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Abstract

Background: The assessment of data reproducibility is essential for application of microarray
technology to exploration of biological pathways and disease states. Technical variability in data
analysis largely depends on signal intensity. Within that context, the reproducibility of individual
probe sets has not been hitherto addressed.

Results: We used an extraordinarily large replicate data set derived from human placental
trophoblast to analyze probe-specific contribution to variability of gene expression. We found that
signal variability, in addition to being signal-intensity dependant, is probe set-specific. Importantly,
we developed a novel method to quantify the contribution of this probe set-specific variability.
Furthermore, we devised a formula that incorporates a priori-computed, replicate-based
information on probe set- and intensity-specific variability in determination of expression changes
even without technical replicates.

Conclusion: The strategy of incorporating probe set-specific variability is superior to analysis
based on arbitrary fold-change thresholds. We recommend its incorporation to any computation
of gene expression changes using high-density DNA microarrays. A Java application implementing
our T-score is available at http://www.sadovsky.wustl.edu/tscore.html.

Background

The introduction of microarray technology has enabled
investigators to profile the expression of a large number of
genes, derived from diverse biological conditions, in a sin-
gle experiment. Nevertheless, these experiments are
expensive, and the cost is amplified by replication when
data reliability is lessened. Technical and biological varia-
bility, key determinants of microarray reliability, are criti-
cal for assessing which genes are differentially expressed.
The level of expression of gene products is estimated using

a set of oligonucleotide probes (termed here "probe set").
Within the context of technology-related variability, the
reproducibility of individual probes has been insuffi-
ciently addressed. [1-6]. Importantly, the impact of probe-
specific reliability on data reproducibility, which directly
influences experimental design, data analysis and inter-
pretation, remains largely unexplored. This problem is
further amplified with the use of oligonucleotide microar-
rays, which may be more susceptible to probe-specific var-
iability than spotted cDNA arrays [7-10].
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Static fold change metrics as an unbiased predictor of dif-
ferentially expressed genes depend on the assumption of
constant coefficient of variation [11]. Since violation of
this assumption is relatively common in microarray data,
many methods have been designed to circumvent its
requirement [2,12-14]. These methods model variance as
a function of intensity, and assume independence of
probe sets. Other methods, including popular permuta-
tion tests and t-tests that do not explicitly rely on this
assumption require replication in order to assess the vari-
ability associated with each probe set [15-17]. We pro-
posed to use intensity-corrected measures of variance and
a correlation test to determine if the assumption of probe
set and variance independence is valid. Using a large rep-
licate data set we found that signal variability in microar-
ray data is in fact probe set-specific, and developed a novel
method to integrate a priori-generated, replicate-based
information on signal intensity and probe set variability
into profiling differential gene expression. The signal
intensity as well as probe set information serves as a data-
base for future experiments performed without technical
replicates. The use of our method enhances the signifi-
cance of differences found using reliable probe sets and
diminishes the significance of differences found using
unreliable probe sets.

Results and Discussion

We have developed a large replicate data set, based on
gene expression in a single pool of primary placental tro-
phoblast cells. The cells were divided to three groups and
exposed to two different peroxisome proliferator activated
receptor gamma (PPARy) ligands, troglitazone or
GW?7845, or to control, as described in Methods. Prior to
hybridization each labeled RNA sample was divided to
five aliquots. Each of the five cRNA aliquots was sequen-
tially hybridized to identical lot number U95A, U95B,
Uu95C, U95D, and UI5E arrays, resulting in expression
data for approximately 60 000 genes for each of the three
conditions, for a total of 180 000 probe sets, each sampled
in five replicates using a total of 75 chips.

