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Abstract 

Background Quorum sensing (QS) is the ability of microorganisms to assess local clonal density by measuring 
the extracellular concentration of signal molecules that they produce and excrete. QS is also the only known way 
of bacterial communication that supports the coordination of within-clone cooperative actions requiring a certain 
threshold density of cooperating cells. Cooperation aided by QS communication is sensitive to cheating in two 
different ways: laggards may benefit from not investing in cooperation but enjoying the benefit provided by their 
cooperating neighbors, whereas Liars explicitly promise cooperation but fail to do so, thereby convincing potential 
cooperating neighbors to help them, for almost free. Given this double vulnerability to cheats, it is not trivial why QS-
supported cooperation is so widespread among prokaryotes.

Results We investigated the evolutionary dynamics of QS in populations of cooperators for whom the QS signal 
is an inevitable side effect of producing the public good itself (cue-based QS). Using spatially explicit agent-based 
lattice simulations of QS-aided threshold cooperation (whereby cooperation is effective only above a critical cumu-
lative level of contributions) and three different (analytical and numerical) approximations of the lattice model, we 
explored the dynamics of QS-aided threshold cooperation under a feasible range of parameter values. We demon-
strate three major advantages of cue-driven cooperation. First, laggards cannot wipe out cooperation under a wide 
range of reasonable environmental conditions, in spite of an unconstrained possibility to mutate to cheating; 
in fact, cooperators may even exclude laggards at high cooperation thresholds. Second, lying almost never pays off, 
if the signal is an inevitable byproduct (i.e., the cue) of cooperation; even very cheap fake signals are selected against. 
And thirdly, QS is most useful if local cooperator densities are the least predictable, i.e., if their lattice-wise mean 
is close to the cooperation threshold with a substantial variance.

Conclusions Comparing the results of the four different modeling approaches indicates that cue-driven thresh-
old cooperation may be a viable evolutionary strategy for microbes that cannot keep track of past behavior of their 
potential cooperating partners, in spatially viscous and in well-mixed environments alike. Our model can be seen 
as a version of the famous greenbeard effect, where greenbeards coexist with defectors in a evolutionarily stable poly-
morphism. Such polymorphism is maintained by the condition-dependent trade-offs of signal production which are 
characteristic of cue-based QS.
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Background
Cooperation in the microbial world is abundant, mostly 
through excreted products benefiting not only the pro-
ducer but other individuals, too. Microbial communities 
often rely on the production of metabolites or matrix 
substances that serve as common goods for the group 
as a whole. However, sacrificing valuable resources by 
the individual for the good of the group is a risky invest-
ment: cheaters may take advantage of honest cooperators 
by contributing less (or nil) to the common effort while 
they still enjoy the benefit. This means that selfish cheat-
ers (“laggards”) have a growth advantage compared to 
cooperative producers, which, in the long run, leads to 
the tragedy of the commons [1] and the ultimate collapse 
of cooperation [2, 3].

In the face of the obvious fitness advantages of cheat-
ing in a cooperative group, it is puzzling how cooperation 
evolves and is maintained even in species with evolved 
mechanisms to avoid fraud. Aimed reward and punish-
ment, straightforward antidotes to cheating, work only 
if group members can distinguish each other person-
ally and remember the record of past actions of every 
group member back into a non-zero length of time. This 
is rarely the case even in vertebrate species and much 
less in unicellular organisms with no brain or memory at 
all. Prokaryotes are therefore the least expected to har-
vest the benefits of cooperative group actions, lacking 
sophisticated mechanisms of partner recognition and 
record-keeping.

Yet, there is an astonishing diversity and abundance 
of examples of genuine cooperation within and even 
between different prokaryotic strains producing public 
goods [4]. These include the excretion of exoproducts 
like luciferin [5], exoenzymes [6], bacteriocins [7, 8], 
siderophores [9, 10], virulence factors [11], and biofilm 
matrix substances [12], to mention just the most obvious 
forms of microbial cooperation. The actual functions of 
such different cooperative features may be connected in 
diverse combinations within the same strain, opening a 
wide range of complex microbial social strategies yet to 
be explored [10].

Most known forms of prokaryotic cooperation are 
threshold-limited: a certain number of nearby coopera-
tors must all act simultaneously for the collective ben-
efit of cooperation to exceed its individual costs [13–15]. 
Thus, cooperating individuals have to coordinate their 
actions within a narrow spatiotemporal range, i.e., to 
synchronously express and excrete public goods in close 
proximity to one another.

Any mechanism ensuring that cooperators interact 
with other cooperators at a probability higher than their 
proportion within the population increases the chance 
of persistent cooperation. On the other hand, more 

frequent cooperator-cheater interactions increase the 
probability of cheater takeover. Since prokaryotic gene 
expression patterns are clonally passed down the genera-
tions, regardless of whether they are genetically or epi-
genetically determined, see, e.g., [16]) with little room 
for phenotypic plasticity, the mechanism maintaining 
cooperation must always be a variant of kin selection. 
However, the actual form this mechanism takes may vary 
substantially.

The most trivial of such mechanisms is "environmental 
viscosity" [17]. This means physical constraints limiting 
the mobility of individuals, thereby keeping the offspring 
adjacent to their parent and ensuring the overwhelming 
dominance of intraclonal interactions and effective kin 
selection thereof. It has been repeatedly shown that suf-
ficiently high environmental viscosity can indeed main-
tain cooperation and prevent the invasion of cheaters in 
standard public good games [18, 19]. Cooperators ben-
efit from population viscosity in threshold public goods 
games as well [20], but they can stably coexist with cheat-
ers even if the interaction size is limited and the popula-
tion is perfectly mixed in this model context [21].

However, viscosity is rarely high enough in natural 
microbial habitats to effectively prevent cheater invasion 
from outside and/or constrain cheating mutants within. 
Therefore, in less viscous environments, it may be of sub-
stantial selective advantage for the individuals to be able 
to size up the local density of potential cooperators and 
make actual cooperation dependent on that. This may 
prevent wasting valuable resources on futile attempts 
to cooperate locally when lacking sufficient cooperator 
density.

Quorum sensing (QS [22]) is a simple genetic switching 
mechanism of communication-aided cooperation that 
may have evolved to provide this kind of phenotypic flex-
ibility for unicells. It consists of a constitutively expressed 
signal, a membrane receptor, and an expression-excre-
tion mechanism for cooperation (Fig. 1). The QS switch 
triggers the transcription of certain genes upon sensing 
a sufficient number (a “quorum”) of cooperators in the 
neighborhood. The quorum is sensed by the capture of a 
sufficient number of signal molecules by a specific, dedi-
cated membrane receptor, which then transmits the sig-
nal through an intracellular signal channel (often using 
cAMP) to the chromosome and activates the cooperation 
genes. Gram-positive bacteria use small autoinducing 
peptides as QS signals [23], whereas Gram-negative bac-
teria [24, 25] and archaea [26, 27] usually excrete N-acyl 
homoserine lactones for the same purpose. The funda-
mental signaling mechanism is the same in both cases. 
Quorum sensing has been discovered in almost any 
bacterial strain in which it was looked for, some strains 
utilizing multiple different QS systems [28], sometimes 
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in synergy with each other. For example, the two princi-
pal QS systems (las and rhl) regulating the expression of 
virulence factors in Pseudomonas aeruginosa have been 
shown to form a reciprocal signaling network that syner-
gistically enhances and tunes the strain’s reactivity to its 
physical and “social” environment.

There are different interpretations of the function of 
quorum sensing (see [29]). The first interpretation is that 
it aims at sizing up the local density of potential coopera-
tors [30–32], whereas the second one is that it serves to 
assess the diffusibility of exoproducts in the environment 
[33]. These two functions are difficult to disentangle as 
both high cell density and low diffusion can lead to a high 
local concentration of the QS signal. There is some indi-
cation that some bacterial strains might be able to distin-
guish these two types of information using combinatorial 
QS signals, i.e., by using two different signal molecules 
with covarying decay and autoinduction rates [29].

