to combine 
information from more reliable regions.

Here, we hypothesize that spatial biases serve as adap-
tive and flexible mechanisms to optimize ensemble per-
ception. We reasoned that, if spatial biases reflect a way 
to optimize ensemble perception, rather than being idi-
osyncratic and invariant aspects, they should become 
more evident and advantageous under noisy and uncer-
tain sensory input.

To test this idea, we performed a series of experiments 
where observers reproduced the average orientation 

Fig. 1 Ensemble coding in natural scenes. Example of isotropic (uniform) and weighted (anisotropic) averaging in a simple pooling scheme. 
A Uniform: local features (e.g., the orientations of the trees) are pooled together over the entire visual field, independently of their location 
and distance from the fovea (the orange fixation spot). In uniform pooling, the activity of many neurons encoding local features (depicted as a set 
of Gaussian tuning functions) is equally weighted and integrated over large areas of space. Integration (Σ) results in a single estimate: the average 
orientation of all the trees. B Weighted averaging: integration occurs in anisotropic space, due to changes in the density and size of receptive 
fields (illustrated by gray circles). In this case, ensemble coding is biased towards features at the center of the scene, because of the higher number 
and narrower tuning of neurons at the fovea. Hence, much more information is received from the central visual field. C Anisotropies due to spatial 
biases (here, a bias towards the center and the left-hand side is illustrated by the difference in blurring between the central and left-hand region 
and the rest of the image). Features inside the region of preferential processing (black tuning functions and lines) are weighted more than features 
outside (gray tuning functions and lines). Note that the three scenarios can lead to different average estimates (the oriented line resulting 
from integration)
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of an ensemble of Gabors (Fig.  2). We manipulated the 
uncertainty associated with the ensemble through (1) the 
oblique effect (experiment 1), (2) the ensemble variability 
(experiment 2), (3) the ensemble duration (experiment 3), 
and (4) the variability in the temporal order of individual 
elements (experiment 4). Using a spatial weighted aver-
age model [43, 53], we reconstructed the spatial profile 
with which observers integrated elements at different 
locations. We tested the observed spatial distribution of 
weights against the hypothesis of a uniform field. In line 
with prior work, we found strong spatial anisotropies, 
evident across all experiments. These anisotropies arose 
from potentially independent spatial biases: a robust 
and stable bias towards the center of the visual field and 
a leftward and upward bias towards locations near the 
center. The central bias, observed in all experiments, 
scaled with the ensemble uncertainty but persisted under 
different durations of the ensemble, suggesting a hard-
wired mechanism that may play a compensatory role in 
ensemble perception.

Overall, our findings reveal a strong anisotropic spa-
tial field within the parafoveal region that is functional 
to ensemble perception and neglected by current mod-
els based on simple uniform pooling and population 
responses. We propose that the visual system combines 
noisy information from the parafovea with more reliable 
estimates at the fovea to compute ensemble statistics. 
This weighted integration is a stable aspect of ensem-
ble perception, which compensates for visual noise and 
uncertainty.

Results
Experiment 1
Spatial anisotropies in orientation ensemble statistics
We used a continuous report, method of adjustment to 
investigate spatial anisotropies in orientation ensemble 
perception. Observers were presented with 25 oriented 
Gabor patches, spaced within a square region, and repro-
duced the perceived average orientation by adjusting 

a response tool (see Fig.  2 and the “Methods” section). 
Using a spatial weighted average model, we estimated 
the weight assigned to each Gabor at each location in 
the process of estimating the ensemble statistics [43, 53]. 
Weights were computed at the individual level as coef-
ficients of linear regression, transformed into t-scores 
before group analysis (see the “Methods” section).

The spatial profile of weights (spatial weight maps 
(SWM)) obtained with this method revealed clear 
anisotropies: first, a strong bias towards the cen-
tral element of the ensemble, which was presented 
at the fovea; second, a bias towards the leftward and 
upward locations immediately surrounding the center 
(Fig.  3A). The weights at these locations were sig-
nificantly larger than those expected from spatially 
uniform summary statistics (pcorr < 0.05; Fig.  3B, per-
mutation statistics, see the “Methods” section). At the 
individual level, the bias towards the central element 
was consistent and evident in 12 out of 15 observers 
(Fig. 3D). The effect sizes of the estimated bias against 
zero were large for the central (Cohen’s d [d′] = 1.147) 
and leftward location (d′ = 1.197) and medium for the 
upward location (d′ = 0.775, Fig.  3E). We confirmed 
these results in a control analysis where we computed 
a complementary metric, the response-stimulus dis-
tance—i.e., the absolute distance in degrees between 
the reported orientation and the orientation of each 
Gabor, confirming that observers’ reports were sys-
tematically closer to the orientation of the upward, 
leftward, and central Gabor than they were to the 
orientation of all the other stimuli (Fig.  3C; upward 
location: response-stimulus distance = 11.908, d′ of 
the difference with all other locations except the cen-
tral, leftward, and upward =  − 1.028; leftward loca-
tion: response-stimulus distance = 11.907, d′ =  − 1.247; 
central location: response-stimulus distance = 11.523, 
d′ =  − 1.132). This pattern, particularly the central and 
left-side bias, closely resembled the one found for size 
averaging in previous work [43].