The five replicates for each experimental condition i and

probe set j yielded a mean (Q_Ci, j) and standard deviation

(s, ). We formulated an estimate of the standard devia-
)

tion (EE_]_) as a function of signal intensity using locally

weighted scatter smooth plot (LOESS) local regression
(using the PROC LOESS command in SAS). LOESS regres-
sion restricts attention to a small window of the data and
fits a regression to that data. The window is then shifted
and another local regression is calculated. These sequen-
tial regressions are combined to yield a LOESS curve [18-
20]. Thus the LOESS curve indicates the average / esti-
mated standard deviation associated with any given mean
intensity, based on the replicate data set of ~180 000 sets
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of five replicates. To find a probe-specific effect, we com-
pared the observed standard deviation to the estimated
standard deviation. We define ¢; ; as:

(1) o= =5 7| = |

f(xi5) 8.

where the function f is the LOESS regression, which

returns the average standard deviation (§; ) for a given
L

intensity level ( X; j)- By using the ratio of observed stand-
ard deviation to estimated standard deviation, ¢;; repre-

sents a measure of residual variance for each probe set
after correction for intensity.

To ensure that ¢ is a useful and correct measure of probe
set residual variance and not subject to low-intensity
related bias, we initially demonstrated that ¢;; is inde-
pendent of signal intensity. As shown in Fig. 1A, o;; was
essentially unchanged across the range of signal intensi-
ties observed in our experiments. This finding is not unex-
pected, because the denominator of «;; reflects the
expected standard deviation for any given intensity. To
demonstrate that the variance of ¢; ;is also independent of
signal intensity, we calculated outlier rates by bins of sig-
nal intensity. We defined 'alpha outliers' as having an «;;
in the top 10 % of all values, and calculated the outlier
rate for bins of increasing expression values. As shown in
Fig. 1B, we found no obvious dependence of outlier rate
on binned expression level, indicating that the variance of
@;; is approximately constant over the entire expression
range (linear regression test, p = 0.1413).

Having shown that ¢;;and its variance are independent of
intensity, we sought to examine the utility of «;; as an
unbiased predictor of probe set reliability. For that pur-
pose, we plotted the standard deviation of each set of five
replicates as a function of their mean signal intensity. We
next identified the probe sets that exhibited the highest or
lowest 5 % of ¢;; in two of the three experimental para-
digms (cell exposed to troglitazone or GW7845), and
examined their ability to predict ¢;; in the third paradigm
(control). If variance was independent of probe set, the
information derived from the first two paradigms would
fail to predict a similar pattern for the third paradigm
(control) and all noted probe sets would exhibit the
expected standard deviation and lie near or on the line «;;
= 1 in the third paradigm. As shown in Fig. 2, data points
exhibiting extreme values in the first two paradigms (left
panel) successfully predicted a similar value in the third
paradigm (right panel). We next sought to further
quantify the presence of probe set-specific variability.
Under the null hypothesis that all probe sets have a simi-
lar inherent variability, ayj Ay and oy jare independent
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Probe set residual variance (defined as alpha) is independent of signal intensity. (A) A linear regression was performed on ¢;;as
a function of signal mean. A slope of approximately zero, and no obvious pattern of residuals, indicates that ¢;; has corrected
for all intensity related variance. Note that more data points are available at lower intensity signals, as shown in Fig. 4. (B)
Alpha's variance is independent of signal intensity. We defined 'alpha outliers' as having an ¢;in the top 10 %, and calculated the
frequency of 'alpha outliers' in different expression bins, formed by ranking all genes for their signal intensity. The outlier rate
remained roughly constant at the expected frequency of 10 % regardless of expression level. The analysis was performed based
on the 12 650 probe sets represented in chip U95A, in three paradigms.