Either way, as QS is a communication system, it is 
prone to defection or deceit by another type of cheater: 
individuals with a silent set of cooperation genes but 
capable of sending out false signals of intent for coopera-
tion (lying) may still enjoy the full benefit of the public 
good produced by nearby cooperators responding to the 
false signal. A textbook example of such defectors (“liars”) 
is the lasR mutant of Pseudomonas aeruginosa that does 
not respond to QS signals of the wild type and, conse-
quently, does not cooperate in producing an important 

public good, a protease exoenzyme virulence factor [3]. 
The cheating mutant has been shown to enjoy a substan-
tial reproductive advantage over cooperative strains [34] 
for the obvious reason of not carrying the metabolic bur-
den of cooperation (exoenzyme production).

A more nuanced way of cheating is increasing signal 
production while evolving a higher threshold value for 
cooperation. Brown and Johnstone in a seminal model 
of QS were able to show that increasing conflict of inter-
est (decreasing relatedness) favors such “coercive” vari-
ants [35]. These can manipulate older strains with lower 
thresholds into increased production of the public good 
by mimicking a higher cooperator density with the 
increased signal production. In silico study of QS found 
that such coercive variants are more likely to emerge in 
genetically mixed populations with decreased relatedness 
[36].

If, however, the signal cannot be switched off, cheat-
ing is expected to be less deleterious for cooperation. For 
example, the signal may be the public good itself, as in 
the case of lactic acid bacteria producing the bacteriocin 
called nisin. Nisin production is QS-regulated [37], but 
the QS signal is nisin itself, so bacteria producing nisin 
are also signaling. Cooperators always produce nisin 
at a low expression level, advertising their willingness 
to cooperate, and they express and excrete nisin at an 
elevated level when a quorum is reached. However, the 
cooperation signal can be faked by non-cooperators: the 

Fig. 1 A simplified representation of quorum sensing regulated cooperation for the production of common goods collectively utilized by bacteria 
having access to them. The three basic genetic components of the QS-regulated cooperative system are (a) the signaling component (pink), 
which comprises the genes for signal molecule production and excretion of signal molecules (stars); (b) the signal detection and transduction 
system (green), including genes for the signal receptor and the second messenger system; (c) the cooperation genes (blue) which are transcribed 
and expressed (and products externalized) if the extracellular concentration of signal molecules is sufficiently high. Red asterisks signify component 
events of signal detection: signal capture and signal transduction
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bacteriocin gene can be expressed constitutively at a low 
level to produce the signal, but cheaters never express it 
at sufficiently high levels to considerably contribute to 
the common good. Therefore, individuals capable only of 
low-level nisin expression are actually liars.

Another type of cheater is a cooperator that expresses 
more nisin in its signaling state than the normal signal 
level but less than the cooperation level. By issuing extra 
signals above the basic expression level of honest coop-
erators, these cheaters gain a fitness benefit by increas-
ing the local signal concentration which, therefore, may 
reach the quorum threshold and convince more coopera-
tors to join in the common effort, possibly in vain. This is 
equivalent to promising more cooperation than actually 
provided—a milder version of the liar strategy.

To study the dynamical and evolutionary properties of 
QS-regulated cooperation, it is sufficient to assume that 
the individuals clonally inherit three fundamental QS-
related properties: (1) signaling (S) or not (s) the inten-
tion/ability to cooperate, (2) responding (R) or not (r) 
to above-quorum signal levels, and (3) cooperating (C) 
or not (c) when a quorum is reached (see Fig.  1). Each 
of these properties may be determined by a number of 
different genes, but the only trait we consider relevant 
is the functionality of the corresponding gene set as a 
unit. Therefore, we assume three loci with two functional 
alleles on each, which allows for 23 = 8 different geno-
types. For QS to hold, cooperation (i.e., the expression of 
the C allele) is assumed to be conditional on the presence 
of a critical number of signaler individuals (the quorum, 
i.e., those harboring S and/or C) within the interaction 
neighborhood of individuals possessing both C and R. In 
other words, cooperators capable of detecting the signal 
will cooperate only above the critical local quorum and 
mute their cooperation gene otherwise. Non-responder 
cooperators cooperate unconditionally, and they may 
issue the signal either at the normal expression level or at 
an elevated one.

The question we aim to answer is whether cue-driven 
(e.g., nisin type) cooperation and/or communication 
can be maintained in a population of quorum sensing 
microbes in the face of all possible mutations allow-
ing cheater strategies, assuming different costs of coop-
eration, signaling, and signal detection/response. Here, 
we will scrutinize a family of models built on the above 
assumptions, allowing all three possible types of cheaters 
to appear. The models are built on the individual-based 
approach of Czárán and Hoekstra [38], extending it both 
in scope and methodology of representation. For a deeper 
insight into the coexistence dynamics of the various 
strategies, we derive analytical (1) mean-field (MF) and 
(2) configuration-field (CF) [39] approximations besides 
the corresponding individual-based (3) non-spatial and 

(4) spatial stochastic simulations of the threshold public 
goods game (TPPG).

Model basics
We used four different model types: MF approximation, 
CF approximation, non-spatial and spatial (on-lattice) 
agent-based models. They share the same basic assump-
tions (explained below) but gradually relax crucial simpli-
fications while also losing analytical tractability. For the 
specifics of the different approaches, see Methods and 
models; for their parameters, see Table 1.

Mean‑field model (MF)
In Additional file  1: Appendix  1 [40], we construct the 
mean-field version of the model, with the assumptions 
that population size ( P ), interacting group size ( N  ) and 
the cooperation threshold κ are all very large, while 
N/P ≪ 1 and κ/N → xc . In this limit, all the dynamical 
effects are averaged across the entire habitat so that the 
fitnesses of the strategies depend only on the average fre-
quencies of the strains present.

Configuration‑field model (CF)
Next, we assume that the population is still very large 
(infinite), but individuals form random interacting 
groups of finite size N  . While in the previous section we 
considered N  to be so large that each interacting group 
consists of strategies in exact proportion to their global 
frequencies in the population, now we assume that N  is 
smaller, and thus different interaction groups with differ-
ent configurations of strategies are formed in an inher-
ently stochastic manner, due to sampling errors. The two 
players participating in an elementary game step are ran-
domly chosen members of their own interaction groups 
(both of size N) that are drawn at random from the popu-
lation. The overall fitness for each of the eight strategies is 
calculated as the weighted average of its local fitness in all 
possible configurations of the interaction group around 
a focal individual of the given strategy (for more details, 
see Additional file 1: Appendix 1).

Agent‑based models
To address the effect of finite interacting groups, along 
with the spatial constraints arising from limited agent 
mobility and local (neighborhood-) interactions, we have 
developed an agent-based simulation implementation of 
the configuration-field model (agent-based nonspatial 
model) and a spatially explicit lattice version of it (agent-
based spatial model).