Fig. 2 Schematic of the sequence of events on each trial. The green frame indicated the beginning of the trial and the region of the display 
where both the ensemble and the response tool were presented. An ensemble of oriented Gabor patches was then shown for 500 ms, followed 
by a blank interval before the response. The response tool appeared at random locations
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The central bias increases with the oblique effect
The precision of orientation estimates typically varies 
as a function of the stimulus angle, with cardinal orien-
tations represented more precisely than obliques—i.e., 
the “oblique effect” [54, 55]. We exploited the oblique 
effect to test whether the observed biases increased 
when the average orientation of the ensemble was near 
the obliques and, therefore, more uncertain. To this aim, 
we estimated multiple SWMs and derived an estimate of 
the central bias as a function of the average orientation of 
the ensemble, in sliding widows of 20° within the inter-
val between cardinal axes (e.g., collapsing vertical and 
horizontal, see the “Methods” section). The central bias 
was estimated by subtracting the t-scored weight for the 
central location from the average t-scored weights at all 
other locations (Fig. 4A).

When the average orientation was near the obliques, 
the bias towards the center increased compared to when 
the average orientation was near the cardinals. This 
was verified by a significant positive linear slope of the 
bias from cardinal to obliques (mean slope across sub-
jects = 0.017, t(14) = 2.161, p = 0.048, d′ = 0.558). Neither 
the leftward nor the upward biases showed a similar 
effect (all slopes were non-significant). The central bias 
and the oblique effect also exhibited a very similar pat-
tern over the cardinal-to-oblique orientation range, 
increasing for average orientations near the obliques and 
decreasing near the cardinals (Fig.  4A). Hence, the ani-
sotropy towards the center scaled with the oblique effect, 
a typical index of increased uncertainty in orientation 
processing.

Combining foveal and parafoveal elements
The results of our first experiment so far revealed strong 
spatial anisotropies in ensemble statistics of orientation. 
A tentative model of such anisotropies can be based on 
the idea of a non-uniform pooling or “weighted aver-
age” of local features, where elements at central loca-
tions always receive greater weights compared to the 
rest (Fig. 5A). Such a model would be in line with many 
existing simple pooling schemes, with the only excep-
tion being the biased distribution of weights during 
integration. However, the increase of the central bias 
with the oblique effect cannot be explained by a simple 
weighted average. Indeed, a systematic and fixed bias in 
local weights would produce a bias in the final estimate 
that is fixed and independent of the uncertainty in the 
ensemble—i.e., even if the central element is weighted 
two times more than the rest, the bias towards the 
center remains the same (e.g., two times) no matter the 
ensemble variability or uncertainty. These results seem 
to suggest instead that, in extracting the whole ensemble 
statistics, observers combine the representation of the 
central element with the noisy average of elements in the 
parafovea (Fig.  5B). If this combination depends on the 
relative uncertainty of foveal and peripheral information, 
with the more reliable source given greater weights, then 
the bias towards the center should increase as the uncer-
tainty in the parafovea increases, because the central ele-
ment uncertainty is fixed.

Crucially, this also predicts that when the central esti-
mate is noisier—e.g., because the central stimulus itself 
is near or at the oblique—the bias decreases. We verified 

Fig. 3 Results of experiment 1. A Spatial weighted maps (SWM) represented as interpolated heat maps (see the “Methods” section) to depict 
the increase in weights (in the colormap from blue to red) at central, leftward, and upward regions. B Raw weights from the spatial weighted 
average model (t-scores) in grayscale (white means larger weights). Asterisks indicate locations with weights significantly larger than those 
expected in uniform averaging (permutation statistics, see the “Methods” section). C The response-stimulus distance metric with values in grayscale 
(black means lower distances between the reported orientation and the orientation of the stimulus at each location). D Raw weights for the central 
(green dots), leftward (red dots), and upward locations (blue dots) compared to weights at all other locations (gray dots) at the individual subject 
level. E Bar plot of the estimated weights at the three significant locations. Error bars are standard errors of the mean (SEM)
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and confirmed this prediction by comparing the central 
bias as a function of the distance of the central stimulus 
to the oblique orientation, in trials where the ensemble 
average orientation was near the obliques (Fig. 4B). This 
analysis revealed a significant increase in the central 
bias as the orientation of the central stimulus deviated 
from the oblique (repeated measures ANOVA with fac-
tor “distance” [close, mid, far], F(2, 28) = 10.19, p < 0.001, 
η2p = 0.421). Hence, when the central stimulus itself was 
oblique, the bias was reduced because the central stim-
ulus was also more uncertain. No similar pattern was 
found when considering biases at all other locations (gray 
dots and lines in Fig. 4B).

Experiments 2 and 3
In experiment 1, we found larger biases towards the 
center of the visual field when the ensemble average ori-
entation was closer to an oblique angle. This suggested an 
inverse relationship between the magnitude of the ani-
sotropy and the perceived uncertainty in the stimulus, as 
oblique orientations are usually more uncertain than car-
dinal ones [54–56]. To test this relationship more directly, 
we performed two experiments, in which uncertainty 

was manipulated by varying the standard deviation of the 
ensemble orientations (σ; experiment 2) and the stimulus 
duration (experiment 3).

