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Abstract 

Background Trans‑differentiation of human‑induced pluripotent stem cells into neurons via Ngn2‑induction (hiPSC‑
N) has become an efficient system to quickly generate neurons a likely significant advance for disease modeling 
and in vitro assay development. Recent single‑cell interrogation of Ngn2‑induced neurons, however, has revealed 
some similarities to unexpected neuronal lineages. Similarly, a straightforward method to generate hiPSC‑derived 
astrocytes (hiPSC‑A) for the study of neuropsychiatric disorders has also been described.

Results Here, we examine the homogeneity and similarity of hiPSC‑N and hiPSC‑A to their in vivo counterparts, 
the impact of different lengths of time post Ngn2 induction on hiPSC‑N (15 or 21 days), and the impact of hiPSC‑N/
hiPSC‑A co‑culture. Leveraging the wealth of existing public single‑cell RNA‑seq (scRNA‑seq) data in Ngn2‑induced 
neurons and in vivo data from the developing brain, we provide perspectives on the lineage origins and maturation 
of hiPSC‑N and hiPSC‑A. While induction protocols in different labs produce consistent cell type profiles, both hiPSC‑
N and hiPSC‑A show significant heterogeneity and similarity to multiple in vivo cell fates, and both more precisely 
approximate their in vivo counterparts when co‑cultured. Gene expression data from the hiPSC‑N show enrichment 
of genes linked to schizophrenia (SZ) and autism spectrum disorders (ASD) as has been previously shown for neural 
stem cells and neurons. These overrepresentations of disease genes are strongest in our system at early times (day 
15) in Ngn2‑induction/maturation of neurons, when we also observe the greatest similarity to early in vivo excitatory 
neurons. We have assembled this new scRNA‑seq data along with the public data explored here as an integrated 
biologist‑friendly web‑resource for researchers seeking to understand this system more deeply: https:// nemoa nalyt 
ics. org/p? l= DasEt AlNGN 2&g= NES.

Conclusions While overall we support the use of the investigated cellular models for the study of neuropsychiatric 
disease, we also identify important limitations. We hope that this work will contribute to understanding and optimiz‑
ing cellular modeling for complex brain disorders.
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Background
Recent advances in cell engineering have provided 
unprecedented tools for investigating the biology and 
genetics underlying psychiatric disorders [1]. For many 
years, our only opportunity to study the central nervous 
system (CNS) and create disease models was through 
model organisms like worms and mice or tumor-derived 
cell lines. These models, while valuable in understanding 
how the CNS functions, came with significant limitations 
when drawing parallels to the complex human brain. 
Four recent technologies have drastically widened the 
array of tools to model disease: the generation of human-
induced pluripotent stem cells (hiPSCs) from somatic 
cells, techniques for differentiation to specific cell types, 
genome editing, and high-throughput transcriptom-
ics including single-cell RNA sequencing (scRNA-seq). 
We can now generate pluripotent cells from patients or 
healthy controls, introduce precise genetic modifications, 
and generate different types of cells of interest [2–7], 
such as glutamatergic, GABAergic, dopaminergic neu-
rons, or glial cells. We can then study the consequences 
on their transcriptome either in bulk or at single-cell res-
olution which allows us to detect and account for cellular 
heterogeneity. With all these advances cellular models are 
becoming a front-line tool in brain research. However, 
there are important limitations to consider when work-
ing with such models. Specifically, in two-dimensional 
(2D) cultures, different neural cell types are often grown 
in isolation, in the absence of the milieu of neural types 
and supporting cells found in  vivo. While three-dimen-
sional cultures (organoids) allow more complex cellular 
interactions and more advanced maturational states, 2D 
systems often produce more uniform cell states that are 
more amenable to assay development for assessing novel 
therapeutics. Furthermore, the differentiation technolo-
gies are far from recapitulating in  vivo differentiation; 
although similarities to the target cell types have been 
shown [1], significant differences also exist. scRNA-seq 
provides increased resolution to answer some key ques-
tions on cell type identity and state. By acquiring tran-
scriptomes from single cells, either from cultures or from 
living tissues, we can get a better-resolved picture of the 
component cell types/states of a culture population and 
perform direct comparisons between in vivo and in vitro 
differentiated cells.

In this study, we focus on cells differentiated in  vitro 
from hiPSCs, specifically excitatory neurons and astro-
cytes (hiPSC-N and hiPSC-A). For hiPSC-N, we use a 

transcription factor (Ngn2)-mediated rapid induced dif-
ferentiation protocol [7], a method that is popular due to 
its speed and versatility of starting cell type (lymphocytes, 
fibroblasts, iPSCs, etc.) [7]. To generate hiPSC-A, we use 
a previously described protocol to generate cells similar 
to primary human fetal astrocytes and characteristic of a 
non-reactive state suggested for use in neuron-astrocyte 
co-cultures [8]. Studying these differentiated cells in 2D 
cultures can be a powerful approach to model human 
psychiatric disease [1]. Yet, to best interpret any observed 
cellular phenotyping results, it is important to test cells 
on four different parameters/attributes: (1) How much 
do these cells resemble the in  vivo intended cell types? 
(2) How homogeneous are they in 2D cultures? (3) How 
does variation in the differentiation time and co-culture 
with human astrocytes affect the neural identity of the 
cells and (4) How similar are cells produced by different 
laboratories using the same or similar methods? To help 
answer these questions, we examined four conditions by 
scRNA-seq: (A) hiPSC-N after 15 days of differentiation 
(hiPSC-N15), (B) hiPSC-N after 21  days of differentia-
tion (hiPSC-N21), (C) hiPSC-A grown alone (hiPSC-A0), 
and (D) hiPSC-A co-cultured with hiPSC-N21 (neurons: 
hiPSC-N21A, astrocytes: hiPSC-AN21). Using scRNA-
seq analysis, we explore whether cells under these dif-
fering conditions can be distinguished. We perform 
pseudo-bulk comparisons (hiPSC-N15 vs. hiPSC-N21, 
hiPSC-N21 vs. hiPSC-N21A, hiPSC-A0 vs. hiPSC-AN21) 
to find what genes are differentially expressed and the 
pathways and disease genes for which they are enriched. 
Finally, we explore how the induced neurons and astro-
cytes studied here compare to in  vitro and in  vivo cell 
types in other studies.

In this study, we refer to multiple external datasets 
which we examine alongside ours. To provide a single 
location where all the diverse datasets examined in this 
report can be accessed and explored in an integrated 
environment, we have created a web resource leverag-
ing the gEAR and NeMO Analytics platforms [9, 10]. We 
invite researchers to explore this resource that can visual-
ize individual genes of interest or sets of genes simultane-
ously across the many datasets used here [11].

Results
Cell type marker genes and cellular heterogeneity
Following scRNA-seq of induced cell types at differ-
ent times and co-culture conditions, we performed 
read alignment, tabulated gene level counts per million 
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(CPM), calculated log2(CPM + 1), and performed prin-
cipal component analysis (PCA) followed by Uniform 
Manifold Approximation and Projection (UMAP) 
dimensionality reduction followed by K-nearest neighbor 
(KNN) graph construction in PC space and cell cluster-
ing with Louvain optimization of modularity [12] within 
the Seurat package in the R/Bioconductor environ-
ment to explore cells and homogeneity within cell types 
(see the “Methods” section for details). The hiPSC-N15, 
hiPSC-N21, and hiPSC-Ast0, which were grown in sepa-
rate plates from each other, showed that, as expected, 
hiPSC-N and hiPSC-A clustered separately (Fig.  1A). 
This allowed us to distinguish hiPSC-N21A from hiPSC-
AN21 based on their transcriptome profile despite them 
being grown in the same plate. We then calculated pair-
wise correlations (r2) of pseudobulk expression profiles of 
all genes across the 5 conditions: hiPSC-N15, hiPSC-N21, 
hiPSC-N21A, hiPSC-A0, and hiPSC-AN21 (Fig.  1B). 
Within target cell types (i.e., within hiPCS-N or hiPCS-
A), the correlations between the different conditions 
were strong (min r2 > 0.96), while across different discrete 
cell types, they were significantly weaker (max r2 < 0.58) 
highlighting the difference between hiPSC-N and hiPSC-
A. To determine how faithfully each iPSC-derived group 

represents in vivo excitatory neurons and astrocytes, we 
explored the expression of a long list of astrocytic and 
neuronal marker genes compiled based on what is com-
monly seen in the literature and our own experience. As 
expected, hiPSC-A0 and hiPSC-AN21 exhibited higher 
expression of astrocytic markers than neurons, and this 
was more pronounced in the hiPSC-AN21 which may be 
an indication of higher maturity. The fraction of the cells 
in each cell type expressing the genes in Table 1 and the 
mean expression of each gene in each cell type are shown 
in Additional files 1, 2, 3, 4 and 5: Sup. Figure 1, Sup. Fig-
ure 2, Sup. Figure 3, Sup. Figure 4, and Sup. Figure 5.