observations of a probe set's intensity-corrected variabil-
ity. If ¢;; is truly independent of the probe set j, then each
observatlon of ¢;;should be independent of the other two
and the correlation between ¢, ;® o, ;, and o3 ;should be
zero. If, however, probe sets that have high variance in
one paradigm tend to also have high variance in other par-
adigms, o, ;, o, ;, and a; jwould exhibit a positive correla-
tion. Pearson correlations for ¢;; were computed roughly
between all three paradigms (i) across all probe sets (j). As
shown in Table 1, we found that all three pair-wise corre-
lations were significant. It should be noted that the
observed raw correlation of approximately 0.3 reflects the
fact that « is a sample variance of only five observations,
and therefore exhibits high variance by itself. Postulating
an ideal case in which « is constant across all paradigms,
we created random normal variables based on the varia-
bility implied by ¢, and found that the computed average
"ideal correlation" was 0.46 for each of the three pair-wise
correlations. As an alternative measure of intensity-inde-
pendent variance we used a variance-stabilizing transfor-
mation for microarray data [14]. In this approach,
variance is again modeled as a function of intensity, but
the model is based on normally-distributed error terms.
Those error terms were estimated and transformation
derived [21], resulting in intensity-independent variance
across the full range of expression. The standard deviation

of the transformed data then serves as an alternate meas-
ure of intensity-corrected variance. Using the same logic as
previously detailed, if all probe sets have equal reliability
we expect the standard deviation of the transformed data
to exhibit no correlation across the three paradigms. As
shown earlier, the standard deviations of the transformed
data exhibited strong correlation across the three para-
digms (Table 1, right column). Because these standard
deviations are corrected for intensity by transformation,
the correlation in observed standard deviation is due to
the probe set variability. Taken together, our analysis sup-
ports the concept that individual probe sets exhibit
unique variances, and underscores the need for a custom-
made, probe set-specific approach for detection of expres-
sion differences.

To incorporate intensity and probe set-specific variability
into determination of differentially expressed genes, we
introduce novel methodology and an ad hoc t-statistic,
called T-score. We have previously shown [12] that for
two conditions i = 1 and i = 2 on probe set j, our intensity
corrected T-score is derived as follows:

X| i —Xo i Xy i+ Xy
(2) T= 1,j 2,]2 ) where Zj _ 1,j 2,j
V2* (7)) 2
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Probe set-specific variance is preserved across experimental paradigms. In the left panel, the probe set-specific standard devia-
tion (SD) derived from two of the experimental paradigms (cells exposed to troglitazone or GW7845, see Methods) was plot-
ted, and probe sets that had high (top 5 %, red) or low (bottom 5 %, blue) variability were identified. In the right panel, the SD
of each probe set that was identified in the left panel was determined using the third experimental paradigm (control). Probe
sets with average variability lie along the line ¢;;= | (green). The main figure depicts the entire data set, and the inset shows the
area up to signal intensity of 5000, magnified for clarity. Using chi-square analysis we confirmed that the SD for the low and

high variability probe sets, determined by the left panel, was highly predictive of the respective SD in the right panel (p <

0.0001).

Table I: Correlation of residual variance values across all three paradigms'.

Correlation of Alpha

Standard Deviation (after

transformation?)
Pearson Correlation Regression Correlation
Control / GW7845 0.34048 P < 0.0001 0.3609 P <0.0001 0.56955 P < 0.0001
Control / Troglitazone 0.29042 P <0.0001 0.3308 P <0.0001 0.55726 P <0.0001
GW?7845 / Troglitazone 0.30826 P <0.0001 0.3313 P <0.0001 0.55505 P <0.0001

I See Additional File 1, which displays the ability of alpha from one paradigm to predict alpha from another paradigm. 2 Transformation performed as

described in the text following Durbin et al. [14].

Where f(z;) gives the predicted standard deviation value
corresponding to the observed mean intensity of x, ; and
x,,; derived from the LOESS regression. This T-score was
shown to be independent of signal intensity. To correct
for probe set-specific variability we multiplied the pre-

jis a ratio, we

define &i,j to be the geometric mean of «;;across all i par-
adigms) and obtained an intensity- and gene-specific esti-

dicted standard deviation by &i,j (since o

mate for the underlying variance. This makes sense
intuitively, since a; is the ratio of observed to expected

standard deviation, and &i,j is the mean of ¢;; over the
three paradigms. We noted that each of the 60 000 calcu-

lations of &i,j is based on only 15 observations. Therefore,
a few observations for each probe set may inevitably result

in falsely deviant values for &i:i' Cognizant of this possi-
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The null distribution of T-score, generated empirically using
replicate RNA samples. Positive values represent up-regu-
lated transcripts, and negative values represent down-regu-
lated transcripts. The y-axis represents the frequency of each
T-score value. The degree of deviation from T-score of zero
represents the likelihood of random change in transcript
expression.