Effect of the ensemble variability
In experiment 2, 28 participants reproduced the aver-
age orientation of the ensemble at 3 different levels of 
σ: 5°, 10°, and 15°. The standard deviation of adjust-
ment errors increased with the increasing σ (Fig.  6A; 
F(2,54) = 263.49, p < 0.001, η2p = 0.907), as expected 
because of the increasing uncertainty. We extracted the 
weights (t-scores) at the 3 locations of the bias found 
in experiment 1, the leftward, upward, and central 
locations, and submitted the individual subjects’ val-
ues to a 2-way repeated measures ANOVA with fac-
tors σ (5, 10, 15°) and location (leftward, upward, and 
central). The results of the ANOVA revealed a main 
effect of σ (F(2,54) = 17.70, p < 0.001, η2p = 0.396), a 
main effect of location (F(2,54) = 8.08, p = 0.001, η2p 
= 0.230), and a significant interaction between the 2 
(F(4,108) = 5.12, p = 0.001, η2p = 0.160), consistent with 
a more pronounced bias towards the central compared 
to the upward and leftward locations, which was also 

Fig. 4 A Oblique effect (top plot, gray curve) and central bias (bottom plot, green curve) as a function of the average orientation of the ensemble. 
The 0–90° range of orientations in the x-axis summarizes the effects by collapsing orientations within the actual 0–90° and the 90–180° ranges. 
Shaded areas are SEM. B Bias towards the central vs. other locations in trials where the average ensemble orientation was at and near the obliques. 
Separate biases are computed as a function of the absolute distance between the orientation of the stimulus at the location of interest 
and the average orientation of the ensemble (e.g., for “close” distances, the stimulus had an orientation near the oblique; for “far” distances, 
the stimulus had an orientation away from the oblique)
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more affected by changes in σ (see Fig. 6C). To obtain a 
broader picture of changes in the anisotropy of ensem-
ble perception as a function of orientation variability, 
we performed an additional analysis in which a linear 
model predicted changes in the weight at each location 

as a function of σ. Confirming the ANOVA results, this 
revealed a significant increase in weight towards the 
Gabor at the central location (pcorr < 0.05, permutations 
statistics) but no changes at the other locations (all 
ps > 0.05, see Fig. 6B).

Fig. 5 Candidate models of the central bias in ensemble statistics. A A non-uniform pooling scheme—i.e., weighted average, in which central 
elements are given greater integration weights compared to the rest. This model predicts a fixed bias with no changes due to the overall 
ensemble uncertainty (exemplified in the bottom plot). B Observers combine the representation of the stimulus at the fovea with the statistics 
of the elements in the parafovea. As the uncertainty in the ensemble statistics increases, the estimates in the parafovea become noisier 
while the representation of the central elements is unchanged: the central bias increases in strength (exemplified in the bottom plot)

Fig. 6 Results of experiment 2. A Standard deviation of the errors in adjustment responses as a function of the ensemble variability σ. B Effect of σ 
on local weight changes, showing the increase in the central bias with the increasing variability in the ensemble’s orientations. C Weights (t-scores) 
estimated at each of the three locations of interest (leftward, upward, central), as a function of the ensemble σ 
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Effect of the ensemble duration
In experiment 3, 21 participants reproduced the aver-
age orientation of the ensemble under 3 durations of the 
stimulus τ: 100, 500, and 1000  ms. The standard devia-
tion of adjustment errors was inversely related to the 
stimulus duration: responses were more precise with 
longer stimulus presentations (Fig.  7A, F(2,40) = 18.269, 
p < 0.001, η2p = 0. 477). As in experiment 2, we focused 
on changes in the weights at the 3 relevant locations as 
a function of the stimulus duration. A repeated measures 
ANOVA with factors duration (100, 500, and 1000  ms) 
and location (leftward, upward, and central) revealed 
only a main effect of location (F(2,40) = 12.90, p < 0.001, 
η2p = 0.392, see Fig.  7C), with no effect of duration and 
no interaction (both ps > 0.05). In particular, spatial 
weights exhibited a strong bias towards the center, which 
was evident and comparable across all duration condi-
tions (Additional file 1: Fig. S1). In line with this, a linear 
model predicting weights at each location as a function 
of the ensemble duration revealed no significant changes 
at none of the locations (all ps > 0.05). Importantly, spa-
tial weights estimated in the 100 ms duration condition 
reliably predicted single-trial reproduction biases in the 
other two duration conditions. This suggests stable spa-
tial biases unaffected by factors such as eye movements, 
which might be facilitated during longer stimulus dura-
tions (Additional file 1: Fig. S2).

Hence, while the ensemble variability strongly modu-
lated the bias towards the center (experiment 2), the 
manipulation of stimulus duration did not affect the 
magnitude of the bias, which remained the same regard-
less of whether the stimulus lasted 100  ms, 500  ms, or 
1000 ms (Fig. 7B).

The results of these two experiments indicated a dis-
sociation between uncertainty, performance, and cen-
tral anisotropy: while the variability in the ensemble’s 

orientations affected both averaging precision and spa-
tial biases, the ensemble duration affected precision 
but not spatial biases. This suggests that, while increas-
ing under uncertainty, the bias towards the center is 
a rather stable and persistent component of ensem-
ble perception, even in conditions where the stimulus 
remains on screen for 1 s.

Experiment 4
The first three experiments demonstrated that orienta-
tion ensemble statistics are biased towards the center of 
the visual field and nearest leftward and upward locations 
(experiment 1). The bias towards the center strongly 
increased with stimulus uncertainty but was immune 
to stimulus duration and was always the most promi-
nent (experiments 2 and 3). Conversely, the leftward and 
upward biases were not affected by uncertainty to the 
same degree. Based on these results, we reasoned that 
the central bias and the leftward and upward ones may 
arise from different sources.