Most neuronal marker genes showed higher expres-
sion in hiPSC-N than hiPSC-A with one exception, 
SATB2. SATB2 is a postmitotic determinant for upper-
layer neuron specification not present in all neurons 
[13]. While this can explain its absence in hiPSC-N, it is 
not clear why we observe it expressed in hiPSC-A. Mul-
tiple calcium/calmodulin-dependent protein kinases 
(CaMK) were highly expressed in hiPSC-N. The only 
exception was CAMK2D whose expression was higher 
in hiPSC-A. This is in agreement with Vallano et al. [14] 
who have shown that CAMK2D is a CaM kinase type 
II with specific astrocyte expression. All other synaptic 

Fig. 1 UMAP plot of our data highlighting the different conditions (A), pairwise correlations of gene expression in bulk and pseudobulk gene 
expression for the conditions (B), the same UMAP plot highlighting cluster derived with Louvain clustering (C), and compositions of the Louvain 
clusters in terms of cells from the five conditions (D)
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Table 1 Expression of marker genes across the different conditions. Overall expression in counts per million is shown in column 3, 
with darker grey shading indicating higher expression. The following columns show the expression in each condition expressed in 
standard deviations from the mean and proportionally highlighted from blue (negative) to red (positive). Asterisks indicate statistical 
significance < 0.05 between adjacent columns, with the column named A‑N‑SIG indicating statistical significance < 0.05 between all 
neuronal and al astrocytic cells types
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markers showed high expression in hiPSC-N, often with 
a significant trend for higher expression in the direction 
hiPSC-N15➔hiPSC-N21➔hiPSC-N21A, like the gluta-
matergic markers GRIA1 and GRIN3A and the synaptic 
gene NRXN3 and CAM2N2. This positive correlation of 
glutamatergic and synaptic gene expression with time 
post-Ngn2 induction and co-culture with hiPSC-A may 
suggest increasing maturation of the neurons across time 
and co-culture.

We next wanted to explore whether our differentiated 
cells, all of which come from a single cell line, are differ-
ent or similar in expression profiles with cells derived 
from different cell lines. We compared our hiPSC-N to 
others we differentiated following the same protocol in 
our previous work [15–18] and with an in  vivo dataset 
[19, 20] (Additional file  6: Sup. Figure  6). Similarly, we 
explored whether our astrocytes are similar with astro-
cytes differentiated by others with the same protocol or 
in vivo fetal and mature astrocytes [8, 21–27] (Additional 
file  7: Sup. Figure  7). With the neuronal cells we found 
strong correlations (r > 0.8) with all the bulk in  vitro 
datasets and r > 0.7 with the in  vivo bulk dataset (Addi-
tional file 6: Sup. Figure 6). With the cells differentiated 
to astrocytes, we also found strong correlations (r > 0.74) 
with all the bulk in  vitro datasets and r > 0.49 with the 
in  vivo bulk datasets (Additional file  7: Sup. Figure  7). 
This suggests that the genomic differences between cells 
and other unintentional differences in experimental pro-
cedures do not have a major effect on the transcriptomic 
signature of the cells.

We next harnessed the power of single-cell sequenc-
ing to explore the cellular homogeneity of these hiPSC-
derived differentiated cells. Instead of specifying cell 
groups based on the culture condition (or visualization 
in the case of hiPSC-N21A vs. hiPSC- A N21) as above, 
we applied Louvain community detection, a method to 
extract communities with shared features from large net-
works [12], which identified 8 clusters within our cells 
(Fig. 1C). Five clusters included exclusively derived neu-
rons—N-I to N-V—and 3 included derived astrocytes—
A-I, II, and III. None of them is composed of a single 
condition (Fig. 1D). This suggests they are influenced by 
but do not solely depend on the different conditions and 
likely reflect a property of the base differentiation meth-
ods. Cluster A-III showed a biased composition by con-
dition, containing > 90% hiPSC-AN21. Comparing gene 
expression levels of genes in each neuronal cluster to the 
remaining 4 neuronal clusters identified numerous genes, 
differentially expressed. These, along with the astrocytic 
cluster comparisons, can be found in Additional file  8: 
SuppTable1. According to the statistical overrepresenta-
tion test of the PANTHER bioinformatics tool [28], they 
were functionally enriched for many neural development 

and synaptic genes compared with the whole set of genes 
expressed in the 5 clusters (see Additional file 9: SuppT-
able2 for results on each cluster). Most enrichments were 
observed among genes expressed lower in examined 
cluster, while some were in both upregulated and down-
regulated genes. Similarly, comparing gene expression 
levels of genes in each astrocytic cluster compared with 
the remaining 2 identified numerous genes with enrich-
ments compared with the whole set of genes expressed in 
the 3 clusters, in this case only in genes expressed lower 
in the examined cluster. These also included, among 
others, neuron-related functions (Additional file: 10: 
SuppTable3).

In summary, our observations support that iPSC-N 
and iPSC-A express marker genes that broadly suggest 
similarity to in vivo excitatory neurons and astrocytes as 
previous studies of these cells in bulk have shown [7, 8]. 
However, we do find heterogeneity which is influenced by 
the specific conditions of differentiation that we tested. 
This suggests that the heterogeneity is in part inherent 
to the differentiation protocols. Heterogeneity aside, the 
gene marker data suggests a role of the presence of neu-
rons in the maturation of astrocytes and vice versa. Simi-
larly, differentiation time also seems to play an important 
role for the maturation of the neurons.

GWAS genes expressed in iPSC‑derived neurons 
and astrocytes
To be appropriate disease models, the cells created by 
these differentiation methods must express many of the 
genes associated with diseases involving neurons and 
astrocytes. We compared the genes showing differential 
expression (DE) between hiPSC-N and hiPSC-A (hiPSC-
N and hiPSC-A specific genes) to those associated with 
neuropsychiatric illness by large genome-wide associa-
tion studies (GWAS) and sequencing studies. We focused 
on schizophrenia (SZ) and Alzheimer’s disease (AD) due 
to the availability of large GWAS [29, 30] and autism 
spectrum disorders (ASD) where large sequencing stud-
ies from the Simons Foundation Autism Research Initia-
tive have identified many genes [31]. In the case of ASD, 
the data is from sequencing studies identifying clustering 
of damaging variants, providing a direct link to specific 
genes. In the case of SZ, the genes were reported as high 
confidence based on co-localization with brain eQTLs 
and posterior probability analyses [29]. Similarly, the 
AD GWAS assigned genes to associated variants based 
on colocalization analysis, fine-mapping results, and 
previous literature [30]. Using DESeq2 for differential 
expression analysis, we used a stringent threshold of an 
adjusted p < 0.001 (see the “Methods” section) to focus 
on the genes with the highest confidence of DE between 
cell types. We also used the highest confidence genes 
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reported for each disorder as follows: for ASD, this was 
207 genes with a score of 1 (highest confidence) in the 
SFARI database; for SZ, this was 130 genes reported as 
genome-wide significant with high confidence [29]; for 
AD, this was 38 genes at loci showing genome-wide sig-
nificant association [30].

Of the 15,157 genes in our dataset, 5154 were higher 
in hiPSC-N and 4107 in hiPSC-A at FDR < 0.001. From 
the 28 AD-associated genes present in our dataset, 7 
were among the 5154 genes higher in hiPSC-N and 12 
among the 4107 higher in hiPSC-A. For the genes higher 
in hiPSC-A, this is 1.6-fold more than expected (hyper-
geometric p = 0.022), while for those higher in hiPSC-N, 
it was 1.4-fold less than expected and also not significant. 
Out of 106 SZ-associated genes in our dataset, 56 were 
among those higher in hiPSC-N and 26 among those 
expressed higher in hiPSC-A. This is 1.55-fold more than 
expected for genes higher in hiPSC-N (hypergeomet-
ric p = 2.1 ×  10−5) and as expected by chance for genes 
higher in hiPSC-A. Finally, out of 199 ASD genes in our 
dataset, 109 were among the genes higher in hiPSC-N 
and 39 among those higher in hiPSC-A, which is a 1.6-
fold excess for hiPSC-N (hypergeometric p = 5 ×  10−10) 
and a significant depletion (1.4-fold) for hiPSC-A (hyper-
geometric p = 5 ×  10−6). These results are consistent with 
what is currently believed for these disorders; SZ and 
ASD have been genetically linked to neuronal functions 
[29, 32], while astrocytes have been implicated in AD 
[33]. The result also supports that these hiPSC-derived 
cells, while not equivalent to in vivo neurons and astro-
cytes, may be useful for modeling disease. The complete 
set of genes with their expression in neurons and astro-
cytes and the comparison of the two is in Additional 
file 11: SuppTable4.