Figure 2 depicts the relationship of these models. The 
configuration field model is a technical tool that allows 
the relaxation of constraining assumptions one-by-one 
from the mean-field model to the lattice-based individual 
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Table 1 Model variables and parameters used throughout this study

Symbol Values in the configuration field 
model

Values in spatial simulations

Fitness of player i wi Equation 1 Equation 1

Fitness difference of players i  and j �wij Calculated from wi and wj Calculated from wi and wj

Probability that the offspring of player i  replaces player 
j

pij Equation 2 Equation 2

Population size P ∞ 90.000

Neighborhood size N 9 9

Selection strength σ 1 1

Cost of signal detection r 0.01, 0.20 0.01, 0.05, 0.10

Cost of signaling s N/A 0.01, 0.05, 0.10

Cost of cooperation c 0.3 0.2, 0.3

Baseline cost c0 1 1

Benefit of cooperation b 0.3, 0.5, 0.6, 0.65 0.5, 0.8

Mean no. of diffusion steps per generation D N/A 0.0, 0.1, . . . , 1.0

Quorum signal threshold Q Q = κ Q = κ

Cooperation threshold κ 3 2, 3, . . . , 6

Functional mutation rate ρ 0 0, 10−4

Grid size M N/A 300× 300

Generation count G 10.000 10.000

Fig. 2 The relation between different model types: MF, CF, and agent-based (well mixed and lattice). The CF (compared to MF) represents 
the relaxation of the assumption of infinitely large groups, hence the introduction of compositional variance. The agent-based lattice model 
introduces spatial correlations
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model. The CF (compared to MF) represents the relaxa-
tion of the assumption of infinitely large interaction 
groups and hence can enable compositional variance. The 
agent-based lattice model introduces spatial correlations 
(that are missing both from MF and CF).

Strategy set
Individual behaviors (strategies) are determined by three 
“functional genes” (heritable traits possibly encoded 
by a number of genes each) which control coopera-
tion (C), extra signaling (S), and signal detection and 
response (R) (see Fig.  3). Each of these genes can be in 
one of two states (i.e., they have two “alleles”): they may 
be active (denoted by bold capitals: C, S, R) or inactive 
(bold minuscules: c, s, r). Note that an active coopera-
tion gene (C) provides two things in the model: (i) the 
public good and (ii) a baseline (cost-free) signal level 
(hence “cue-based” cooperation). Accordingly, there are 
eight possible strategies (“phenotypes”). “Lazy” (La: csr) 
never issues or detects the quorum signal and does not 
cooperate. “Trusty” (Tr: Csr) cooperates unconditionally, 
as it does not communicate and neither gives nor listens 
to signals. “Bouncer” (Bo: CSr) is also an unconditional 

cooperator issuing extra signals but not listening to them. 
We assume that the extra signal expression doubles the 
signal level so that a Bo individual counts as two signalers 
in its interaction group. “Smart” (Sm: CsR) is a coopera-
tor that detects the quorum signal and cooperates if the 
signal level in its immediate vicinity exceeds the quorum 
threshold. “Nerd” (Ne: CSR) is a quorum-sensitive coop-
erator that always produces an extra signal dose. “Liar” 
(Li: cSr) issues the quorum signal but never cooperates. 
“Curious liar” (Cl: cSR) acts like Liar but also detects the 
signal. Finally, “Voyeur” (Vo: csR) only detects the signal 
and never cooperates.

Metabolic costs
Each player invests a fixed metabolic effort c0 into its own 
maintenance. This baseline metabolic burden is the same 
for all strategies. Cooperation (C), the emission of extra 
signal molecules (S), and the production, maintenance, 
and operation of the signal response system (R) are all 
metabolically costly; the corresponding c , s , and r costs 
are added to the baseline metabolic burden of the play-
ers expressing them, to yield the total metabolic cost of 
the corresponding genotype. Cooperators always express 

Fig. 3 Strategy set of the QS model. Strategies are listed in boxes; their genotypes are denoted in bold typeface and their metabolic costs 
in parentheses. Capital letters in genotypes indicate expressed “genes”; minuscules indicate inactive alleles. c0 is the baseline metabolic cost 
paid by everyone, c is the cost of cooperation, θ = 1 if the quorum threshold is reached (otherwise θ = 0 ), s is the signal production cost, and r  
is the signal-detection cost. Underlined strategies are context dependent, capable of switching to cooperation when a signal quorum is reached. 
The individual strategies are characterized as follows: Lazy does nothing; Voyeur detects signal but does not cooperate; Liar signals but does 
not cooperate; Curious liar produces and detects signal but does not cooperate; Trusty does not communicate but always cooperates and thus 
also issues the QS signal; Smart detects the signal and cooperates if the signal level exceeds quorum; Bouncy issues extra signal but does not listen 
to it; Nerd produces the extra signal, detects the signal and cooperates if the signal level exceeds quorum
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the public good at a low level, which constitutes an inevi-
table cue of cooperation. The extra signal molecules and 
the signal response system are always expressed in all the 
players carrying the active C and/or R genes for these 
functions. The high-level expression of the cooperation 
gene C means cooperation, which may be conditional 
on the concentration of nearby signal molecules (i.e., 
the number of signaling neighbors), provided that they 
express the signal response system R and thus they are 
capable of detecting the signal. Cooperating players also 
issue the cooperation cue at no additional cost, i.e., the 
(honest) signal cost of cooperators is included in c. The 
condition for the high-level expression of the coopera-
tion gene in conditional cooperators (the Smart and the 
Nerd strategies) is that the number of signal doses within 
the QS neighborhood exceeds the QS threshold Q . Obvi-
ously, non-expressed cooperation genes carry no meta-
bolic cost. Figure 3 summarizes the total metabolic costs 
of the strategies with the local signal levels (i.e., the num-
ber of signal doses within the QS neighborhood) below 
and above the quorum signal threshold.

Cooperation benefit and fitness
The metabolic cost of a player with at least κ active coop-
erators in its own interaction group is reduced by a factor 
0 < b < 1 , which is the cooperation benefit. The benefit 
reduces the metabolic cost of the individual in a multi-
plicative manner. Notice that the cooperation threshold 
κ is not equivalent with the quorum signal threshold Q—
these two thresholds are different, even if their values are 
the same numerically. Q is the minimum number of quo-
rum signal doses within the interaction group of a con-
ditional cooperator that is sufficient to switch its C gene 
on, whereas κ is the minimum number of active coopera-
tors within a group necessary for members of the group 
to enjoy the cooperation benefit. We assume κ = Q 
throughout this study, implying that this relation is the 
evolutionary optimum for cooperators: any deviation by 
switching on cooperation too late or too early is selected 
against. The fitness wi of a player i is linearly decreasing 
with its actual metabolic cost Ci , that is:

where ci = c if the cooperation gene can be expressed in 
player i , otherwise ci = 0 ; similarly, si and ri are the corre-
sponding costs of issuing an extra signal and responding 
to a quorum of signals by player i . θi = 1 if the number of 
active cooperators in the interacting group that i belongs 
to is at least κ , otherwise θi = 0 , and γi = 1 if the num-
ber of signal doses (i.e., the number of cooperators plus 
the number of extra signalers) is at least Q within the 

(1)
wi = w0 − Ci = w0 − (1− θib)(c0 + γici + si + ri),

group of i , or if i is an unconditional cooperator; γi = 0 
otherwise.

The metabolic cost of various strategies
Trusty always cooperates and signals, and thus it always 
pays the cost of cooperation ( c ), but it enjoys the coop-
eration benefit ( b ) only if the number of cooperators in 
its interacting group exceeds the critical threshold κ . 
Bouncer behaves as Trusty, except that it produces twice 
as many signal molecules as Trusty at some extra cost s . 
Smart cooperates (and pays the cost c ) only if the num-
ber of signal doses is at least Q in its interacting group 
but operating the response system listening to the signal 
of the others implies a small cost r . Nerd is a conditional 
cooperator like Smart, producing an extra dose of signal 
at the extra cost s . The strategy Liar never cooperates and 
does not listen to the quorum signal, but it does produce 
it, trying to induce conditional cooperators in its inter-
acting group, again at the cost s . This model assumes that 
the quorum signal is the product of cooperation; thus, 
the emission of a single dose of it is free of charge in all 
potential and actual cooperators, but they can produce an 
additional dose at a cost. Non-cooperators pay even for 
the first signal dose if they produce it, so that the Curious 
liar strategy both producing and detecting the signal pay 
the corresponding costs s and r ; the Voyeur strategy pays 
only r for detecting the signal. Figure 3 summarizes the 
metabolic costs and benefits for all possible genotypes in 
interacting groups with the number of actual cooperators 
below and above the cooperation threshold κ.