In principle, spatial anisotropies in ensemble per-
ception might arise from transitory spatial biases, due 
to momentary shifts in the allocation of processing 
resources, or from the persistent accumulation of visual 
information from preferential regions of the visual field 
[43]. In experiment 4, to disentangle the nature of the 
anisotropies found in our experiments, we turned to a 
novel paradigm. Twenty-eight participants were pre-
sented with the same ensemble of Gabors as in experi-
ment 1, but the temporal onset of each stimulus was 
jittered and randomized. Hence, observers could only 
represent the mean of the entire ensemble at the end of 
the sequence. If a spatial bias has a transitory nature, it 
can only be observed when, at the moment in which the 
bias is supposedly larger, there is a stimulus at the biased 
location. For instance, if observers are biased towards the 

Fig. 7 Results of experiment 3. A Standard deviation of the errors as a function of the ensemble duration τ. B Effect of τ on local weight changes. C 
Weights (t-scores) estimated at each of the three locations of interest (leftward, upward, central), as a function of the ensemble τ 
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left, but only at the beginning of the trial, the bias would 
become evident only in trials where the element on the 
left is shown at the beginning. Alternatively, if observ-
ers exhibit a steady bias towards one location, which is 
independent of the moment in time, the bias would be 
evident no matter the serial position of the elements at 
the biased location. By this logic, in this experiment, we 
investigated the time course of the leftward, upward, and 
central bias.

Overall, and independently of the serial position, the 
SWM showed anisotropies that were completely com-
parable to those observed in experiment 1, with signifi-
cant biases towards the same three locations (leftward, 
upward, central location: pcorr < 0.05, all other ps > 0.05, 
see Fig.  8A, B). As in experiment 1, the results of the 
spatial weighted average model were confirmed by the 
response-stimulus distance analysis (Fig. 8C; all d′ of the 
difference between each of the three locations and the 
remaining locations > 1).

To investigate the temporal dynamics of the bias at 
the three locations of interest, we estimated SWMs and 
extracted the weight of the stimulus at each location 
depending on its serial position in the sequence, focusing 
on the central, leftward, and upward locations (Fig. 8D). 
By extracting the weights (t-scores) as a function of serial 
position, we derived the time course of each bias, corre-
sponding to the possible serial positions of each stimu-
lus in the sequence. To test for dynamic changes in the 
magnitude of each bias, we submitted the time course of 
the biases to model comparison (see the “Methods” sec-
tion), comparing the fit obtained by models of increasing 

complexity. The model comparison revealed patterns 
that were clearly different between locations. By fitting 
the time course of each bias with polynomial functions 
of increasing order, we found that the bias towards the 
center was best approximated by a first-order polynomial 
(e.g., a linear function) with a positive slope, indicating an 
increase in the bias as the central stimulus appeared later 
in the sequence (Fig. 9C, F). Conversely, both the leftward 
and upward biases were better approximated by higher 
order polynomial functions (e.g., 4th or 2nd order), indi-
cating more complex temporal dynamics, mostly char-
acterized by increases in the bias when the stimulus at 
these locations appeared at the beginning and end of the 
sequence (Fig.  9A, B, D, E; see the “Methods” section). 
Hence, the two biases towards the leftward and upward 
locations had a more transitory component, whereas the 
central bias was stable and increased over time.

Discussion
We used a weighted average model to recover the spatial 
weights with which observers extract the average orien-
tation from an ensemble of visual stimuli. To investigate 
the relationship between spatial biases and uncertainty, 
we examined spatial biases as a function of the oblique 
effect, ensemble variability, stimulus duration, and tem-
poral variability in element onset. The results of our four 
experiments reveal clear anisotropies in orientation aver-
aging, with elements presented at the fovea and near-
est locations contributing significantly more than what 
would be expected from a uniform averaging.

Fig. 8 Results of experiment 4. A Spatial weighted maps (SWMs) represented as interpolated heat maps (see the “Methods” section). B, C Raw 
weights (t-scores) and the response-stimulus distance metric. The patterns in A–C are a clear replication of the results of experiment 1. D Matrix 
of weights (t-scores) at each location (columns) as a function of the serial position of each element in the sequence (rows). For example, the value 
in the first row, first column corresponds to the weight of the Gabor at the first location (top-left location, coded as 1) in trials where the stimulus 
at the top-left location appeared in the first frame of the sequence. The three locations of interest (leftward, coded as 8; upward, coded as 12; 
and central, coded as 13) are highlighted by their respective names
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In all experiments, we found a robust bias towards the 
element shown at the fovea, which became more promi-
nent as the level of uncertainty increased and persisted 
across different stimulus durations. Additionally, we also 
found a leftward and upward bias, although these biases 
showed less sensitivity to uncertainty and had more 
transient characteristics. The central bias, consistently 
observed across all four experiments and under various 
conditions, was the most robust and enduring bias. The 
leftward and upward biases were significant in only two 
out of the four experiments. These differences seem to 
indicate that the central and the leftward/upward biases 
have distinct origins.

The central bias can potentially be explained by the spa-
tial arrangement of the elements within our displays. The 
central element was always placed at the foveal region, 
where receptive fields are narrower, and acuity is higher 
[31–33]. Thus, this systematic bias may simply reflect the 
greater weighting of foveal stimuli due to the larger num-
ber of local feature detectors. Even though ensemble sta-
tistics can be derived successfully in the absence of foveal 
stimuli (e.g., for peripheral ensembles [25, 57]), foveal 
stimuli provide significantly much more information.