bility, we diminished the effect of extreme outliers of &i,j

by using , ,&i,i in its place. This function has the conven-

ient properties of being symmetric with respect to the geo-
metric mean and bringing extreme outliers closer to the
null effect of one. The combined T-score becomes:

(3) T= 1,j ~%2,j where z =

NI L2

While issues of normality and degrees of freedom con-
found the distribution of T-score, we can simplify our
analysis by using the T-score as a ranking statistic to prop-
erly order genes for their statistical significance. An empir-
ical null distribution of T-score, generated using replicate
RNA samples, is presented in Fig. 3. In addition, a set of p-
values derived from this replicate set and associated with
the T-Score values is available at  http://
www.sadovsky wustl.edu/tscore.html. Since the T-score is
intensity and probe set independent, the null distribution
applies to any gene expression change using this platform.

xlrj +x21]-

The replicate-based a priori generation of &i,j creates a
database of probe set-specific variability coefficients that
can be used for computation of T-score even from data
derived without replicates, as conducted by most research-
ers. Instead of estimating variance with costly replicates,
we contend that similar results can be obtained using esti-
mates of variance generated from the intensity and probe
set database we have «created. Nevertheless, this

http://www.biomedcentral.com/1741-7007/1/1

simplification is not necessary. If an experiment has repli-
cates the sample sizes can be carried through for their
effect on the distribution of the mean. The T-score
becomes:

X~ X h
(4) Tj: 1,j 2,j ) where I

\/‘%*%) 25 o * f(z))F

_ %1/]- +EZ,]'

n +ny

and n, and n, represent the number of observations in par-
adigm 1 and 2, respectively. Here, we would disregard the
observed variances and use the intensity and probe relia-
bility index to create an estimate of the variance. A Baye-
sian approach could also be used with arbitrary degrees of
freedom to incorporate the observed sample variances.

We verified that the T-score is superior to fold-change
methodology at identifying differentially expressed genes.
For this purpose, we randomly selected 52 probe sets from
the gene population in the U95A set in which there was an
agreement (26 sets) or disagreement (26 sets) between
Affymetrix Fold Change and T-score results across
different paradigms. We used real-time quantitative PCR
to assess the expression change of these 52 genes, and
defined these results as our "gold standard". We then cor-
related these "gold standard" results with the expression
changes as predicted using several methods. These meth-
ods included Fold Change, difference after transforma-

tion, T without a;; (correcting solely for intensity, eq. 3),
T-score (correcting for intensity and probe set-specific var-
iability, eq. 4), and Cyber-T, a t-test based method that
combines the empirical variance of a replicate set with the
local background of intensity-dependent variance[15].
After variance-stabilizing transformation, the biggest
absolute difference in the transformed data should repre-
sent the most significant change in gene expression. Using
the Pearson Correlation test we determined the strength
of association of each of these methods with the change in
expression level of these 52 genes, as determined by quan-
titative RT-PCR. The results are shown in Table 2. Clearly,
the t-test based methods are superior to both Affymetrix
Fold Change and absolute difference using transformed
data. The Spearman Rank Correlation, which disregards
data distribution and solely uses rank orders, exhibited
similar results (Table 2). To determine the significance of
the correlation differences we formulated a permutation
test designed to define the null distribution of the correla-
tions. Under the null hypothesis (two prediction methods
are equivalent) each value was equally likely to appear
under either method. The null distribution is therefore
composed of correlations under which predictive values
are permuted within each probe set j. The difference in
either Pearson or Spearman Correlation coefficients
between T-score and Fold-Change was found to be signif-
icant at p < 0.0002. T-score also performed better than the
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Table 2: Correlation of predictive statistics with gene expression changes, determined by real-time quantitative RT-PCR.