Differences between hiPSC‑N15 and hiPSC‑N21
To determine the importance of differentiation under 
specific conditions and its possible relevance to disease 
genes, we also performed DE analysis between condi-
tions. The hiPSC-N15 are a deviation from the original 
Ngn2 induction protocol which reported mature neurons 
at 21 days post-induction [7]. While we have not formally 
measured the differences, we have empirically observed 
little morphological change after day 15, so we decided to 
use the transcriptome to explore how hiPSC-N15 differ 
from hiPSC-N21. Shorter differentiation time not only 
has practical advantages, but there is a possibility that 
it may resemble an earlier developmental time (as sup-
ported by Table 1) perhaps more important to some dis-
eases. The complete DE analysis results for all genes are 
in Additional file 12: SuppTable5.

At adjusted p < 0.1, 571 of 14,095 genes were expressed 
higher in hiPSC-N21 and 889 higher in hiPSC-N15. 

Using the multiple testing corrected statistical overrep-
resentation test of the PANTHER bioinformatics tool 
[28] which allows comparisons to user-provided refer-
ence lists (in this case the list of all 14,095 genes) and 
biological processes annotations from the gene ontol-
ogy database [34], we found among the genes expressed 
higher in hiPSC-N15 significant enrichments (adjusted 
p < 0.05) for terms including “neurogenesis,” “neuron pro-
jection morphogenesis,” “cell morphogenesis involved 
in neuron differentiation,” and “regulation of neuron 
projection development” (see Additional file  13: Sup. 
Figure  8). Among the genes expressed higher in hiPSC-
N21, we found significant enrichments for the GO terms 
“negative regulation of neuron death,” “regulation of 
neurotransmitter levels,” “chemical synaptic transmis-
sion,” “neuron differentiation,” and “nervous system pro-
cess” (see Additional file 14: Sup. Figure 9). This suggests 
that genes in early neuronal development are expressed 
higher in hiPSC-N15, while genes involved in neuronal 
function are higher in hiPSC-N21 and that hiPSC-N15 
are less mature compared with hiPSC-N21. This may sug-
gest that, despite the artificial course of differentiation, 
hiPSC-N15 may more closely resemble neurons earlier in 
their course to maturity.

To gain insight into the importance of these genes in 
neurodevelopmental disorders, we intersected them 
with the 130 genes reported by the Psychiatric Genomics 
Consortium (PGC3 data) [29] as associated with SZ with 
highest confidence. Of these, 105 were present in the 
expressed gene list, and of those, 18 (17%) were signifi-
cantly higher (7) or lower (11) in hiPSC-N21 (Additional 
file 15: SuppTable6). While this is not significant for each 
direction separately (each (hypergeometric p ~ 0.06), it is 
significantly (1.7-fold) more DE genes than expected by 
chance (hypergeometric p = 0.01). We further compared 
them to the list of 207 genes reported as high confi-
dence for ASD by SFARI. Of these, 199 were present in 
our expressed gene list, and 12 were expressed higher 
in hiPSC-N21 (hypergeometric p = 0.06) and 22 lower 
(hypergeometric p = 0.003). Overall, there were 34 DE 
genes in either direction 1.65-fold more than expected 
by chance (hypergeometric p = 0.001) (Additional file 15: 
SuppTable6), observing that DE genes in both directions 
appear to be related to risk for ASD, and SZ is compli-
cating the choice of differentiation time for modeling 
disease.

Differences between hiPSC‑N21 and hiPSC‑N21A
We then explored how co-culture with hiPSC-A affects 
the transcriptome of hiPSC-N. The complete transcrip-
tome comparison results for all genes are in Additional 
file  16: SuppTable7. Since hiPSC-N21A neurons were 
grown in the same plate as hiPSC-AN21 astrocytes, to 
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avoid artifacts due to possible contribution of cell-free 
RNA (also termed “ambient RNA”) from lysed cells in the 
co-culture media that could be sequenced and confound 
results [35], we excluded from this comparison genes that 
were expressed markedly higher in hiPSC-A than hiPSC-
N at adjusted p < 0.001(“high hiPSC-A genes”). Note that 
Additional file 16: SuppTable7 contains all results for all 
genes detected, with those excluded marked accordingly.

Overall, the expression of 359 out of 11,222 genes 
included in the analysis was higher in hiPSC-N21A than 
hiPSC-N21 at adjusted p < 0.1. PANTHER bioinformat-
ics showed a 3.3-fold enrichment for genes involved in 
“regulation of metal ion transport” and 1.5-fold enrich-
ments for “cell communication,” “signal transduction,” 
and “signaling” (Additional file  17: Sup. Figure  10). Five 
hundred ten genes were expressed significantly higher 
in the absence of astrocytes (hiPSC-N21) at adjusted 
p < 0.1 out of 14,857 included in the analysis. There was 
a 7.1-fold enrichment for “central nervous system neu-
ron axonogenesis,” a 3.2-fold enrichment for “axon guid-
ance,” 2.8-fold for “axon development, 2.1-fold for neuron 
development, and 1.6-fold for “cell differentiation” (com-
plete results in Additional file  18: Sup. Figure  11). The 
enrichments for axon development and guidance and 
neuron development, including genes like SEMA4D and 
DCC [36], the CRMP5-encoding DPYSL5 [37], and the 
SLIT-ROBO Rho GTPase-activating protein SRGAP1 
[38], suggest an earlier stage of development for hiPSC-
N21 and support the importance of the inclusion of 
astrocytes in maturation.

We compared these genes to the list of 130 high con-
fidence SZ-associated genes reported by the PGC [29]. 
In contrast to the overlap with genes differing between 
hiPSC-N15 and hiPSC-N21, here, only 5 of these genes 
were among those higher in hiPSC-N21A (MSI2, CUL9, 
CSMD1, OPCML, and DCC) and 4 among those higher 
in hiPSC-N21 (MAPK3, NXPH1, IL1RAPL1, GALNT17). 
Similarly, when compared with the ASD genes, only 8 
were among those higher in hiPSC-N21A and 11 among 
those higher in hiPSC-N21, not significantly more than 
expected. This could suggest that disease genes might not 
be among those impacted by the co-culture of neurons 
and astrocytes or could be due to reduced power.

Differences between hiPSC‑A0 and hiPSC‑AN21
We next explored how co-culture with hiPSC-N affects 
the transcriptome of hiPSC-AN. The complete transcrip-
tome comparison results for all genes are in Additional 
file 19: SuppTable8. Similarly to the reverse comparison, 
to avoid confounding from cell-free RNA from hiPSC-
AN21 lysed cells to droplets containing hiPSC-N21A, we 
excluded genes that were significantly higher in hiPSC-N 
compared with hiPSC-A (at adjusted p < 0.001). Note that 

our Additional file  19: SuppTable8 contains all results 
for all genes detected, with those excluded marked 
accordingly.

In all, out of 10,237 genes included in the analysis after 
the removal of the “high hiPSC-N” genes, 583 were signif-
icantly higher in hiPSC-AN21 than hiPSC-A0 at adjusted 
p < 0.1, and PANTHER bioinformatics showed multiple 
significant functional enrichments (Additional file  20: 
Sup. Figure  12). Notably, we observed 2.3- to ninefold 
enrichments for functions including “regulation of super-
oxide metabolic process,” “cellular oxidant detoxification,” 
and “response to oxidative stress,” all important func-
tions of astrocytes in their supportive roles nervous sys-
tem [39]. Due to the importance of astrocytes in AD [40], 
we also looked for AD GWAS genes for enrichments. 
Twenty-one AD-associated genes were present in the 
reference list of genes in our comparison, and 3 of them 
were among the 583 significantly higher in hiPSC-AN21 
(APOE, CLU, and CASS4), compared with 1.2 expected 
by chance (hypergeometric p = 0.02). While this is a small 
number of genes, it is important to know that studying 
them using in vitro differentiated astrocytes might ben-
efit from the inclusion of neurons in the cultures. This is 
particularly important for APOE which is a very widely 
studied AD gene.