However, this explanation fails to account for the 
observed increase in the central bias with uncertainty. If 
the bias were solely due to an imbalance between local 

feature detectors in the fovea and parafovea, it would 
remain constant in magnitude regardless of the proper-
ties of the ensemble. Instead, the increase in central bias 
with uncertainty suggests that the visual system inte-
grates information from both the fovea and the parafo-
vea/periphery when estimating ensemble statistics, in a 
non-uniform way. As uncertainty increases, stimuli pre-
sented at the fovea receive greater weight due to their 
higher reliability, following principles typical of classic 
cue integration schemes [58–60]. This may be particu-
larly evident in our paradigm, where the uncertainty of 
the element shown at the fovea remained constant and 
equivalent to that of a single stimulus. Conversely, the 
uncertainty in the parafovea varied based on ensemble 
parameters such as the average orientation (as observed 
in the oblique effect) and orientation variability. As the 
uncertainty of the ensemble increased, the relative reli-
ability of the central stimulus became higher.

In our experiments, we presented ensembles within a 
limited region of the visual field, primarily the fovea and 
peri/parafoveal regions. Hence, one may wonder how 
these anisotropies manifest when considering larger 
eccentricities or ensembles covering broader areas of the 
visual field. Previous research has shown that these biases 
are independent of element dispersion and remain con-
fined to the central regions whether elements are all near 

Fig. 9 A–C Weights (t-scores) for the three locations of interest as a function of the serial position of the stimulus at the corresponding location. 
Dots are the weights estimated for each serial position. Prediction lines and shaded confidence intervals are obtained from the best-fitting model 
of each bias. Train-test correlation metric to evaluate the fit of polynomial models of increasing order for the time course of the leftward (D), upward 
(E), and central (F) bias
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the fovea or spread throughout the visual field [43]. This 
suggests that spatial anisotropies are mostly restricted 
to foveal and nearby locations, whereas ensemble per-
ception may operate uniformly for the rest of the visual 
field. Future research may elucidate whether the localized 
nature of these biases reflects cortical or retinal sources 
and whether it involves variations in macular structure 
and function in the parafoveal region.

Our results may appear inconsistent with a study that 
aimed at dissociating crowding and ensemble perception. 
In crowding, a crowded target is better recognized in the 
lower visual field due to improved spatial resolution and 
smaller pooling regions. However, the study found no 
such asymmetry in ensemble perception, with compara-
ble performance in estimating ensemble statistics in the 
upper and lower visual fields [45]. In contrast, our study 
revealed an upward bias in two out of four experiments. 
There are key differences between our study and the one 
from Bulakowski and colleagues (2011). First, the authors 
measured the overall accuracy for ensembles shown on 
the upper or lower visual field while we used a spatial 
weighted average model that can reveal biases limited to 
one or a few locations. Second, they used larger regions 
for ensembles, while our biases were limited to foveal and 
parafoveal regions. Third, the whole ensemble in Bula-
kowski et  al. was presented in the periphery, and thus, 
there was no stimulus in the locations of spatial biases 
observed in our study [45].

An additional aspect of our results is the relationship 
between exposure duration and the bias towards the 
center. In experiment 3, we found that the central bias 
remained constant regardless of the increasing duration 
of ensemble exposure. In experiment 4, we found that the 
bias increased as the central element occurred later in the 
stimulus stream. Previous work has shown that ensem-
ble statistics can be extracted very rapidly, and the ben-
efit of longer exposure might be only minimal [61]. Here, 
we found that exposure duration can increase the preci-
sion of ensemble statistics, without necessarily altering 
the spatial bias. The persistence of the central bias with 
exposure duration (experiment 3) and its increase with 
the serial position of the central element (experiment 4) 
seem to suggest that observers keep relying more on and 
awaiting evidence from the foveal region while estimat-
ing ensemble statistics. It is also worth considering that 
in experiment 3, the uncertainty associated with both 
foveal and parafoveal stimuli might have increased as 
the display duration decreased. Thus, we might not have 
observed an increase in central bias at shorter durations, 
simply because the uncertainty on the central element 
also increased. Likewise, the increase in central bias as 
a function of serial position in experiment 4 could be 
due to increased uncertainty when estimating ensemble 

statistics through sequential presentations, potentially 
leading to a greater reliance on the central item as the 
elements unfolded.

Unlike the central bias, the leftward and upward biases 
were not observed in all experiments. In particular, under 
high ensemble variability (experiment 2) and short expo-
sure durations (experiment 3), the weights assigned to 
leftward and upward locations did not significantly differ 
from weights at other locations. The leftward and upward 
biases also did not exhibit an increase with increasing 
uncertainty (experiment 2) and did not persist or increase 
with exposure duration and serial position, but rather 
showed patterns resembling primacy and recency effects 
(Fig. 9A, B). It is possible that the sources of the leftward 
and upward biases differ from the central bias and may be 
potentially related to the temporal distribution of spatial 
attention and scanning patterns [49, 62, 63]. As suggested 
by prior work [43, 44], a potential cause of the leftward 
bias is the reading habits, since most of our participants 
read from left to right and up to down [64, 65]. Thus, 
although speculative, the temporal rise and fall of these 
biases observed in experiment 4 (Fig. 9) may reflect initial 
“hard-wired” transitory biases in spatial processing, fol-
lowed by inhibition and subsequent re-engagement with 
similar biases [66–68].