Reproduction, mutation, evolution
Reproduction takes place during pairwise interactions 
between individuals, following the rules of probabil-
istic imitation dynamics: player i has a chance of occu-
pying the site of its opponent j with its own offspring. 
This has probability pij , proportional to the relative 
fitness (cost advantage) of i , as �wij =

Cj−Ci

�Cmax
 , where 

�Cmax = c + s + r + bc0 is the largest possible cost dif-
ference (between an individual expressing all functional 
genes but not receiving benefit, and another one express-
ing none of the genes but receiving the full benefit). Then:

where σ is the strength of selection. Obviously, 
pji = 1− pij .

We assume that, during reproduction, any of the three 
functional loci (C, S, and R) may mutate from its func-
tional to its inactive form in the offspring, and back-
mutations are also allowed, with each of the six possible 
mutation events occurring at its own specific rate (possibly 

(2)pij = 0.5(1+ σ�wij),
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zero). The dynamical equilibria and the trajectories of the 
resulting selection processes are the primary targets of this 
study, discussed in the four different modeling approaches.

Temporal resolution of the models
The MF approximation is continuous in time, imple-
mented as a set of ordinary differential equations 
(ODE-s), one equation for each of the eight strategies, 
with their interactions depending on the actual overall 
densities of the strategies (cf. Supplement p.1). The CF 
approximation is also a set of ODE-s comprising a sin-
gle differential equation for each strategy, but the inter-
action terms are dependent on the weighted average 
frequencies of all possible interaction neighborhood 
configurations (cf. Supplement p.6). The agent-based 
models assume discrete interaction events in continu-
ous time: each agent participates in a single interaction 
event per unit time but in a random order. Since we are 
interested only in the stationary states of the models (in 
terms of strategy frequencies), the possible differences 
in their temporal resolution are indifferent.

Results
Mean‑field (MF) model
In the MF model, we only consider three strategies (Lazy, 
Trusty, Smart), as in the limit, only these could be pre-
sent in any equilibrium (see Methods and models and 
Additional file  1: Appendix  1). It is easy to show that 
Lazy is stable against the invasion of the mutant strate-
gies Trusty and Smart, if the sum of the initial frequen-
cies of these mutants are below the threshold K − 1/N  
(where κ/N → K  ). Furthermore, it can be shown that 
the only alternative stationary state is the coexistence of 
the La and Tr strategies. This ensues if the benefit-to-
cost ratio is sufficiently high ( b/c > 1/(c0 + c) ). However, 
this alternative fixed point is not stable against frequency 
fluctuations larger than 1/N  (for more details, see Addi-
tional file 1: Appendix 1). This result shows that QS com-
munication does not convey any benefit in a well-mixed 
environment: defectors will always be present, and unless 
the cooperation benefit exceeds its cost substantially, 
cooperators will be wiped out by defectors; therefore, 
signaling and responding strategies have no chance to 
persist whatsoever; see Fig. 4.

Fig. 4 Mean-field approximation, with the vector fields of the dynamics of the three feasible strategies (Lazy, trusty, Smart) in four different cases. 
Parameters are as follows: A {r = 1/100, b = 1/10}, B {r = 1/100, b = 1/2}, C {r = 2/10, b = 65/100}, D {r = 1/100, b = 6/10}. Note that the parameter set 
for A is not the same as in the other figures, as we wanted to show a case where Lazy does not win. In all cases, the rest of the parameters are {n = 9, 
k = 0.3, c0 = 1, c = 0.3}
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The configuration‑field (CF) model
In the CF model, we also considered only the three fea-
sible strategies (Trusty, Smart, and Lazy), because none 
of the others have a chance to persist in the presence of 
any of these three, just like in the MF approximation. The 
replicator dynamics yields four characteristically differ-
ent outcomes:

• Case 1: If cooperation is too costly compared to the 
benefit for both Trusty and Smart, and Lazy is the 
only fixed point (stable one) of the system (back-
ground of Fig. 5A)

• Case 2: With increasing benefit b , a stable and an 
unstable polymorphic state of Smart and Lazy 
emerge. Which one of the two stable fixed points 
(Smart/Lazy or Lazy), the system approaches depend 
on the initial frequencies (background of Fig. 5B)

• Case 3: If the benefit of cooperation is high, but sig-
nal detection is costly, then Smart and Trusty swap 
roles: a pair of stable and unstable polymorphic Lazy/
Trusty fixed points emerge besides the pure Lazy 
stable state, and the signal detection gene gets lost 
(background of Fig. 5C)

• Case 4: Finally, when the signal detection cost is low, 
and the cooperation benefit is high enough, the sys-
tem behaves like in case 2 except that an additional 
unstable fixed point and a saddle point occur on the 
Lazy/Trusty polymorphic margin of the state space 
(background of Fig.  5D). This, however, does not 
change the final state of the system compared to case 
2: it is either monomorphic Lazy or polymorphic 
Smart/Lazy, depending on initial conditions

For the detailed mathematical derivations of these 
results, see Additional file 1: Appendix 2 [21, 41].

Agent‑based non‑spatial model
To address the effect of the finite size of interacting 
groups, along with the spatial constraints arising from 
limited agent mobility and local (i.e., neighborhood-) 
interactions, we developed an agent-based implementa-
tion of the CF model, with its basic assumptions as pre-
sented above.

Not surprisingly, the trajectories of the non-spatial 
agent-based simulation model (Fig.  6, row 3 red lines) 
closely trace the vector fields of the CF approximation 

Fig. 5 Configuration-field approximation, with the vector fields of the dynamics of the three feasible strategies (Lazy, trusty, Smart) in four different 
cases. A Lazy is the only fixed point of the dynamics; parameters are b = 0.3, r = 0.01 . B The monomorphic Lazy and the polymorphic Smart/
Lazy states are the stable fixed points of the dynamics; b = 0.5, r = 0.01 . C The monomorphic Lazy and the polymorphic Trusty/Lazy states are 
the stable fixed points of the dynamics; b = 0.65, r = 0.2 . D The monomorphic Lazy and the polymorphic Smart/Lazy states are the stable fixed 
points of the dynamics; b = 0.6, r = 0.01 . All CF systems admit multiple unstable fixed points as well, including the Smart and the Trusty corners 
of the state space. In all cases, the rest of the parameters are N = 9, κ = 3, c0 = 1, c = 0.3



Page 10 of 19Czárán et al. BMC Biology           (2024) 22:73 

(Fig.  6 row 3 backgrounds, where the parameters of 
the cases A–D correspond to Fig.  5A–D parameters) at 
any parameter setting. The only difference between the 
assumptions of the two models is that the CF approxima-
tion assumes an infinite population size, whereas in the 
non-spatial simulations, lattice size is P = 90.000 . This 
accounts for the stochastic noise on the simulated trajec-
tories compared to the background CF vectors.