When it comes to genes that were higher in hiPSC-
A0 than hiPSC-AN21 out of 14,912, there were 1071 at 
adjusted p < 0.1, and PANTHER bioinformatics analysis 
also showed multiple significant functional enrichments, 
shown in Additional file 21: SuppTable9, and those with 
more than threefold enrichments are also illustrated in 
Additional file  22: Sup. Figure  13. Most striking were 
more than eightfold enrichments for immunity related 
genes. Of those directly relevant to neural cells, there 
were multiple categories involving neuron development 
and neural tube closure as well as axon development and 
guidance.

Among 27 AD-associated genes in the tested set 
of genes, there were 4 AD-associated genes higher in 
hiPSC-A0 vs. hiPSC-AN21 (GRN, PICALM, APH1B, and 
CD2AP), a 2.1-fold excess from expected (hypergeomet-
ric p = 0.04). We observe again excess occurrence of dis-
ease genes on both sides of the distribution, suggesting 
that the better choice of cells for disease modeling might 
be gene specific.

The top 50 genes in each cell type contrast, detailed in 
the “Differences between hiPSC-N15 and hiPSC-N21,” 
“Differences between hiPSC-N21 and hiPSC-N21A,” 
and “Differences between hiPSC-A0 and hiPSC-AN21” 
sections, are shown in heatmaps in Additional file  23: 
Sup. Figure  14. In order to further explore the similar-
ity of these in vitro cells to multiple in vivo lineages, we 
compare the expression data for the top differentially 
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expressed genes in our in vitro derived cells to data from 
additional studies of related in vivo cell types [41–46] and 
to directed differentiation in vitro [47, 48].

Comparisons with in vivo datasets
Having used individual a priori known marker genes 
and differential expression to show that hiPSC-N and 
hiPSC-A express many of the expected markers for their 
intended cell type but also show heterogeneity within cell 
type, we then compared these cell types and their sub-
clusters to in vivo cells in two previously reported data-
sets by Darmanis et al. [41, 44] and Fan et al. [19, 20].

Darmanis et  al. [41] performed single-cell transcrip-
tome analysis on adult and human fetal brain. Fan et al. 
[41] performed single-cell transcriptome profiling of cells 
from the four cortical lobes and pons during human fetal 
development from the 7th to the 28th gestational week 
(GW). We first performed a MetaNeighbor analysis [49] 
across all genes in the three datasets to explore similari-
ties across cell types in the different experiments. This 
analysis is based on a statistical framework that quanti-
fies the degree to which cell types replicate across data-
sets [49]. The complete heatmap is shown in Additional 
file  24: Sup. Figure  15, while Fig.  2A includes the por-
tion comparing our in  vitro derived cells to the in  vivo 
cell types. As expected, the Ngn2-induced neurons are 
closest to the in vivo neuronal cell types, including both 
cortical and pontine. hiPSC-N21A neurons are closest to 
Darmanis et al. adult neurons but also close to Fan et al. 
late gestation pontine neurons. Interestingly, the Darma-
nis et al. adult neurons are also close to Fan et al. pontine 
neurons (Additional file 24: Sup. Figure 15). hiPSC-N21 
are also closest to Darmanis et al. adult neurons, with the 
next closest neighbors being Fan et  al. 9–12 gestational 
week (GW) excitatory cortical neurons and GW 9–14 
pontine neurons.

hiPSC-N15 neurons are closest to Darmanis et al. fetal 
neurons and Fan et  al. early pontine neurons with the 
next best neighbor being Fan et al. early cortical neurons. 
This similarity to early in  vivo neuronal states suggests 
that cells at early time points in Ngn2 induction recapitu-
late an earlier neuronal maturation state despite forced 
differentiation by Ngn2 which bypasses progenitor states. 
This is particularly interesting in view of our observation 
that genes with increased expression in hiPSC-N15 con-
tain the strongest excess of neurodevelopmental disorder 
risk genes (see the “Differences between hiPSC-N15 and 
hiPSC-N21” section).

Both hiPSC-A0 and hiPSC-AN21 were similar to the 
astrocytes of both Darmanis et al. and Fan et al. but were 
also similar to the endothelial and immune cells of both 
studies (Fig. 2A). While this was a surprising result, the 
astrocytes from both in vivo studies also showed strong 

similarities to these cell types (Additional file  24: Sup. 
Figure 15), suggesting this might not be an irregularity of 
the hiPSC-A0 and hiPSC-AN21 but rather a property of 
these cell types in vivo as well.

To further dissect these relationships at the single-cell 
level, we performed Seurat CCA-based integration analy-
sis on our cells along with cells from the Fan study. This 
integration analysis was carried out separately within 
the neuronal and then non-neuronal cell types to focus 
on specific lineage relationships. In the neuronal analy-
sis (Fig. 2B, C), separation across the first UMAP dimen-
sion placed our neurons between excitatory cortical and 
PRPH-expressing pontine neurons in  vivo, suggesting 
that Ngn2-induced neurons harbor elements of both 
cortical excitatory neuronal and more posterior or sen-
sory neuronal identities. This is consistent with recent 
studies of scRNA-seq data in Ngn2-induced neurons 
which concluded that Ngn2-induction produces PRPH-
expressing sensory neurons [50, 51]. Interestingly, the 
second UMAP dimension aligned with increasing matu-
rity for both in vivo pontine and cortical neurons as well 
as our in  vitro derived neurons (hiPSC-N15➔hiPSC-
N21➔hiPSC-N21A). This further supports our conclu-
sion that longer time from induction and culture with 
astrocytes promotes neuronal maturation in this system.

The non-neuronal integration analysis of our hiPSC-A 
data with data from Fan et al. (Fig. 2D, E) also indicated 
similarity to multiple in vivo cell types. All the hiPSC-A0 
and the majority of the hiPSC-AN21 cells clustered near 
each other and were surrounded by three clusters of vas-
cular and endothelial smooth muscle cells. Another clus-
ter of hiPSC-AN21 cells (those in Louvain cluster A-II 
from Fig.  1D) was more proximal to in  vivo astrocytes, 
suggesting that the specific subpopulation of hiPSC-
A cells grown in co-culture with induced neurons and 
identified in cluster A-II achieves higher resemblance 
to in  vivo astrocytes. To confirm this possibility, all the 
hiPSC-A cells were re-clustered alone (Additional file 25: 
Sup. Figure 16). One of the new resulting hiPSC-A clus-
ters (A-3) is enriched in hiPSC-A cells co-cultured with 
neurons and in both the integrated UMAP and in a new 
MetaNeighbor analysis shows more similarity to in vivo 
astrocytes.

Comparisons of Ngn2‑induced neurons with additional in 
vitro scRNA‑seq datasets
Together with recently published scRNA-seq data in the 
Ngn2-induction system [50–53], these results indicate 
that while Ngn2-induced neurons are excitatory neu-
rons, they share transcriptional elements with multiple 
in vivo neuronal lineages. To explore the reproducibility 
of this complex, induced neuronal phenotype, we per-
formed a third integration analysis bringing together our 



Page 9 of 19Das et al. BMC Biology           (2024) 22:75  

Ngn2-induced neuronal data with recent scRNA-seq data 
(Fig.  3). Figure  3 depicts the integrated UMAP colored 
by the three data-driven cell clusters (Fig.  3A) and also 
colored by weeks of Ngn2 induction (Fig.  3B) across 
the three studies. Ngn2-induction time points showed 

progressively shifting abundance across the cell clusters 
(Fig.  3C): ~ 80% of week 2 cells but only ~ 20% of week 
5 cells are in cluster 0 and inversely < 5% of week 2 cells 
but > 50% of week 5 cells in cluster 1. Cells from all three 
studies were distributed across the cell clusters (Fig. 3D), 