One potential limitation of our study is the absence of 
eye movement recordings and the use of a large place-
holder frame to indicate the start of each trial instead of a 
traditional fixation spot. However, several factors suggest 
that the impact of eye movements on our results is likely 
minimal. Firstly, prior research has demonstrated that 
individuals tend to direct their fovea towards the center 
of mass when confronted with large or multiple objects 
[69–71], which is consistent with our central item in the 
ensemble. Secondly, the spatial weighted average maps 
we observed closely resemble those found in previous 
experiments involving size averaging, where fixation was 
indicated by a clearly defined central spot, and stimulus 
duration was shorter [43]. Thirdly, any central bias result-
ing from systematic eye movements would imply fixation 
at the center. Lastly, the supplementary analysis involv-
ing a cross-validation approach (Additional file 1: Fig. S2) 
demonstrates that one can use spatial anisotropies esti-
mated in the 100 ms condition to reliably predict single-
trial errors in the 100 ms, 500 ms, and 1000 ms conditions, 
and thus, any potential influence of eye movements during 
longer stimuli presentations does not significantly alter the 
observed spatial biases.

Conversely, we cannot rule out that the leftward and 
upward biases, rather than stemming from distinct 
sources, may still reflect the central bias in trials where 
participants systematically foveated on those locations. 
This is supported by the observed maps, which align with 



Page 11 of 15Tiurina et al. BMC Biology           (2024) 22:28  

patterns seen in prior research on initial saccade landing 
points during free viewing, where most saccades target 
the center and the left side [43, 49]. Future research is 
needed to clarify the precise interplay between eye move-
ments and the leftward/upward bias found in the present 
study.

From a neural perspective, the central bias can be 
explained through sequential uncertainty-weighted pool-
ing stages. Initially, visual features are pooled over local 
regions, such as the fovea and parafovea, followed by a 
second pooling stage where the resulting estimates are 
weighted and combined based on their relative reliabil-
ity [72, 73]. These findings hold significant importance 
for ongoing efforts in modeling ensemble perception, 
as existing models fail to account for these anisotropies, 
their temporal dynamics, and their computational goals. 
Spatially pooling models, for example, typically assume 
a uniform pooling [24, 26]. Other models that incorpo-
rate local pooling with regions that increase in size with 
eccentricity, such as image statistics models [11, 19], 
do not consider local uncertainty. Similarly, alterna-
tive models based on sub-sampling, where statistics are 
derived from a small randomly selected subset of items. 
[27–30], fail to account for the influence of the whole 
ensemble uncertainty on the magnitude of the bias. Thus, 
existing models must incorporate an additional compo-
nent, whose implementation may vary depending on the 
model, to account for the highly spatially anisotropic and 
uncertainty-weighted nature of ensemble perception. It is 
important to clarify that while certain regions are given 
more weight, it does not imply that information from 
other regions is completely disregarded, nor does it sug-
gest that statistics cannot be accurately derived in the 
absence of elements at or near the fovea [25, 57].

Conclusions
In sum, our findings highlight the importance of consid-
ering spatial anisotropies and incorporating uncertainty-
weighted mechanisms in ensemble perception. The brain 
integrates multiple elements through adaptive compensa-
tory strategies, assigning greater weights to more reliable 
regions of the visual field, in order to mitigate the impact 
of visual noise and uncertainty. These findings emphasize 
the need for all models of ensemble perception to incor-
porate these factors, as they play a crucial role in opti-
mizing the efficiency of ensemble perception.

Methods
Participants
In total, 127 participants (92 after exclusion) participated 
in the experiments. Experiments 1 and 4 were conducted 
in the laboratory and included 44 participants (15 in exper-
iment 1, 7 females; age range 19–30; 29 in experiment 4 

(28 after exclusion), 9 females; age range 18–30) from the 
EPFL and the University of Lausanne, who participated 
for monetary reward (25 CHF/h). Experiments 2 and 3 
were performed online and included 83 participants, 49 
participants after exclusion (40 in experiment 2 (28 after 
exclusion), 11 females; age range 18–40; 43 in experi-
ment 3 (21 after exclusion), 23 females; age range 18–39), 
recruited through the Prolific platform (www. proli fic. ac) 
[74, 75] and Pavlovia (https:// pavlo via. org), with a mon-
etary reward of £5/h. All participants reported normal or 
corrected-to-normal vision and were naïve as to the pur-
pose of the experiments. In laboratory experiments, visual 
acuity was assessed using the Freiburg Visual Acuity Test 
and a threshold of 1 for inclusion (Freiburg Visual Acu-
ity Test) [76]. The study was approved by the local ethics 
committee following the Declaration of Helsinki. Writ-
ten informed consent was obtained from each participant 
before the experiment.

Apparatus
The stimuli in experiment 1 were presented on a 
VG248QE monitor (diagonal 24″, resolution 1920 × 1080 
pixels, refresh rate 120 Hz), whereas in experiment 4, they 
were presented on a BenQ XL2420T (24″, 1920 × 1080, 
120 Hz). For both experiments 1 and 4, the stimuli were 
generated with the Psychophysics Toolbox 3.8 on MAT-
LAB [77, 78] version 3.1, 64 bits R2014b. Laboratory 
experiments were performed in a dimly lit room, and 
participants sat 57 cm away from the computer screen.