Agent‑based spatial (lattice) model
Three‑strategy model without functional mutations
For comparative purposes, first we followed the trajecto-
ries of the three feasible strategies (Lazy, Trusty, Smart) 
in the lattice model, once again omitting those with 
no chance to persist in the MF and the CF approxima-
tions (see Additional file 1: Appendix 1, 2) (Fig. 6, rows 
1–2). Mutations in any of the three functional loci were 
ignored. The initial strategy distribution was even for the 

three feasible strategies in all simulation runs. Results 
differ from those of the lattice-based CF approximation 
(Fig. 6, trajectories of row 3, with the vector-field of the 
analytic CF as background), both at high and zero cell 
mobility ( D = 10.0 and D = 0.0 , respectively, see Fig. 6, 
rows 1–2). The empirical (simulated) vector fields reveal 
that the spatially explicit model results in the least coop-
erative steady-state populations (backgrounds of Fig.  6, 
rows 1–2, columns B–D): almost all the fixed points are 
at, or very close to, the Lazy corner of the strategy sim-
plex. This means far worse conditions for cooperators 
compared to the CF approximation (Fig.  6, row 3, col-
umns B–D) that allows for polymorphic steady states 
at a considerable part of its parameter space. As the 
only difference between the CF and the well-mixed lat-
tice model is that in the lattice model, the competing 
agents are immediate neighbors with overlapping coop-
eration neighborhoods, this may seem a counterintuitive 

Fig. 6 Sample trajectories of the configuration-field (CF) and the spatially explicit lattice model on the corresponding vector fields. Functional 
mutations have not been considered here. Row 1: Spatially explicit simulations, no mixing ( D = 0.0 ) (simulated vector fields). Row 2: Spatially 
explicit simulations, strong mixing ( D = 10.0 ) (simulated vector fields). Row 3: Non-spatial agent-based simulation model with CF approximations 
(analytical vector fields in the background) D = 0.0 . In all cases, parameters are as follows: N = 9, κ = 3, c0 = 1.0, c = 0.3 ; in the four columns: A 
b = 0.3, r = 0.01 ; B b = 0.5, r = 0.01 ; C b = 0.65, r = 0.2 ; D b = 0.6, r = 0.01
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outcome in view of the common understanding that spa-
tial constraints like localized interactions, in general, help 
cooperators in two-person public goods games (Nowak 
and May 1992). The explanation for this peculiar result 
lies in the balance of two counteracting effects, each 
attributable to one of the two (convoluted) phases of the 
threshold cooperation game: (1) the fitness-acquiring 
cooperation phase and (2) the competitive imitation 
phase.

1) In terms of fitness gains, cooperators do better 
in spatially “viscous” populations (spatially explicit 
case with D = 0.0 , at which only very limited mix-
ing occurs due to the copy of the winner being placed 
one site removed from its parent). When cooperators 
cluster together, it is mostly them who harvest the 
synergistic benefits of their own cooperative invest-
ment (in accordance with the conventional kin selec-
tion argument; see Fig. 7A). Viscosity (low diffusion, 
D = 0.0 ) yields a polymorphic steady state on the 
Lazy-Smart boundary of the simplex compared to the 
non-viscous case ( D = 10.0 ); compare rows 1 and 2 
of Fig. 6D (when the benefit is high and signal detec-
tion is cheap: b = 0.6, r = 0.01 ). Increasing agent 
mobility (high diffusion) approximates random spa-
tial patterns in the limit, which is obviously detrimen-
tal for cooperators either because of the wasted cost 
c of cooperation if the cooperation threshold is not 
met in their neighborhoods or due to their exploita-
tion by parasitic free-riders if it is. In either case, par-
asites are better off in terms of fitness collected, and 
they prevail. That is, in the fitness-acquiring phase 
mixing is advantageous for parasites, whereas spatial 
correlations arising from limited mobility (viscosity) 
help cooperators to persist
2) The outcome of the competitive imitation step 
of the TPPG between the members of cooperator-
parasite pairs depends on the fitness collected by 
the players during the cooperation phase. In the 
spatially explicit model with strong mixing, the 
expected number of cooperators E(nc) in the two 
overlapping neighborhoods of a neighboring coop-
erator-parasite pair are expected to be the same for 
any cooperating (C: Trusty or Smart) individual 
playing against a neighboring parasite (P: Lazy): 
Ec(nc) = Ep(nc) . This follows from the facts that (a) 
adjacent individuals are members of each other’s 
neighborhoods, (b) the members of the remaining 
7-7 individuals in their neighborhoods are either 
exactly the same (in their overlapping parts), or (c) 
they are (statistically) equivalent due to the inten-
sive mixing assumed (cf. Figure 7B). Therefore, the 
expected cooperation benefit is the same for the 

two interacting players, but the parasite spares the 
cost of cooperation and/or signal detection, enjoy-
ing thus a fitness advantage over any cooperator. 
In the CF model, (a) the two interacting players 
are not neighbors; therefore, (b) their cooperation 
neighborhoods do not overlap, but (c) the remain-
ing 8-8 individuals in their two independent neigh-
borhoods are again identical in the statistical sense. 
Thus, the expected number of cooperators in the 
cooperating player’s neighborhood is always larger 
by 1 than in the neighborhood of its parasitic 
opponent: Ec(nc) = Ep(nc)+ 1 , due to the focal 
cell being a cooperator (Fig.  7B). This difference 
explains the relative disadvantage of cooperators in 
the lattice model with intensive mixing compared 
to the CF model (as demonstrated between rows 2 
and 3 of Fig. 6)

Fig. 7 Schematic explanation of the two different effects of spatial 
constraints in the spatially explicit and implicit models (lattice 
and CF models, respectively). A The effect of viscosity. Cooperators 
benefit from slow mixing (viscosity) during the cooperation phase, 
as their perceived local cooperator density exceeds the population 
average. Fragmented cooperators fail to achieve the local quorum 
of cooperation, despite the same global density of cooperators 
on the lattice. B The effects of local and global competition 
in well-mixed populations. Local competition between cooperators 
and parasites (left panel) benefits the parasite because their 
overlapping cooperation neighborhoods (including themselves) 
contain an equal expected number of cooperators, but the parasite 
carries a smaller cost. The cooperator in a distant cooperator-parasite 
pair (right panel) represents an extra cooperator in its own (otherwise 
statistically identical) neighborhood compared to its parasitic 
opponent. This advantage may (over-)compensate its handicap 
in cooperation cost
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That is, while (1) predicts parasite advantage from 
intensive mixing of the players on the lattice, in (2) mix-
ing (as represented by competitive interactions occurring 
between distant individuals) helps cooperation. Separat-
ing (in time) the cooperation phase from the competition 
phase gives an advantage to cooperators in the CF model, 
which counter-balances the adverse effect of mixing (see 
the “Discussion” section for more detail on this mecha-
nism). This explains why the viscous (spatially correlated) 
lattice model and the non-correlated CF approximation 
often produce surprisingly similar steady state strategy 
distributions in the parameter space (cf. Figure 8, Addi-
tional file 1: Appendix 3 Figure S6).

Eight‑strategy model with functional mutations
Extensive simulations on the lattice with all 8 strate-
gies present at equal initial frequencies and mutations 
allowed (acquiring or losing functional genes for coop-
eration, QS signal production, or QS signal response) 
were performed. The parameter space of the model was 
scanned across four critical parameters: (1) the coopera-
tion threshold κ across values from 2 to 6; (2) the QS sig-
nal cost s with values 1, 5, and 10% of the basic metabolic 
burden c0 of the agents; (3) the QS response cost r with 
values 1, 5, and 10% of c0 ; and (4) the diffusion (motility) 
parameter D of the agents ranging from 0.0 to 1.0. The 
genotype distributions at the steady states for all combi-
nations of these parameter settings are shown in Addi-
tional file  1: Appendix  3 Figure S6 an example in Fig. 8 
(D = 0.5). The same sets of simulations with different 
pairs of fixed cooperation cost c and cooperation benefit 
b are presented in Additional file: Appendix 3 Figure S6. 
The overall trends along the four scanned dimensions of 
the parameter space are the following.