Method of Correlation T-score Cyber-T Tho gene correction Transformed data Fold Change
Pearson 0.77439 0.771172 0.761732 0.57781! 0.56019!
Spearman 0.75775 0.777602 0.749472 0.55900! 0.58432!

I Denotes significantly different from T-score at p < 0.0002 2 Denotes non-significantly different from T-score.

difference after transformation (p < 0.0002). The differ-
ence in correlations between T-score, Cyber-T [15], and T
(without probe set correction) was not statistically
significant.

Conclusions

Generation of replicate data in microarray experiments
can be utilized to assess variability, and consequently
enhance data consistency [22]. Whereas our approach to
identify bias related to intensity-dependent variance is
consistent with that of others [1,2,13,15,23,24], we have
also shown that consideration of probe set-specific vari-
ance is critical, given that the often-used assumption of
probe set independence is false. Practically, we demon-
strated that small expression differences detected by a
more reliable probe set might be more important than
larger expression differences detected by a less reliable
probe set. Therefore, our analysis indicates that an opti-
mal method for determining differentially expressed
genes must account and correct for reliability of each indi-
vidual probe set. While previous efforts have used replica-
tion to distinguish non-functional, or highly unreliable
probe sets for elimination [1-5], none has incorporated
probe set-specific reliability into expression change statis-
tics. Our methodology is the first that allows independent
use of previously obtained information on probe set
reliability in subsequent experiments. Therefore, infer-
ence from prior estimates of probe set-specific variances
into new experiments could not have been utilized using
previously published approaches.

We were reassured by the fact that the correlation of our T-
score method was similar to that of the t-test based Cyber-
T [15]. However, while exhibiting a similar performance,
Cyber-T does not incorporate an a priori-defined gene
correction factor, and relies on replication for estimation
of variance. In contrast, our T-score approach integrates
previously defined probe set-specific variance (via our
database of ¢;), defined by means of additional experi-
mental paradigms (e.g., other ligands) for the same probe
sets. Thus T-score, which independently accounts for
intensity and probe set variances, may be utilized in array
experiments even when performed without replication.
Nevertheless, when adequate replicates are available, t-
test is a suitable approach. It is also important to note that

our analysis exclusively focuses on technical variability.
While we demonstrate that a previously defined probe-
specific variance can substitute for technical replicates,
biological replicates are paramount to enhance accuracy
of microarray-based expression analysis. In addition, the
p-values associated with our empirically derived T-score
do not include a correction for multiple comparisons,
which should be accounted for when comparisons of
expression level among thousands of genes are made
[25,26].

Another fundamental strength of our approach is the
novel analysis of an extraordinarily large data set.
Although our downstream analysis demonstrated the
superiority of our methodology over an arbitrary cut-off
approach, our results are limited by the fact that a fraction
of our analyzed gene pool was expressed at a low level
across all three paradigms. This might have led to an erro-
neous estimation of the specific variability of some probe
sets. It should also be noted that our analysis is based on
Affymetrix U95A-E gene-chip microarrays. Affymetrix has
recently generated a new chip set (U133). While this may
represent a technological advancement, the principles
underlying our novel methodology are not addressed by
the new chip-set. Whereas T-score values reported here are
applicable only to the U95A-E set, the basis and principles
underlying our analysis are applicable to any oligonucle-
otide microarray. We not only provide the first definitive
proof that probe set-specific variability exists, but also
offer the first generic methodology designed to utilize this
information without performing costly replicate experi-
ments. Probe reliability information based on cRNA tar-
gets that are expressed at high and low levels could be
generated by biotechnology companies specializing in
microarrays. This information, provided in conjunction
with commonly available changes in p-value and determi-
nation of transcript presence, may serve to correct for tech-
nical variability in array experiments performed without
replication.