The stimuli in experiments 2 and 3 were generated and 
presented online via PsychoPy v2020.2.10 [79, 80]. Before 
the experiment, all participants completed a virtual chin-
rest procedure [81] consisting of (1) participants adjusted 
an object of known size (a bank card) shown on the 
screen to match their physical size and (2) the program 
measured the horizontal distance from fixation to the 
blind spot on the screen to estimate the viewing distance 
and calibrate the screen pixels per degree.

Stimuli and task procedure
In all experiments, the stimuli were ensembles of Gabor 
patches (peak contrast of 25% Michelson, spatial fre-
quency of 2 cycles per degree) arranged on an invisible 
grid of 5 × 5 cells (size of the grid in experiments 1, 2, 
and 3: 8 × 8°; experiment 4: 12 × 12°). The grid was sur-
rounded by an empty green square frame (experiments 
1, 2, and 3: 12 × 12°; experiment 4: 14 × 14°). Each Gabor 
patch in the ensemble was presented in the middle of 
each cell of the grid with a random horizontal and ver-
tical jitter (± 0.25°) and with the constraint that two 
nearby Gabor patches never overlapped. The standard 
deviation of the Gaussian envelope determining the 

http://www.prolific.ac
https://pavlovia.org
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size of each Gabor was equal to 1.5° in experiments 1 
and 4 and 0.7° in experiments 2 and 3.

The average orientation of the Gabor ensemble was 
randomly determined on each trial by sampling from 
the entire orientation space (in experiment 1, the 
0–180° space was discretized, in steps of 10°, in all the 
other experiments the steps were of 1°). The stand-
ard deviation of the ensemble distribution was 10° in 
experiments 1, 3, and 4, whereas it randomly varied 
between 5, 10, and 15 in experiment 2, following dif-
ferent experimental conditions. The response tool, used 
in all experiments, was made of two dark gray circles 
connected by an imaginary line. To avoid any system-
atic focus on the center of the monitor throughout the 
experiments, the response tool appeared at random 
locations inside the green frame.

The procedure of all four experiments was similar, 
except for experiment 4 (see the “Methods” section). 
The trial started with the empty green square frame 
(1000  ms) and was followed by the ensemble of Gabor 
patches appearing inside the frame. The duration of the 
ensemble presentation was 500 ms in experiments 1 and 
2 and 100 ms, 500 ms, or 1000 ms in experiment 3, corre-
spondingly to the experimental conditions. After a blank 
interval (500  ms in experiments 1; 1000  ms in experi-
ments 2 and 3), the response tool appeared. Participants 
were asked to adjust the tool to the perceived average 
orientation of the ensemble. The orientation adjustment 
was performed by moving the computer mouse upward 
(to tilt clockwise) or downward (to tilt counterclockwise). 
To confirm the response, participants had to click the left 
button of the mouse.

In experiment 4, each trial started with the empty green 
square frame (1000 ms), and then the ensemble of Gabor 
patches appeared inside the green frame item by item. 
Each Gabor patch appeared for 300 ms, and the order of 
appearance (serial position) was randomized across tri-
als. No constraints were imposed, such that two Gabor 
patches could appear at the same time or with any pos-
sible interval, within the time window of one trial. The 
total duration of the ensemble presentation—from the 
appearance of the first Gabor patch to the disappearance 
of the last—was 800  ms. As in the other experiments, 
after a blank interval (500 ms), participants were asked to 
report the perceived average orientation of the ensemble 
using the response tool.

Participants performed a brief practice session before 
each experiment and were instructed to maintain fixa-
tion on the center of the placeholder frame, while paying 
attention to all the elements in the display. Each experi-
ment lasted approximately 1  h. Note that, even though 
the placeholder frame may not be as effective as classic 
central cues to maintain fixation, the observed spatial 

biases were completely comparable to those found in pre-
vious work using more canonical fixation points [43].

Data analysis
Before the analysis, adjustment responses were cleaned 
from outliers, by removing errors (the acute angle 
between the reported and true average orientation) larger 
than 45° and then removing additional outliers identi-
fied as values more than 1.5 interquartile ranges above 
the upper quartile or below the lower quartile. Responses 
slower than 10 s were also removed. In total, less than 6% 
of outlier trials were removed. The datasets of this article 
are available in the Zenodo repository [82].

In total, the data of 35 participants were excluded 
from the final analysis (12 in experiment 2, 22 in experi-
ment 3, and 1 in experiment 4) according to the follow-
ing exclusion criterion: a standard deviation of errors 
higher than 30°.

To estimate the spatial weighted average model 
(SWM), we adapted a method previously used in the 
investigation of size averaging [43]. Because of the 
circular orientation variables, we transformed the 
response into “error” and the orientation of each Gabor 
patch in the ensemble into “deviation.” This transfor-
mation involved computing the acute angle difference 
between the variable of interest (e.g., the reported ori-
entation, or the orientation of each Gabor) and the true 
average orientation presented on each trial. The trans-
formed variables approximated a general normal distri-
bution centered approximately on 0°.

The estimation of SWM involved solving an ordi-
nary least squares regression (using the Moore Penrose 
pseudo-inverse) to recover the linear weights with which 
the “deviation” of each Gabor at each location contrib-
uted to the error made on each trial. This was obtained 
via the following model:

where εij is the response error of observer i on trial j , 
wk is the weight of the k th of n elements in the ensem-
ble (with n = 25), and δjk is the deviation of the k ele-
ment on trial j from the actual average orientation of the 
ensemble. Weights were estimated for each observer and 
standardized across observers via transformation into 
regression t-scores. For some of the analysis, we report 
a measure of “bias” rather than weights, computed by 
subtracting the weight at the location of interest from the 
weights at other control locations (see the description for 
each experiment in the “Result” section).