Diffusion ( D)
The most conspicuous trend is also the most obvious 
one: increasing agent motility ( D ) benefits the parasitic 
strategy (Lazy), giving it more access to the (undeserved) 
cooperation benefit provided by unconditional and con-
ditional cooperators (Trusty and Smart, respectively; 
Additional file 1: Appendix 3, Figure S6). There are, how-
ever, a few more effects of increasing diffusion which 
are less obvious. One is the increasing proportion of the 
Smart (quorum sensing) strategy among the decreas-
ing number of cooperators, which makes perfect sense 
in a population with local neighborhood configurations 
highly variable in terms of the number of cooperators in 
them. It is in this case that the small cost of quorum sig-
nal detection pays off by sparing unnecessary cooperation 
costs at low local cooperator density but switching on 
cooperation in sufficiently cooperative neighborhoods. 
At very low and very high agent motilities, however, the 

local neighborhoods are predictable enough to render QS 
a futile waste of resources. It is also worth noting that the 
CF approximation (rightmost columns of panels in Fig. 8 
and Additional file  1: Appendix  3, Figure S6) behaves 
almost like the lattice model at low mixing (small D ), 
once again underlining the negative effect of the overlap-
ping cooperation neighborhoods of adjacent competitors.

Cooperation threshold ( κ)
The quorum signal response threshold (the minimum 
number of signals in a neighborhood that switches on 
conditional cooperation in Smart agents) and the cooper-
ation threshold (the minimum number of actual coopera-
tors providing the cooperation benefit for the focal agent 
of the neighborhood) are assumed to be the same in all 
our models. For cooperation to be an option, κ = 2 is the 

Fig. 8 Genotype distributions in steady-state populations 
for the 8-strategy lattice model with D = 0.5 (left panels) and the CF 
model (right panels), across the feasible ranges of cooperation 
threshold ( κ ), QS signal cost ( s ), QS signal response cost ( r  ), 
and agent motility due to diffusion ( D ), with fixed parameters 
N = 9, c0 = 1.0, c = 0.2, b = 0.8 in all cases. The functional mutation 
rate for all strategies is ρ = 10−4
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minimum requirement. The potential maximum number 
of cooperators within a Moore neighborhood is κ = 9 , 
but cooperation would be compulsory for all the agents at 
κ = 9 , and we have found it almost impossible to evolve 
for κ > 6 , so the feasible range to scan was κ = 2 to 6. 
Additional file  1: Appendix  3, Figure S6 clearly shows 
that, contrary to common intuition, cooperation evolves 
to its highest frequency in the population at higher inter-
mediate values of the cooperation threshold (at κ > 3 ) 
[21, 42]. Approaching κ = 6 unconditional cooperators 
(Trusty) often completely exclude parasites (Lazy) at low 
agent motility ( D ), whereas parasite/cooperator coexist-
ence is the generic outcome of spatial simulations at low 
κ and D , like in the CF model. Towards the high end of 
the κ scale (upward from κ = 6 ), cooperation abruptly 
disappears in a phase-transition-like manner, leaving the 
system in the monomorphic Lazy steady state across the 
whole parameter space with κ ≥ 7 (data not shown).

QS response cost ( r)
The metabolic cost of QS signal response (signal detec-
tion and intracellular signal transduction) is assumed to 
be low compared to the cost of cooperation ( r ≪ c ). This 
is reasonable, given that cheap cooperation coordinated 
by expensive signal response is certainly a losing strategy 
against cheap cooperation with no QS at all because con-
stitutive cooperation would then be cheaper than listen-
ing to the QS signal. If signal response is cheap ( r = 1.0 ), 
then a considerable fraction of cooperating agents main-
tain and use it within almost the entire range of the 
parameter space, except where the parasitic Lazy popu-
lation goes extinct (Additional file  1: Appendix  3, Fig-
ure S6). Obviously, with all parasites wiped out, it is not 
worth listening to QS signals anymore, so Trusty takes 
over. Also, at low agent motility (smaller D values), main-
taining a more expensive QS signal response ( r = 5.0 
and 10.0) proves not to be feasible. An interesting effect 
of cheap to moderately expensive QS signal response 
( r = 1.0 and 5.0) at D = 0.4 and κ = 6 is that it helps to 
eliminate the parasite, even though it is ultimately not 
present in the steady-state population. More expensive 
signal response ( r = 10.0 , with all other parameters the 
same) results in parasite takeover.

QS signal cost ( s)
Recall that cooperation always means synchronized sign-
aling in our models, so an agent that issues an extra signal 
is a liar: it is either not a cooperator but pretends to be 
one, or is a cooperator, but promises more cooperation 
than it actually provides. Given that cheating is usually 
a profitable strategy in cooperative situations, it is quite 
surprising how efficient QS is in eliminating it. Liars (cSr 
genotypes that do not cooperate and do not listen to QS 

signals) appear only in a narrow section of the param-
eter space (at low costs for both QS signaling s and QS 
signal response r ), and even there they are present at 
low frequencies (Additional file  1: Appendix  3, Figure 
S6). Cooperators trying to exaggerate their cooperative 
nature (Bouncer: CSr, and Nerd: CSR) do not appear 
in the simulations in frequencies above their mutation-
selection balance.

Discussion
Cheap quorum sensing supports cooperation
Since the functioning cooperation allele C is also a cue 
for potential interacting partners on future cooperation, 
possession of a fully functional QS system means har-
boring a functional response gene R and a conditionally 
expressed cooperation allele C. Figure  8 reveals that in 
spatially explicit, viscous systems a cheap response func-
tion (small r ) of QS substantially increases the overall 
propensity for metabolically much more expensive coop-
eration. In this case, it is mostly conditional coopera-
tors (Smart, CsR) that coexist with defectors (Lazy, csr). 
More expensive R alleles prevent both signal response 
and cooperation, with only defectors surviving at mod-
erate to high cell motility (D). In the CF approximation, 
cheap signal response ( r = 1) allows the Smart strategy 
to attain high frequency in the steady state, but it does 
not noticeably contribute to the evolutionary success of 
cooperation: at higher response costs the Trusty popula-
tion performs just as well without the R allele (see Fig. 5).

Spatial correlations do not favor cooperation in all contexts
The well-known prediction of almost any game theo-
retical model on “uninstructed” cooperation (in which 
individuals have no prior clue on the intent of coopera-
tive or defective behavior of their interacting partners) 
is that the intensive mixing of cooperators and defectors 
destroys costly cooperation through the inevitable fitness 
advantage of defectors in cooperator/defector encoun-
ters. This universal conclusion holds true in the threshold 
public goods game with competition restricted to neigh-
bors, even if all cooperators are assumed to constitutively 
broadcast their cooperative nature with a signal that their 
potential partners may detect at a small cost and switch 
on or off their cooperation mechanism accordingly. This 
is obvious from Fig.  6: defectors take over as the mix-
ing parameter D increases in the agent-based, spatially 
explicit simulations, irrespective of all other parameter 
values. However, maintaining spatial correlations does 
not always favor cooperation in any context. On the one 
hand, spatial correlations always favor cooperation dur-
ing the fitness acquisition phase, as it allows coopera-
tors to be more likely surrounded (and helped) by other 
cooperators; thus, cooperation is more likely to succeed. 
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On the other hand, spatial correlations favor defectors at 
the competitive reproduction stage as it hurts success-
ful cooperators to compete against (potentially also suc-
cessful) defector neighbors. In other words, cooperators 
benefit from cooperating locally but competing globally 
for reproduction, suggesting an ambivalent effect of spa-
tial mixing on cooperation in TPGG. This ambivalent 
effect is dependent on the temporal scales of the two 
types of interaction assumed. The advantage of coopera-
tors in the CF model (as opposed to that of cheaters in 
the well-mixed spatially explicit simulations) hinges on 
the implicit assumption of the instantaneous collection 
of fitness by all agents in the cooperation phase and their 
also instantaneous competitive interaction in the imita-
tion phase with a random opponent at a later moment 
in time. In both models, intensive population mixing is 
assumed, but in the CF, the two interaction phases are 
farther apart in time, whereas in the spatially explicit 
simulations, they are simultaneous. It should also be 
noted here that mixing may also have a detrimental effect 
on competing cooperators by allowing more frequent 
cooperator-parasite encounters in space. This and the 
dissolution of cooperator clumps eventually always lead 
to parasite takeover at fast population mixing in the spa-
tially explicit lattice model.