Methods

We have developed a large replicate data set, based on
gene expression in a single pool of primary trophoblast
cells. Procurement of the placentas used in this study was
approved by the human studies committee at Washington

Page 6 of 8

(page number not for citation purposes)



BMC Biology 2003, 1

University School of Medicine, St. Louis, Missouri, USA.
Primary human trophoblasts were prepared from three
normal term human placentas as previously described
[27] with previously published modifications [28], and
cultured in 10 cm plates as previously detailed by our lab
[28]. Four hours after plating, the medium was replaced
with fresh medium supplemented by the PPARy ligands
troglitazone (10 uM) (Biomol, Plymouth Meeting, PA) or
GW7845 (1 uM, a gift from GlaxoWellcome), or by
dimethylsulfoxide (DMSO) vehicle control. Fresh media
and ligands were added after 24 h in culture. After 48 h the
cells were collected for RNA. Total RNA was isolated using
Tri-reagent (MRC, Cincinnati, OH, USA) and purified
using RNeasy (Qiagen, Valencia, CA, USA). RNA samples
(30 pg) from three placentas were mixed, and the mixture
was used for double stranded ¢cDNA synthesis using
Superscript Choice system (InVitrogen Life Technologies,
Carlsbad, CA, USA) and a T,T,, oligonucleotide primer
(GenSet, La Jolla, CA, USA). Biotin-labeled RNA was syn-
thesized by in vitro transcription using Enzo Bioarray RNA
labeling kit (Enzo Diagnostics, Farmingdale, NY, USA).
The RNA was fragmented and divided into five identical
aliquots (15 pg of cRNA per aliquot). Each of the five
cRNA aliquots was added to hybridization cocktail and
sequentially hybridized to identical lot number U95A,
U95B, U95C, U95D, and UI5E arrays. All arrays were
hybridized, washed, stained, and scanned using standard
Affymetrix protocols. Together, we used identical cRNA
samples to probe the expression of approximately 60 000
genes for each of the three conditions, for a total of 180
000 probe sets, each sampled in five replicates using a
total of 75 chips.

Standard Affymetrix protocols using control oligonucle-
otide B2 were used for proper scanning and grid align-
ment, and samples were pre-tested using a control cRNA
mix from Escherichia coli bioB, bioC, bioD, and P1 cre
recombinase, used for monitoring of hybridization, wash-
ing, and staining conditions as well as reference samples
for normalizing between experiments. Immediately after
hybridization the chips were placed in the Affymetrix
GeneChip Fluidics Station 400 and sequentially processed
for low stringency wash, followed by high stringency
wash, streptavidin / phycoerythrin stain, repeat low strin-
gency wash, anti-streptavidin antibody stain, a second
streptavidin / phycoerythrin stain and a final low strin-
gency wash. After washing and staining each chip was
placed in the Affymetrix Gene-Chip array scanner for
image capture and conversion to numerical output using
the Microarray Analysis Suite version 5.0. Comparison
between chips using the Affymetrix protocol was per-
formed using 'baseline chip' intensity values, normalized
to average signal intensity.

http://www.biomedcentral.com/1741-7007/1/1

10
60
9 t
|
8 40
a7 20
g
= 6 0 T T T v l" - T
g 5 0 50000 100000 150000 200000
K<)
4
3
2
—T— —— —T —
0 5000 10000 15000 20000
Mean signal intensity
Figure 4

Null distribution of fold-changes among all replicates. We
calculated pair-wise fold-changes among five signal replicates
(a total of 10 comparisons) for 12 650 probe sets (Chip
U95A only) in three paradigms, for a total 378 750 fold-
changes. Each point in the graph represents an observed fold-
change and mean signal intensity for two identical samples of
mRNA. The inset depicts all data points, magnified in the
main figure to demonstrate that higher fold-change values are
found at lower expression levels, even when the underlying
expression is unchanged. This supports the notion that statis-
tical significance of a fold-change depends on signal intensity.

Using this information we recently determined that tech-
nical variability in our data set depends on signal intensity
[12]. Ignoring this factor results in bias of expression
changes toward genes with low signal intensity (Fig. 4).
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