To control that the estimated weights (t-scores) were 
not artifactual or biased by the linear approximation of 

εij =

n

k=1

wkδjk
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circular data, in experiments 1 and 4, we also verified the 
results using a measure called the “response-stimulus 
distance,” which corresponds to the absolute deviation of 
the response from the orientation of the Gabor at each 
location. The SWM and the response-stimulus distance 
results should mirror each other: a location receiving 
larger weights is also a location where the error tends 
to be more similar to the Gabor, and the distance of the 
report from the Gabor orientation is lower.

For significance testing, we used a non-parametric 
permutation approach at the group level. The corre-
spondence between weights and locations at the level of 
individual observers was permuted 10,000 times via ran-
dom shuffling (e.g., disrupting any relation between the 
estimated weight and the location across participants). 
For each permutation, we computed the group average of 
weights at each location, obtaining a surrogate null distri-
bution of weights assuming no relationship with spatial 
locations. We then calculated the proportion of permuta-
tions in which the surrogate weight at each location was 
larger than the true estimated average weight, threshold-
ing the resulting p-value with a Bonferroni-corrected 
alpha criterion of 0.05. Heat maps were obtained via lin-
ear interpolation of the original weights matrix.

In experiments 2 and 3, ensembles were presented 
under different conditions of increasing uncertainty 
(experiment 2) and increasing duration (experiment 3). 
To investigate the effects of these factors, we used a two-
stage approach. First, individual SWMs were estimated 
for each condition and participant. Statistical testing of 
SWM for each condition was performed according to the 
same permutation procedure as in experiment 1. Then, 
individual weights maps were submitted to linear mod-
eling at the group stage, where the weights corresponding 
to the Gabor patch at each location were predicted using 
the levels of the variables of interest (e.g., the three stand-
ard deviations of the ensemble used in experiment 2; 
the three durations used in experiment 3). The resulting 
group map of coefficients from this second model quan-
tified the increase or decrease of the bias towards each 
Gabor, depending on variations in the variable of inter-
est. Statistical testing of the coefficients was performed 
according to a similar permutation procedure as the one 
described above.

In experiment 4, we aimed at reconstructing the time 
course of SWMs as a function of the serial position of 
each Gabor in the sequence. To this aim, we combined 
the data across participants, after z-scoring the individ-
ual distribution of errors. From the aggregate dataset, 
we estimated multiple independent SWMs considering 
the serial position of the Gabor at each spatial location 

(from 1 to 25 locations), with a moving window of 3 
serial positions each time (leading to a series of esti-
mates from 1 to 22 serial positions). The SWM for each 
Gabor location was solely based on the serial position 
of that Gabor relative to the others, whereas the serial 
position of all the others could vary. From the SWM of 
each Gabor, we selected the weights estimated for the 
effect of that Gabor as a function of its serial position 
and combined them in an overall matrix (Gabor loca-
tion X serial position, Fig.  8D). This matrix describes 
the changes in weights for each Gabor depending on its 
serial position in the sequence. Focusing on the central, 
leftward, and upward locations, we tested for changes 
in weights across time (e.g., serial position) by means 
of model comparison. The pattern of weights over time 
was fitted with a series of polynomials of increasing 
order (from 1 to 4), accounting for simple linear trends 
and more complex temporal dynamics. Model compari-
son was performed via cross-validation, randomly split-
ting the participants in half 10,000 times, and using half 
as the training set and the other half as the test set. The 
training set was used to fit the set of models. The cor-
relation between the predictions of each model and the 
unseen data in the test set was then used as a metric of 
relative model performance.

Abbreviation
SWM  Spatial weighted maps
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The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12915- 024- 01822-3.

Additional file 1. Supplementary analysis of Experiment 3. Fig. S1. Gray-
scale representation of raw weights (model coefficients) from the spatial 
weighted average model for the three duration conditions of Experiment 
3. The spatial anisotropies, notably the central bias, exhibit stability and 
consistency across different stimulus durations, with white indicating 
larger weights. Fig. S2. Model results using spatial anisotropy from the 
100 ms condition (training) to predict single-trial errors in the 100 ms, 
500 ms, and 1000 ms conditions (tests) through cross-validation (5-fold). 
Each individual subject is represented by open blue, red, and green circles 
for the 100, 500, and 1000 ms conditions, respectively, with evaluation 
based on the correlation between predicted and observed single-trial 
errors in the left-out data of the same subject (averaging cross-validation 
folds). This supplementary analysis aims to determine if variance in longer 
duration conditions can be explained by anisotropy in the 100 ms condi-
tion, indicating minimal influence of differential eye movements due to 
longer stimulus durations on the results. The average model performance 
remains consistent across duration conditions, significantly exceeding 
chance levels (open gray circles and bars, illustrating the median and 
upper and lower 99th quantiles of correlations obtained by shuffling 
observed errors across trials). Consequently, spatial maps derived from 
the 100 ms stimulus duration demonstrate stability and consistency as 
stimulus duration increases, and exhibit the ability to predict single-trial 
errors at other durations with the same model performance.
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