Fig. 2 A MetaNeighbor analysis of our bulk and pseudobulk expression data with in vivo data from two in vivo studies. Ex_Cor, excitatory 
cortical; HEW, human embryo week; Astro, astrocytes; Oligo, oligodendrocytes; OPC, oligodendrocyte precursor cells; Endo, endothelial. B, C 
Seurat integration analysis of our hiPSC‑N cells with neuronal cells from two in vivo datasets. B our cells colored by condition. C our cells colored 
by Louvain cluster. Ex_Cor, excitatory cortical; HEW, human embryo week. D, E Seurat integration analysis of our hiPSC‑A cells with non‑neuronal 
cell from two in vivo datasets. D Our cells colored by condition. E Our cells colored by Louvain cluster. SMC, smooth muscle cells; VEC, vascular 
endothelial cells; VLMC, vascular leptomeningeal cells. Astro, astrocytes; Oligo, oligodendrocytes
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suggesting an array of reproducible neuronal end points 
in Ngn2-induction across laboratories. To further sup-
port this notion, Fig. 3E shows the expression of marker 
genes used to distinguish Ngn2-induced neuronal sub-
populations in recent scRNA-seq studies of Ngn2-indced 
neurons [50]. GPM6A is expressed throughout the devel-
oping brain and spinal cord [54] and marks a population 
of neurons distinct from the PRPH + induced neurons. 
The  GPM6A+ cluster also contained cells that expressed 
TAC1, consistent with findings from a recent scRNA-seq 
study [34]. PRPH is expressed in peripheral nervous sys-
tem (PNS) and CNS neurons projecting to the periphery 
[55], while PHOX2B, which is expressed in a subpopula-
tion of PRPH + cells, is expressed specifically in the pos-
terior CNS, in the hindbrain and spinal cord. POU4F1 
is expressed within the PRPH + neurons in a population 
distinct from the PHOXB2 + cells. The  PRPH+PHOX2B+ 
cluster also expressed GAL and SSTR2, while the 
PRPH + POU4F1 + cluster expressed GAL and PIEZO2, 
replicating the cell populations found in recent studies 
[33, 34]. These results indicate that although the Ngn2-
induced neuronal state appears to include a complex 
combination of in  vivo transcriptional programs, it is 
reproducible across individual induction experiments 
and different laboratories.

To more deeply explore the reproducible transcrip-
tional elements of Ngn2-induced neurons, we performed 
another MetaNeighbor analysis to define the relationship 
of in  vivo neurons to Ngn2-induced neurons at differ-
ent points during induction and across labs (Fig. 3F). In 
all three Ngn2 studies, Ngn2-induced neurons at week 2 
post induction more closely resemble early cortical excit-
atory neurons than induced neurons at later time points. 
This more precise recapitulation of the early in vivo corti-
cal neuronal lineage may underlie the increased enrich-
ment for neurodevelopmental disease gene risk that we 
observed above (hiPSC-N15 neurons in the “Differences 
between hiPSC-N15 and hiPSC-N21” and “Comparisons 
with in  vivo datasets” sections). Also consistent across 
all three studies, later points in Ngn2 induction more 
closely resemble the transcriptional identity of pontine 
neurons. Since these are non-dividing cells, the differ-
ences between time points most likely represent tempo-
ral lineage dynamics in the Ngn2 induction system and 

may have considerable impact when using these cells in 
disease modeling and therapeutic development.

Comparisons of hiPSC‑A cells with additional iPSC‑derived 
astrocyte RNA‑seq data
To conduct an examination of the reproducibility of cell 
fates in iPSC-derived astrocytes, we compared pseudo-
bulk expression from our scRNA-seq data in our 
hiPSC-A cells to bulk RNA-seq of additional in  vitro 
hiPSC-derived astrocytes in addition to pseudo-bulk 
expression from scRNA-seq of in vivo cell types (Fig. 4). 
This additional bulk RNA-seq data came from the study 
from which we derived the astrocyte differentiation 
protocol used here and included RNA-seq data from 
iPSC-derived astrocytes as well as in  vitro cultured 
primary astrocytes (Tcw et  al. 2017 [8]). Correlation 
of expression data from our hiPSC-A cells to iPSC-
derived astrocytes (iAstro) from the Tcw et  al. study 
was high (Spearman correlation range 0.67–0.74)—the 
highest of any cross-study correlations here, suggest-
ing that the composite signature of hIPSC-A single 
cells generally reflects the iPSC-derived astrocytes 
generated using the same protocol. Expression data in 
our hiPSC-A cells was also highly correlated with both 
in  vivo astrocytes (0.52–0.67) and other non-neuronal 
cell types (0.46–0.67)—again indicating the broad 
similarity of the hiPSC-A cells to other non-neuronal 
lineages. This was also true for the Tcw et  al. iPSC-
derived astrocytes: in  vivo astrocytes (0.58–0.70) and 
other non-neuronal cell types (0.53–0.71). Remarkably, 
in vitro iPSC-derived astrocytes from both this and the 
Tcw et  al. study resemble in  vivo astrocytes to nearly 
the same degree (0.52–0.67 and 0.58–0.70 respectively) 
as cultured primary astrocytes from the Tcw et al. study 
(0.59–0.74). This may indicate that in vitro culture itself 
results in a significant loss of in vivo cell identity, as has 
been observed in microglial cells [56]. Similar to the 
observation in the MetaNeighbor analysis in Additional 
file  24: Sup. Figure  15, correlation across in  vivo non-
neuronal cell types is high across study (0.48–0.75) and 
even higher within study (0.70–0.88 within Fan; 0.44–
0.68 within Darmanis). This again indicates that some 
of the correlation of the hiPSC-A cells to other lineages 
may be in line with in vivo expression patterns. Again, 

Fig. 3 Integration analysis of our Ngn2‑induced neuronal data with other single‑cell data in Ngn2‑induced neurons. A UMAP of Seurat‑integrated 
data from our study and two other scRNA‑seq studies of Ngn2‑induced neurons (Schornig et al. and Lin et al.), colored by cell cluster. B Same UMAP 
colored by weeks of Ngn2 induction. C Proportion of cells from different time points in each cell cluster. D Cells from individual studies visualized 
in the same UMAP as in A and B, again colored by weeks of Ngn2‑induction. E Expression of marker genes used to delineate diversity in the lineage 
composition of Ngn2‑indced neurons. F MetaNeighbor analysis of in vitro cells and in vivo cell types (both divided by time points and by study: W, 
weeks of Ngn2 induction or gestational week; HE, human embryo, individual cell lines used are also indicated)

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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consistent with the previous UMAP and MetaNeighbor 
observations, of the 4 hiPSC-A sub-clusters, cluster #3 
(Additional file  25: Sup. Figure  16), which is enriched 
in hiPSC-AN21 cells, showed this highest correlation to 
in vivo astrocytes (0.67 in Fan, and 0.6 in Darmanis).

Both the differential expression analysis (the “Dif-
ferences between hiPSC-N15 and hiPSC-N21,” “Dif-
ferences between hiPSC-N21 and hiPSC-N21A,” and 
“Differences between hiPSC-A0 and hiPSC-AN21” sec-
tions) and these comparisons to in vivo data (the “Com-
parisons with in  vivo datasets” section) indicate that 
the in  vitro induced cell types contain transcriptional 
elements of both intended lineages and off-target lin-
eages. The heterogeneity in cellular identity produced 
by these protocols must be considered with attention 

when employing them to model human brain disease 
and for therapeutic assay development.

Discussion
Our single-cell analysis across post induction time and 
culture conditions showed that hiPSC-N and hiPSC-
A could be separated based on their transcriptome 
(Fig.  1) and in aggregate expressed many appropriate 
cell type markers (Fig. 2). Both hiPSC-N and hiPSC-A 
however exhibit heterogeneity and could be divided to 
sub-clusters that were influenced but not determined 
by the different conditions we tested (with the near-
exception of cluster A-III). Ngn2-induced neurons do 
not represent a singular in vivo neuronal cell type but 
rather express transcriptional characteristics of both 

Fig. 4 Correlation matrix of genome‑wide pseudo‑bulk expression data from hiPSC‑A cells, bulk RNA‑seq data from additional in vitro iPSC‑derived 
astrocytes (Tcw = Brennand) and in vivo cell types (Fan and Darmanis). iAstro1‑4, in vitro iPSC‑derived astrocytes; CtxAstro & MbAstro, cultured 
primary cortical and midbrain astrocytes. Only the 3000 most highly variable genes were used in the calculation of the correlation coefficients
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cortical excitatory neurons and more posterior neu-
ronal fates as well as markers of other diverse neuronal 
subtypes. Importantly, these signatures are reflected 
in discrete subpopulations, whose proportions change 
over the course of in vitro differentiation. While this is 
consistent with recent in-depth single-cell analyses that 
concluded Ngn2-induced neurons take on specific sen-
sory fates [57], we find that Ngn2-induction produces 
a type of neuronal cell (or a mix of cells) that includes 
transcriptional elements of multiple in  vivo neuronal 
cell types. So, while their neuronal identity likely makes 
them a good model for studying brain disorders, one 
still needs to be cautious in reaching conclusions and 
further work would be helpful in refining differentiation 
protocols. When it comes to hiPSC-A, we find that they 
take on one or a mix of transcriptional states resem-
bling several in  vivo cell types (including endothelial 
cells, immune cells, and astrocytes). These cell types 
however also appear to have similarities in the vivo 
datasets (Additional file 24: Sup. Figure 15). Co-culture 
with neurons pushes a subpopulation of the in hiPCS-A 
toward a state more similar to bona fide in vivo astro-
cytes; however, even with co-culture, only some of the 
cells take on an astrocytic identity, so caution is neces-
sary when studying them in bulk.