Quorum sensing evolves if it conveys valuable information
QS is efficient at reducing the overall metabolic cost (and 
thus at increasing the average fitness of the population) 
if the expected number E(nc) of cooperators per neigh-
borhood is close to κ (the cooperation threshold) in the 
actual steady state of the population, and the variance 
of the same variable, V (nc) , is relatively high. These are 
the conditions at which it is difficult to predict if a par-
ticular neighborhood does or does not have the quorum 
of cooperators ( nC ≥ κ ); therefore, the information that 
the QS system provides is of the highest fitness advan-
tage. This is quite obvious in the spatially explicit lattice 
model versions but also applies to the CF approxima-
tion that explicitly considers the stochastic heterogene-
ity of neighborhood composition, too. Of course, the MF 
approximation never yields QS because it assumes all 
neighborhoods to be identical and thus completely pre-
dictable, in which case maintaining the signal-detecting 
R allele (i.e., expressing the signal receptor and the signal 
transduction system) would be a waste of resources and 
is thus selected against.

High cooperation thresholds favor monomorphic 
equilibria
A counter-intuitive prediction of the spatially explicit 
version of the threshold public goods game model is that 
the higher the cooperation threshold κ (i.e., the more 

cooperators are needed for harvesting the cooperation 
benefit), the higher the steady-state frequency of the 
cooperators will be [21, 42], and at moderately high κ val-
ues, the defectors may be eradicated altogether. On the 
one hand, this is a natural consequence of requiring more 
cooperators per interaction neighborhood which trans-
lates to higher overall (regional) cooperator abundance 
in mixed steady states, but on the other hand, it is sur-
prising that increasing κ does not favor defection—on the 
contrary, it seals the fate of defectors. This effect shows 
up at low agent mobility in the spatially explicit simula-
tions, but the trend of increasing cooperator frequency 
with increasing k can also be observed in the CF approxi-
mation, which does not provide the advantage of coop-
erator clumping at all, as it assumes complete mixing of 
the population. At κ values too close to the neighborhood 
size the steady-state populations are also monomorphic, 
but then the defectors take over the lattice in a phase 
transition-like manner with increasing κ.

Liars are kept at bay if cooperativity is always visible, even 
if fake signaling is unconstrained
Yet another interesting prediction of the spatially explicit 
agent-based model is the limited range of the parameter 
space in which cheating through issuing fake quorum 
signal (lying) can evolve at all: the only section of the 
parameter space of the 8-strategy lattice model in which 
the Liar strategy shows up is at very low signal cost and 
low response costs (Fig.  6, s = 1 , r = 1 , and r = 5 ), and 
even there it attains almost negligible frequencies, in 
spite of the fact that the S locus is free to mutate back 
and forth, just as the other two (C and R). The fact that 
lying is always disadvantageous from the viewpoint of 
evolving cooperation can be seen in the reduction of the 
frequency of cooperative strategies wherever Liars occur 
in the population, but in all other parts of the parameter 
space, Liars are missing from the steady state. Lying is 
inefficient due to the fact that cooperators can produce 
a baseline signal for free in our model while liars have to 
pay for the same signal. In other words, there is a con-
dition-dependent trade-off that favors honesty. Theoreti-
cal models of honest signaling have shown that honesty 
is maintained by such condition-dependent trade-offs 
[43–48], instead of the equilibrium cost of signals (a.k.a. 
“handicaps”) as predicted by the erroneous Handicap 
Principle [49] (see [50] for discussion), and later costly 
signaling models [51, 52]. While such trade-offs are dif-
ficult to measure, a recent experiment [53] supports the 
key role of condition-dependent trade-offs in maintain-
ing honesty. In turn, our model gives an example of cheap 
(cost-free) and honest signaling under conflict of inter-
est. This possibility was predicted long ago (e.g., [43, 45, 
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54], but implementations of such systems are few and far 
between.

Our results can be seen as a version of the famous 
greenbeard effect. This effect was proposed by Dawk-
ins (1976) based on the kin selection idea of Hamilton 
(1962). The core of the idea is assortment based on a sig-
nal called greenbeard that allows cooperators to recog-
nize each other. There is a long debate in the literature 
whether greenbeards exist or not, reviewed by Madg-
wick et  al. (2019). One obvious weakness of the idea is 
the possible presence of cheaters called “fakebeards” that 
produce the signal yet do not cooperate. It was shown 
that such fakebeards can destabilize the system result-
ing in dynamic polymorphic equilibria with rare-type 
advantage, in which mutation-selection balance will set 
the proportions of honest vs. dishonest types (Jansen & 
van Baalen, 2006). The key difference between our model 
and the previous models/ideas is that previous models 
assumed cost-free signals, that is, each type could pro-
duce the signal at the same (no) cost. In contrast, as dis-
cussed above, we assume that different types pay different 
marginal costs when producing the signal. Our results 
show that this is a crucial difference that can stabilize 
cooperation. This results in an evolutionarily stable coex-
istence of cooperative and defective types (Smart, Trusty, 
Lazy) as opposed to the dynamic coexistence identified 
by the multicolor chromodynamics model (Jansen & van 
Baalen, 2006) that has to assume a steady influx of new 
honest types.

While several models have investigated potentially 
deceptive QS strategies in bacteria [36, 38, 55], there are 
key differences between the current investigation and the 
previous ones. First of all, we investigate a cue-based sys-
tem, in which the signaling molecule is the same as the 
public good. This provides dynamics different from those 
of the traditional QS systems with separate signal and 
public good molecules, which, therefore, have to be syn-
thesized along different metabolic pathways. Of course, 
not all QS systems are cue-based, but our results suggest 
that whenever it is cue-based, it strongly favors honesty 
and cooperation. Secondly, like Czárán and Hoekstra 
(2009), we investigate the full range of 8 strategies pos-
sible, given the assumption that each of cooperation, 
signaling, and signal detection may be ON or OFF, but 
in the present model, cooperators that are also signal-
ers are a new type of cheat: those who exaggerate their 
promise of cooperation. In spite of even more cheating 
strategies being possible, we find a substantially reduced 
prevalence of cheats in the population. Last but not least, 
we have decomposed and separated the effects of spatial 
and temporal constraints present in the spatiotemporal 
agent-based simulation model by partially adding or elim-
inating them in the mean-field and configurational-field 

approximations. This allowed us to resolve simple sce-
narios, and the approximations provided benchmarks 
for the agent-based simulations. While this allows a thor-
ough study of the cue-based QS system, there are several 
issues that merit further investigation. First, we assumed 
that the cooperation threshold is the same as the activa-
tion threshold for conditional cooperators. The reasoning 
behind this assumption is that conditional cooperators 
switching on too early or too late will be selected against. 
This assumption can be investigated with a slightly 
modified version of this model. The main reason for not 
including this quite obvious and reasonable complication 
in the current version is to keep the complexity of the 
investigation under control. Second, perhaps more inter-
estingly, our results beg the question: why is it that not all 
QS systems are cue-based? If cue-based systems promote 
honesty and cooperation, then one might expect such 
systems to be widespread in nature. Yet, while there are 
cue-based systems besides the nisin system in Lactococ-
cus lactis, like the mutacin 1140 system in Streptococcus 
mutans [56], the mersacidin system in Bacillus sp. [57], 
or the listeriolysin S (LLS) system in Listeria monocy-
togenes [58, 59], there are many more examples in which 
the signal molecule is different from the public good. It 
is conspicuous that most known cue-based QS systems 
regulate autoinduced bacteriocin (lantibiotic) produc-
tion, i.e., toxin excretion, possibly deployed against unre-
lated competitor strains. Perhaps, cue-based systems are 
also constrained by some other, still unknown, genetic, or 
ecological mechanism. This leads to the issue of how cue-
based QS systems had evolved in the first place—a poten-
tially rewarding focus for future investigations.