Unique aspects of our study include the examination of 
two post Ngn2 induction time points, the co-culture of 
hiPSC-N with hiPSC-A, and the integration with in vivo 
datasets. This allowed us to show that both the longer 
post-induction culture time of the Ngn2-induced neurons, 
and the inclusion of hiPSC-A contributed to expression 
profiles closer to mature neurons. However, the additional 
post-induction time in hiPSC-N appeared to favor more 
posterior fates over cortical fates. The increased neuronal 
maturity was observed not only in terms of expression of 
neuronal markers (Table 1) but also in terms of the func-
tions of the DE genes and of similarity to in vivo neurons 
at different maturity states (Figs. 2 and 3). We made the 
same observation for hiPSC-A, where the co-culture with 
hiPSC-N21 also appeared to increase their maturity, and 
a subset of the hiPSC-AN21 distinctly co-clustered with 
human in  vivo astrocytes. The differences in astrocytic 
marker-gene expression between hiPSC-A conditions 
were often pronounced (most astrocytic genes in Fig. 2) 
and included APOE, a very important astrocytic gene in 
the study of AD. In contrast to this observation though, 
the excess of genes associated with AD was observed 
among those expressed lower, not higher, in hiPSC-AN21 
compared with hiPSC-A0. It is therefore unclear whether 
one should prefer the co-cultured neurons for modeling 
AD, a decision that should probably be made on a gene 
and experiment specific basis.

Our comparisons with in  vivo datasets showed that 
the NgN2-induced neurons are similar to in vivo excita-
tory neurons, with similarity to both cortical and pon-
tine in  vivo neurons. Assuming that the changes are 
not due to competition, which is unlikely in these non-
dividing cells, we find it particularly interesting that the 
trajectory from hiPSC-N15 to hiPSC-N21 to hiPSC-
N21A was along the same axis with the pontine and 
cortical neurons development during fetal life (Fig. 3), 
with the hiPSC-N15 being closer to fetal than adult 
neurons, which has significant implications for the use 
of induced neurons for the study of disease. The com-
parison of the hiPSC-A0 and hiPSC-AN21 with in vivo 
datasets confirmed their similarity to in vivo astrocytes 
but additionally showed strong similarities to immune 
and endothelial cells. However, the astrocytes in both 
in  vivo datasets were also similar to the immune and 
endothelial cells. It appears that this maybe an inherent 
property of these cell types.

Our search for overrepresentation in GWAS genes 
was triggered by the main goal of this paper, to explore 
the use of an in  vitro differentiation system for the 
study of psychiatric disorders, specifically neurode-
velopmental (SZ, ASD) and neurodegenerative (AD) 
diseases. When it comes to neuron versus astrocyte-
predominant genes, those expressed higher in neurons 
contained an excess SZ- and ASD-associated genes 
showing they are a useful platform to model these dis-
orders. A suggestive excess (which could be due to lack 
of power) was seen in astrocytic genes for AD associa-
tions, and interestingly this was significant for genes 
expressed higher in hiPSC-A0 than hiPSC-AN21. 
Regarding finer distinctions based on days post-induc-
tion and co-culture, we found that DE genes in both 
directions showed high content of neurodevelopmen-
tal disorder genes, which in the case of ASD was also 
significant specifically for genes expressed higher in 
hiPSC-N15 than hiPSC-N21. The induction by Ngn2 
is far from the normal course of differentiation and 
maturation of neurons in vivo, yet this along with the 
similarity of hiPSC-N15 to fetal neurons suggests that 
hiPSC-N15 may also be a good choice to model for SZ 
and ASD complementing hiPSC-N21.

An important consideration about this study is that 
our analyses were conducted on a single differen-
tiation experiment with a single donor. While com-
parisons with our previous experiments involving 
different donors do not show any significant devia-
tions as described in the comparisons we performed 
above, the conclusions must be considered with cau-
tion, especially when one considers individual genes, 
as experimental variation and/or genomic profile 
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differences between individuals might make such find-
ings experiment or individual-specific.

Conclusions
We have harnessed the power of single-cell sequencing 
and iPSC differentiation to successfully gain important 
insights for disease modeling. While more studies are 
required, we anticipate that this study will be an impor-
tant additional guide for navigating the modeling of 
complex brain disorders and improving differentiation 
protocols to achieve the optimal disease models.

Methods
Induced pluripotent stem cell (iPSC) culture 
and maintenance
Human BC1, an iPSC line which was obtained from Dr. 
Linzhao Cheng’s lab at Johns Hopkins School of Medi-
cine, was used in the study. This is an established cell 
line with published results [58]. Cells were cultured in 
StemFlex media (Gibco) on 6-well tissue culture plates 
coated with laminin (Biolamina). Cells were dissociated 
with StemPro Accutase (Gibco) into single-cell suspen-
sion and seeded in required density for the experiment. 
The ROCK inhibitor Y-27632 dihydrochloride (Tocris) 
was added on the first day of passage at a concentration 
of 10 µM. Cultured cells were tested to ensure they lack 
mycoplasma contamination.

Ngn2 lentivirus transduction
Ngn2 and rTTA virus were procured from the Uni-
versity of Pennsylvania Core store. This virus has been 
previously reported to be successfully used for induced 
neural differentiation by our (Avramopoulos) labora-
tory [59]. It was initially reported by the Sudhof labora-
tory [7] who first discovered that forced expression of 
this single transcription factor Ngn2 can convert iPSCs 
into functional neurons with very high yield in 21 days. 
250,000 BC1 iPSC cells were plated in each well of a 
6-well plate and grown in Stem Flex media supple-
mented with ROCK inhibitor. Ngn2 lentiviral infection 
using polybrene (Santa Cruz) was done 24 h post seed-
ing. Briefly, cells were fed with 2 ml of fresh media, and 
2  µl of polybrene (1  µg/ml) stock was added per well. 
To attain a MOI of 1–10, different volumes of both the 
Ngn2 and rTTA virus were added per well. In 4 of the 6 
wells, leaving one as a polybrene-only control, the fol-
lowing amount of each virus was added: 3 µl, 5 µl, and 
10  µl. The virus infected cells were expanded and fro-
zen stocks made for future differentiation. We selected 
for the 10  µl transduced Ngn2-BC1 cells for optimal 
neural differentiation.

Neuronal differentiation of Ngn2‑transduced iPSCs
250,000 Ngn2-transduced BC1 cells were plated on 
laminin coated 6 well plates (DIV − 2). Cells were fed 
with fresh Stem Flex media the next day (DIV − 1). 
Ngn2 expression was induced by doxycycline on DIV 
0 using an induction media consisting of DMEM/
F12 (Thermo Fisher), N2 (Thermo Fisher), D-glucose 
(Thermo Fisher), 2-βME (Life technologies), Primocin 
(InvivoGen), BDNF (10  ng/ml, PeproTech), NT3 
(10  ng/ml, PeproTech), laminin (200  ng/ml, Millipore 
Sigma), and doxycycline (2 µg/ml, Sigma). A puromycin 
selection was done on these cells on DIV 1, 24  h post 
doxycycline induction using the same induction media 
supplemented with puromycin (5  µg/ml). Surviving 
cells were harvested on DIV 2 and plated on Matrigel-
coated 24-well plates at a concentration of 100,000 
cells/well in neural differentiation media consisting 
of neurobasal media (Thermo Fisher), B27 (Thermo 
Fisher), Glutamax (Thermo Fisher), Penn/Strep 
(Thermo Fisher), D-glucose (Thermo Fisher), BDNF 
(10  ng/ml), NT3 (10  ng/ml), laminin (200  ng/ml), and 
doxycycline (2 µg/ml). Cells were fed with a 50% media 
exchange of neural differentiation media every other 
day till DIV 12. Cells were treated with 2uM cytosineβ-
D-arabinofuranoside hydrochloride (Ara-C) on DIV 
4 to arrest proliferation and eliminate non-neuronal 
cells in the culture. Doxycycline induction was initiated 
at DIV 0 and continued till DIV 12 after which it was 
discontinued and cells were fed every 2 days thereafter 
till DIV 21 with neural maturation media consisting of 
neurobasal media A (Thermo Fisher), B27, Glutamax, 
Penn/Strep, Glucose Pyruvate mix (1:100, final conc 
of 5 mM glucose and 10 mM sodium pyruvate), BDNF 
(10  ng/ml), NT3 (10  ng/ml), and laminin (200  ng/ml). 
Neurons were harvested by DIV 15 or 21. Four condi-
tions were set up for this experiment which are as fol-
lows: (i) neurons only (DIV 21), (ii) neurons only (DIV 
15), (iii) astrocytes only, (iv) neurons and astrocyte co-
culture. Astrocytes cultured in FBS were added on top 
of the differentiating cells on DIV 5 at a concentration 
of 50,000 cells/well in the co-culture experiment. Two 
micrometers of Ara-C treatment was repeated on DIV 
7 for the co-culture experiment, and media changed 
every other day thereafter till DIV 21. For the astrocyte-
only condition, astrocytes were seeded at 50,000 cells 
per well of a 24-well plate and fed with neural differ-
entiation media and allowed to grow till 80% confluent 
(48  h) before adding 2  µM AraC. Media was changed 
every other day till DIV 21 when neurons are ready to 
harvest. Neurons were collected using Accutase and 
passed through a cell strainer and counted to receive 
the optimal number of cells. Immunofluorescence 
images of the Ngn2 induced neurons can be seen in 
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Additional file 26: Sup. Figure 17 and our previous pub-
lications [59–61].

Neural differentiation of hiPSCs via embryoid body (EB) 
formation
Neural differentiation of embryoid bodies (EBs) was per-
formed as previously described [62] with modifications. 
Briefly, EB formation was performed by the forced aggre-
gation method. To this goal, PSC lines were cultured in 
feeder-free conditions as monolayers with E8 medium 
and passaged every 3  days with TrypLE. For the pro-
duction of uniform-size EBs, iPSCs grown for 3–10 pas-
sages were counted and seeded at 5000 cells per well in 
96-well, V-bottom uncoated plates (249,952; NUNC, 
Rochester, NY). For induction of neural differentiation, 
EBs were grown in suspension for 7–8 days followed by 
adherence to Matrigel-coated plates in the Neural Induc-
tion Medium (NIM) consisting of DMEM/F12 (GIBCO, 
11,320,033), 2  mM  l-glutamine, 0.1% bovine serum 
albumin (Fraction V; Sigma-Aldrich), 1% NEAA, 2% 
B27 without retinoic acid (GIBCO), 1% N2 supplement 
(GIBCO), LDN193189 (PeproTech) throughout culture, 
and 10  μM SB431542 (Tocris Bioscience, Bristol, UK). 
Numerous rosette structures were formed 2–3 days after 
the adherent culture of EBs.

Isolation and culture of neural precursor cells
Neural rosettes were manually collected with stretched 
glass Pasteur pipettes and expanded as monolayer cul-
tures of neural precursors (NPCs). Briefly, EB-derived 
neural rosettes were dissociated into single cells with 
Accutase for 5  min at 37  °C and plated on Matrigel or 
polyornithine/laminin-coated plates in the NIM com-
plete medium supplemented with FGF2 (10 ng/mL) and 
epidermal growth factor (EGF) (10  ng/mL; PeproTech, 
Rocky Hill, NJ). Cells were expanded for several passages 
as a homogeneous population of NPCs.

Astrocytic differentiation
Human BC1iPSC line was differentiated into astrocytes 
as previously described [8]. Briefly, NPCs dissociated to 
single cells were seeded at 15,000 cells/cm2 density on 
Matrigel coated plate in complete astrocytic differentia-
tion medium (ScienCell Research Laboratories cat. No 
1801), astrocyte medium (ScienCell Research Labora-
tories cat. No 1801-b), 2% fetal bovine serum (Scien-
Cell Research Laboratories cat. No 0010), and astrocyte 
growth supplement (ScienCell Research Laboratories 
cat. No 1852). The cells passaged in this density for the 
first 30  days and fed every other day. Following this 
period, the astrocytes could be passaged in a 1:3 ratio 
and expanded for up to 120  days in the same medium. 
Immunofluorescence images of astrocytes are shown in 

Additional file 26: Sup. Figure 17, along with co-culture 
with neurons.

Single‑cell sequencing
Six wells in a 24-well plates of neurons were grown for 
15 days post Ngn2 induction, 6 wells in a 24-well plates 
of neurons were grown for 21  days post Ngn2 induc-
tion, and 6 wells in a 24-well plates of neurons were 
grown for 21  days post Ngn2 induction with the addi-
tion of astrocytes on day5 at a density of 50,000 cells/
well. After dissociation with Accutase, single-cell suspen-
sions for 10 × libraries were loaded onto the 10 × Genom-
ics Chromium Single Cell system using the v2 chemistry 
per manufacturer’s instructions [35, 63]. Estimations of 
cellular concentration and live cells in suspension was 
made through trypan blue staining and use of the Coun-
tess II Cell Counter (Thermo Fisher). Dissociated single 
iPSCs were passed through a 40-µm filter and used as 
input for the 10 × chromium v2 3′ gene expression kit 
(10 × genomics), targeting 1000 cells per sample. Libraries 
were prepared according to the manufacturer’s instruc-
tions and uniquely indexed. Libraries were quantified on 
the Nanodrop platform and sized using the Agilent 2100 
Bioanalyzer RNA nano system. Barcoded libraries were 
pooled and sequenced on an S1 flowcells on a NovaSeq 
6000 (Illumina) to an average depth of ~ 1.33 ×  108 
(± 3.92 ×  107) paired-end reads per sample. Raw reads 
were pseudoaligned to the Gencode reference human 
transcriptome (v31; www. genco degen es. org/ human/) 
using kallisto (default parameters plus -t 4) and col-
lapsed to individual UMIs using bustools correct (default 
parameters plus -t 4; 10 × v2 whitelist) and bustools 
count (default parameters plus -t 4). Cells were filtered 
from empty droplets using estimated knee plot inflection 
point UMI cutoffs (DropletUtils) with the minimum UMI 
thresholds ranging between 1608 and 7616 across sam-
ples. BUS records from each sample were aggregated to 
a unified counts Table, used as input for the monocle3 R/
Bioconductor single-cell framework (https:// cole- trapn 
ell- lab. github. io/ monoc le3/), and processed using default 
workflow settings.

Differential gene expression analysis in scRNA‑seq data
Differential gene expression analysis across cell types in 
our scRNA-seq data was performed using DESeq2 [64] 
along with specific recommendations for its application 
to scRNA-seq data using additional methods in the zin-
bwave [65] and scran [66] packages at http:// bioco nduct 
or. org/ packa ges/ devel/ bioc/ vigne ttes/ DESeq2/ inst/ doc/ 
DESeq2. html# recom menda tions- for- single- cell- analy 
sis, which draws on analyses and conclusion from Van 
den Berge, Zhu et al., and Ahlmann and Huber [67–69]. 
Briefly, the computeSumFactors() function in the scran 

http://www.gencodegenes.org/human/
https://cole-trapnell-lab.github.io/monocle3/
https://cole-trapnell-lab.github.io/monocle3/
http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#recommendations-for-single-cell-analysis
http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#recommendations-for-single-cell-analysis
http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#recommendations-for-single-cell-analysis
http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#recommendations-for-single-cell-analysis
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package was used to calculate size factors that were 
passed to the zinbwave() function and then output was 
passed onto the DESeq2 functions DESeqDataSet() and 
DESeq(). The DESeq() differential gene expression func-
tion was implemented using test = ”LRT” rather than 
the Wald test for significance testing, along with these 
scRNAseq-specific argument values: useT = TRUE, 
minmu = 1e-6, and minReplicatesForReplace = Inf. Of all 
the genes reported by DEseq (i.e., all genes detected in 
the samples), we report and perform enrichment analysis 
on those with > 0.03 average counts per cell, considering 
all others too lowly expressed in the corresponding cell 
type and therefore unlikely to reach significance.

PANTHER bioinformatics GO term enrichment analysis
We used the statistical overrepresentation test in GO of 
the PANTHER bioinformatics tool [28] at https:// www. 
panth erdb. org/to look for functional enrichments (GO 
Ontology database 10.5281/zenodo.5725227 Released 
2020-11-01). The background genes were the set of 
genes expressed in the cell line use in each comparison 
with modifications in the case of comparisons between 
mono cultures and combined cultures as described in the 
“Results” section.

Choice of significance thresholds
A. When identifying genes to use for GO enrichment 
analysis, we use an FDR of 0.1. This is because this analy-
sis makes no claims on individual genes. While allowing 
only few false positives, it essentially doubles the number 
of genes strongly increasing power for the GO enrich-
ment analysis.