Our models provide several testable predictions.

(i) Cue-driven systems will produce evolutionarily 
stable polymorphism. This implies that cue-driven 
systems will consist of different types including self-
ish and cooperator ones. On the practical level 
this means that contribution to the public good is 
expected to show a high variance (i.e., there should 
be a type consistently producing high level of public 
good vs. a different type consistently not producing 
any) and this variance is expected to be stable on the 
long term.
(ii) These systems will be dominated by honest coop-
erators, unconditional cooperators and defectors 
(i.e., Smart, Trusty, Lazy). On the practical level, this 
implies that there should be cooperators sensitive to 
the level of the cue (honest cooperators), cooperators 
insensitive to the cue (i.e., always producing the pub-
lic good, unconditional cooperators). and finally self-
ish individuals insensitive to the cue, i.e., never pro-
ducing any public good.
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(iii) The frequency of cheating strategies (fakebeards) 
will be low. Fakebeards in this system are individuals 
that produce the public good at a low level, sufficient 
to act as a cue (thus triggering conditional coopera-
tors), yet they never up the production of the pub-
lic good even if the concentration is high (i.e., even 
if there are other cooperators in the vicinity). Such 
difference in concentration between the “cue” and 
the public good might be the most difficult thing to 
identify. To simplify this prediction, one can say that 
there should be (i) a type that is capable of increased 
production of the public good (as a function of the 
concentration of the cue, honest cooperators) vs. 
(ii) a different type that is only producing the pub-
lic good (cue) at a much lower level and this type is 
insensitive to the concentration of the cue, thus never 
switching to an increased production.

Conclusions
Explaining the evolutionarily stable maintenance of 
cooperation in cooperative dilemma games, such as the 
public goods game, remains a challenge. Our results 
demonstrate that cue-based quorum sensing can main-
tain cooperation at a high level, partly due to the con-
ventional kin selection mechanism of cooperative games, 
partly as the result of specific spatial effects in local public 
goods games. The frequency of communication cheaters 
is constrained in such a system by the condition-depend-
ent trade-off in signal production (i.e., signaling is free 
for honest signalers but costly for cheaters). Our results 
may apply to any other cue-based systems, i.e., any other 
threshold public goods game where the game a preceded 
by a signaling stage, where the signal is some contribu-
tion to the public good. For example, cooperative fishing 
in humans where the signal is the preparation, repair of 
fishing equipment. Such cue-based system could provide 
a robust stepping stone for large-scale cooperation as 
they do not require any accounting mechanism (cognitive 
or otherwise) as they function without the punishment 
of cheaters. In turn, this implies that they do not require 
any complex social norm that would regulate such action. 
The simplicity of assumption behind the cue-driven sys-
tem and the simplicity of the mechanism itself makes it 
a prime candidate as driving force of cooperation from 
bacteria to humans.

Methods
Mean‑field (MF) model
In Additional file 1: Appendix 1, we construct the mean-
field version of the model, with the assumptions that 
population size ( P ), interacting group size ( N  ), and the 
cooperation threshold κ are all very large, while N/P ≪ 1 
and κ/N → K  . In this limit, all the dynamical effects are 

averaged across the entire habitat so that the fitnesses of 
the strategies depend only on the average frequencies of 
the strains present. On the basis of simple fitness con-
siderations, it holds that only combinations of the Lazy, 
Trusty, and Smart strategies can constitute any equilib-
rium state in the MF approximation; thus, we have to 
analyze the dynamics only for these three strategies. To 
see this, let us assume indirectly that there is a fourth 
strategy S present in the equilibrium. Since at least one 
of the strategies from among Lazy, Trusty, or Smart has 
a higher fitness than strategy S in any actual state of the 
frequency vector x , S can not be present in a dynamical 
equilibrium. For the mathematical formulation of the MF 
model, see Additional file 1: Appendix 1.

Configuration‑field (CF) model
Next, we assume that the population is still very 
large (practically infinite), but individuals form ran-
dom interacting groups of finite size N  . While in the 
previous section we considered N  to be so large that 
each interacting group consists of strategies in exact 
proportion to their global frequencies in the popula-
tion, now we assume that N  is smaller, and thus dif-
ferent interaction groups with different configurations 
of strategies are formed in an inherently stochastic 
manner, due to sampling errors. The two players par-
ticipating in an elementary game step are randomly 
chosen members of their own interaction groups 
(both of them of size N  ) that are drawn at random 
from the population. Note that assuming the overall 
fitness for each of the eight strategies is calculated as 
the weighted average of its local fitness in all possible 
configurations of the interaction group around a focal 
individual of the given strategy. Based on these fitness 
formulae, it can be shown again that the feasible strat-
egy set consists only of Lazy, Trusty, and Smart (for 
more details, see Additional file 1: Appendix 2).

Agent‑based non‑spatial model
The agent-based non-spatial model is an accurate 
computational realization of the CF approximation in 
all respects, except the population is now finite (pop-
ulation size P = 90.000 ). Two random samples of size 
(N = 9), drawn from the population independently, 
represent the interacting groups. One focal agent from 
each group is chosen at random, and these two focal 
agents play out the imitation game, with the chance of 
winning for each dependent on the fitness payoff it has 
realized within its own interacting group. Payoffs were 
assigned to each of the two players depending on their 
own cooperation costs and the number of actual coop-
erators in their own group, which, in turn, depends 
on the local number of signalers and conditional 
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cooperators within the corresponding interacting 
group. The updating rule is random, meaning that 
each update step consists of the choice of a random 
pair of players and their cooperation groups and the 
competitive imitation step between them. One genera-
tion comprises P/2 such steps so that each agent par-
ticipates in one update per generation on average.

Agent‑based spatial (lattice) model
The spatially explicit model follows the agent-based 
algorithm, with the modification that now the agents 
are arranged in a 300 × 300 square lattice to implement 
the spatial constraints of localized interactions and lim-
ited agent mobility. The lattice is of toroidal topology 
(with its opposite edges merged) to avoid edge effects. 
The players in each updating step are immediate neigh-
bors of each other with their interacting groups consist-
ing of the two overlapping 3 × 3 sub-lattices centered on 
them (i.e., the interacting group of a player occupies its 
Moore neighborhood on the lattice). In an elementary 
game step, an imitation game is played out between the 
randomly chosen pair of adjacent agents. Obviously, 
this means that the interacting neighborhoods of the 
two players are not independent of one another: the 
two players are always members of their own, as well 
as of the other’s, interacting group, and the two inter-
acting groups (neighborhoods) share some other com-
mon agents as well. The actual size of the overlapping 
region depends on whether the players are orthogonal 
or diagonal neighbors (Fig.  5B). Payoffs, and thus also 
fitness values at interaction, are assigned to each of the 
two players as in the non-spatial model. For a detailed 
description and additional information, see Additional 
file 1: Appendix 3.

The limited spatial mobility of the agents on the lat-
tice is scaled by the diffusion parameter D , which is the 
expected number of site swaps between randomly chosen 
pairs of adjacent agents following each game step. The 
swapped pairs are chosen independently of the interact-
ing pair.

One generation of the spatial simulation also consists 
of P/2 random elementary interaction steps and the cor-
responding (random) diffusion steps. Simulations last 
for G = 10.000 generations. Empirical vector fields with 
particular parameter settings have been produced on the 
strategy simplex for the lattice model to visualize simu-
lated steady states and trajectories.
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