B. When reporting a result as significant, we use the 
conventional FDR of 0.05. We use this for example to 
report specific genes as significantly different between 
conditions (e.g., genes that show differences between 
cell clusters) and when we report significant functional 
enrichments so for specific GO terms.

C. One exception is our report on genes differing 
between neurons and astrocytes (the “GWAS genes 
expressed in iPSC-derived neurons and astrocytes” sec-
tion), where the differences were so many and substantial 
that we could use a much higher threshold (FDR < 0.001) 
and still show significant differences in almost two thirds 
of the genes. This allowed us to proceed with a very high 
confidence groups, which we could not have done in 
other comparisons. This same threshold was used when 
excluding gene from the N21 vs. N21aAst and the Ast0 
vs AstN21 comparisons as astrocyte or neuron specific 
genes.

Single‑cell clustering and dimensionality reduction
For the original scRNA-seq data from this report, UMI 
count matrices were processed and analyzed using the 
Seurat package (v4.1.0) in R [70]. A total of 1631 cells 
were included in this analysis. After datasets were nor-
malized, the top 10,000 variable genes were selected for 
further analysis using the variance stabilizing transfor-
mation (vst) method. 2D visualization of our data was 
accomplished using principal components analysis (PCA) 
followed by Uniform Manifold Approximation and Pro-
jection (UMAP) of these PCs.

Seurat integration analysis
Integration of our scRNa-seq data with public scRNA-
seq UMI count data [19] (GSE120046) was carried out 
using canonical correlation analysis (CCA) in Seurat [71, 
72]. Integrated datasets were scaled and PCA was per-
formed. We chose the first 10 PCs for use in non-linear 
dimensionality reduction by identifying the elbow on a 
scree plot of the first 30PCs. 2D visualization of the inte-
grated data was accomplished using the Uniform Mani-
fold Approximation and Projection (UMAP) algorithm 
on these 10 PCs.

Meta Neighbor analysis
Cell-type replicability analysis across datasets was per-
formed using the MetaNeighbor (v1.1.0; Crow et al. 2018 
[49]) package in R. We used unsupervised MetaNeigh-
bor to first determine intersecting highly variable genes 
across datasets and then used the Spearman correlation 
network as described in Crow et  al. [49] to determine 
replicability.

Abbreviations
2D  Two‑dimensional
AD  Alzheimer’s disease
ASD  Autism spectrum disorder
CNS  Central nervous system
CPM  Counts per million
DE  Differential expression
GW  Gestational week
GWAS  Genome‑wide association studies
hiPSC‑A  HiPSCs differentiated in vitro to astrocytes
hiPSC‑A0  HiPSC‑A grown alone
hiPSC‑AN21  HiPSC‑A co‑cultured with hiPSC‑N21
hiPSC‑N  HiPSCs differentiated in vitro to excitatory neurons
hiPSC‑N15  HiPSC‑N after 15 days of differentiation
hiPSC‑N21  HiPSC‑N after 21 days of differentiation
hiPSC‑N21A  HiPSC‑N21 co‑cultured with hiPSC‑A
hiPSCs  Human‑induced pluripotent stem cells
KNN  K‑nearest neighbor
PCA  Principal component analysis
PNS  Peripheral nervous system
scRNA‑seq  Single‑cell RNA sequencing
SZ  Schizophrenia
UMAP  Uniform Manifold Approximation and Projection
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Additional file 1: Sup. Figure 1. The fraction of the cells in each cell type 
and the mean expression of each gene in each cell type.

Additional file 2: Sup. Figure 2. As above for glutamatergic genes.

Additional file 3: Sup. Figure 3. As above for synaptic genes.

Additional file 4: Sup. Figure 4. As above for CaM Kinase genes.

Additional file 5: Sup. Figure 5. As above for other neuronal genes.

Additional file 6: Sup. Figure 6. Gene expression correlations with bulk 
dataset from other cell lines similarly differentiated in vitro to neurons and 
in one vivo dataset.

Additional file 7: Sup. Figure 7. Gene expression correlations with bulk 
dataset from other cell lines similarly differentiated in vitro to astrocytes 
and in one vivo dataset.

Additional file 8: SuppTable1. Significantly differentially expressed 
genes for each cluster compared with the remaining clusters of the same 
cell type (neuronal or astrocytic).

Additional file 9: SuppTable2. Graphical representation of PANTHER 
bioinformatics analysis of genes showing differential expression between 
neuronal clusters from Table 1. All comparisons are shown together in col‑
umns. Colored cells indicate significant enrichment for that comparison 
and the color indicates whether it is for up‑regulated genes *red), Down‑
regulated genes (blue) or both up and down regulated genes (yellow).

Additional file 10: SuppTable3. Graphical representation of PANTHER 
bioinformatics analysis of genes showing differential expression between 
astrocytic clusters from Table 1. These are shown as in Supplementary 
Table 2. Note that there were no enrichments for up‑regulated genes, 
which is why ll cells are blue.

Additional file 11:  SuppTable4. Differential expression analysis between 
hiPSC‑N and hiPSC‑A.

Additional file 12: SuppTable5. Differential expression analysis between 
hiPSC‑N15 and hiPSC‑N21.

Additional file 13: Sup. Figure 8. Supplementary Figure 8: PANTHER 
bioinformatics analysis of genes expressed higher in hiPSC‑N15 than 
hiPSC‑N21 shown as a bar graph. The length of each bar corresponds to 
fold‑enrichment, the clor to statistical significance and the number next 
to it to the number of significantly differentially expressed genes in each 
pathway.

Additional file 14: Sup. Figure 9. PANTHER bioinformatics analysis of 
genes expressed higher in hiPSC‑N21 than hiPSC‑N15 shown as in Sup‑
plementary Figure 8.

Additional file 15: SuppTable6. GWAS genes differing in expression 
between different conditions.

Additional file 16: SuppTable7. Differential expression analysis between 
hiPSC‑N21 and hiPSC‑N21A.

Additional file 17: Sup. Figure 10. PANTHER bioinformatics analysis of 
genes expressed higher in hiPSC‑N21A than hiPSC‑N21 shown as in Sup‑
plementary Figure 8.

Additional file 18: Sup. Figure 11. PANTHER bioinformatics analysis of 
genes expressed higher in hiPSC‑N21 than hiPSC‑N21A shown as in Sup‑
plementary Figure 8.

Additional file 19: SuppTable8. Differential expression analysis between 
hiPSC‑A0 and hiPSC‑AN21.

Additional file 20: Sup. Figure 12. PANTHER bioinformatics analysis of 
genes expressed significantly higher in hiPSC‑AN21 than hiPSC‑A0 shown 
as in Supplementary Figure 8.

Additional file 21: SuppTable9 PANTHER bioinformatics analysis of 
genes expressed significantly higher in hiPSC‑A0 than hiPSC‑AN21.

Additional file 22: Sup. Figure 13. PANTHER bioinformatics analysis of 
genes expressed significantly higher in hiPSC‑A0 than hiPSC‑AN21 shown 
as in Supplementary Figure 8. Only more than 3‑fold enrichments are 
shown. All enrichments are in sip. Table 9.

Additional file 23: Sup. Figure 14. The top 50 genes in each cell type 
contrast, detailed in the ““Differences between hiPSC‑N15 and hiPSC‑
N21,” “Differences between hiPSC‑N21 and hiPSC‑N21A,” and “Differences 
between hiPSC‑A0 and hiPSC‑AN21” sections shown in heatmaps.

Additional file 24: Sup. Figure 15. The complete heatmap of the 
MetaNeighbor analysis shown in Figure 2. MetaNeighbor analysis of our 
bulk and pseudobulk expression data with in vivo data from two in vivo 
studies. Ex_Cor, excitatory cortical; HEW, Human embryo week; Astro, 
astrocytes; Oligo, oligodendrocytes; OPC oligodendrocyte precursor cells; 
Endo, endothelial.

Additional file 25: Sup. Figure 16. hiPSC‑A cells re‑clustered alone (A). 
Integrated UMAP (B) and MetaNeighbor analysis with Fan et al. show more 
similarity to in vivo astrocytes.

Additional file 26: Sup. Figure 17. Staining of BC1 cells differentiated 
into neurons and astrocyte using the same protocols described here. A. 
Neurons growing in isolation. blue stain = DAPI, green stain = MAP2, Red 
stain = NeuN. B. Culture of induced astrocytes. Red stain = GFAP. Scale 
in B is as in C. C. Induced neurons growing in co‑culture with induced 
astrocytes. Red stain = MAP2, green stain = GFAP, blue stain = DAPI. More 
images of neurons can be in our previously published work (references are 
in the text).
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