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Abstract

Background: The Burgess Shale is well known for its preservation of a diverse soft-bodied biota dating from the
Cambrian period (Series 3, Stage 5). While previous paleoecological studies have focused on particular species
(autecology) or entire paleocommunities (synecology), studies on the ecology of populations (demecology) of
Burgess Shale organisms have remained mainly anecdotal.

Results: Here, we present evidence for mass molting events in two unrelated arthropods from the Burgess Shale
Walcott Quarry, Canadaspis perfecta and a megacheiran referred to as Alalcomenaeus sp.

Conclusions: These findings suggest that the triggers for such supposed synchronized molting appeared early on
during the Cambrian radiation, and synchronized molting in the Cambrian may have had similar functions in the
past as it does today. In addition, the finding of numerous juvenile Alalcomenaeus sp. molts associated with the
putative alga Dictyophycus suggests a possible nursery habitat. In this nursery habitat a population of this animal
might have found a more protected environment in which to spend critical developmental phases, as do many

modern species today.
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Background

The incompleteness of the fossil record makes recons-
tructing animal ecosystems of the past, a particularly
challenging task. Fortunately, a few exceptional sites,
generally referred to as fossil Lagerstdtten, preserve far
more paleoecological information than do normal fossil
deposits. Arguably the best-known Konservat-Lagerstdtte
is the famous middle Cambrian (Series 3, Stage 5; ca.
505 million years old) Burgess Shale in British Columbia,
Canada. This deposit is famous for its exquisite preser-
vation of soft-bodied animals, and provides critical clues
to the structure and functioning of animal communities
in the aftermath of the Cambrian bioradiation (often
called the ‘Cambrian explosion’).

Our knowledge of the Burgess Shale community is
mostly based on autecological studies involving recons-
tructions of the fossilized organisms’ functional morpho-
logy, as well as detailed comparative anatomical studies
(for example, [1-3]). However, autecological reconstructions
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can serve as a basis for synecological consideration, e.g.,
predator-prey interactions [4], and the study of larger com-
munity and ecological patterns (for example, [5]). Although
paleoecological investigations are often limited to morpho-
logical information about the species under investigation,
the Burgess Shale also provides evidence of animal activities
in the form of trackways [6], other trace fossils [7], and gut
contents [8]. Even behavior is sometimes preserved by be-
ing “frozen” in time, for example, a specimen of Marrella
splendens Walcott, 1912 was caught in the act of molting
[9], several specimens of Ottoia prolifica Walcott, 1911
were preserved while scavenging together on a carcass
[8,10], and trilobites have been preserved within the empty
tubes of priapulid worms [11]. Such data, although still
scarce, add to our knowledge of both individual behavior
(autecology) and interactions among coexisting species
(synecology). Direct synecological evidence also includes
brachiopods attached to sponges [12], but, so far, detailed
records of behavior at the population level (that is
demecology) in Burgess Shale-type deposits have been
limited to the arthropod Symophalos xynos (Hou et al,
2009) from the Chengjiang Biota walking in chains [13,14],
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and the finding of similar food items in the guts of entire
populations of Ottoia prolifica [8].

Here, we report the finding of hundreds of exuviae of
two different arthropods from the Burgess Shale Walcott
Quarry. Together, they represent the largest accumula-
tion of soft-bodied fossil exuviae known from Cambrian
Burgess Shale-type deposits. The finds indicate synchro-
nized molting behavior for populations of two different
species. Possible causes and mechanisms of such coordi-
nated behavior are discussed.

Methods

All the studied specimens are stored at the Royal Ontario
Museum (ROM) in Toronto, Canada. All specimens were
collected in situ below the base of the original Walcott
Quarry (Fossil Ridge, Yoho National Park, Canada) in dif-
ferent stratigraphic intervals interpreted as representing
individual burial events preserving community snapshots
[5,15]. In this paper, we illustrate several large clusters of
specimens of Canadaspis perfecta (Walcott, 1912) [16]
(for example, ROM 56954 and ROM 62274) collected
from level -350 (approximately 350 centimeters below the
base of the original Walcott Quarry, see [15]), as well as
several megacheiran clusters (ROM 62275) and individual
specimens (ROM 57711) collected at level -120. A single
specimen of C. perfecta (ROM 61119) with gut trace, col-
lected at level -320, is also illustrated for comparison with
the molt assemblages. For all slabs, the presence of abun-
dant and diverse soft-bodied organisms representing a
range of sizes and belonging to different groups of organ-
isms suggests no significant taphonomic biases, including
transport and time averaging [15,17].

Specimens in Figures 1 and 2 were photographed under
normal or polarized light with a digital camera. Some close-
up images were taken with a Scopetek DCM 510 ocular
camera (Hangzhou Scopetek Opto-Electric Co., Hangzhou,
China) through a Nikon SMZ 1500 stereomicroscope
(Nikon, Tokyo, Japan). Images in Figure 3 were, in most
cases, recorded as stacks and fused with CombineZM/ZP
(Alan Hadley). More than one stack was recorded for some
specimens when the field of view was limited. Each stack of
images was fused, and the fused images were then stitched
together with Adobe Photoshop CS3 (Adobe Systems, San
Jose, CA, USA) or Microsoft Image Composite Editor
(Microsoft Corporation, Redmond, WA, USA).

Additionally, a mass aggregation of exuviae of the mala-
costracan crustacean Anthonema problematicum Walther,
1904 from the Upper Jurassic Solnhofen Lithographic Lime-
stones of southern Germany was examined. The slab was
collected by R. Frattigiani, Laichingen, and is part of the col-
lection of the Staatliches Museum fiir Naturkunde Stuttgart
under the repository number SMNS 70109. The complete
aggregation was documented under macrofluorescence, and
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a single specimen under microfluorescence conditions
(wavelength 546 nm; for details, see [18] and [19]).

Results

A collected slab about 1 m? in area (ROM 62274,
Figure 1A,B) is almost entirely covered in individual
shields of the bivalved arthropod Canadaspis perfecta.
At least 743 specimens are preserved on this surface, of
which fewer than 10% show evidence of preservation of
the thoracic region. There is no evidence of specimens
showing preservation of the gut (Figure 1B). This slab
was collected from an area about 45 m? in total, which
exhibited a similarly dense association of fossils, sug-
gesting that tens of thousands of specimens were buried
along this particular bedding interval, most of which
belonged to C. perfecta. The specimens are so densely
packed that they overlap each other and could represent
a mass mortality event. However, most, if not all, of
these specimens are identified as exuviae based on their
preservation and lack of gut traces (for comparison with
known carcasses of C. perfecta, see the slab collected
from the same layer, and one at a slightly different layer,
as shown in Figure 1C-E). Most of the shields appear to
be deformed, indicating their softness at the time of
preservation. This deformation and poor preservation is
not a taphonomic effect, as other organisms preserved
on the same slab (ROM 62274), such as some specimens
of Wiwaxia corrugata Matthew, 1899, Ottoia prolifica
(often with preserved gut supporting the view that the
lack of gut in C. perfecta is not an artifact), and up to 35
additional species, are all well preserved and do not
show evidence of disassociation or breakage (see [5]). Al-
though the size of the specimens cannot be measured
with confidence due to their softness, overlap at burial
and diagenetic deformation, as well as post-diagenetic
tectonization (which has left many specimens sheered
with a glossy surface), all specimens appear to be roughly
similar in size.

ROM 62275 and ROM 57711 are covered in fossils
of a megacheiran (“short great-appendage”) arthropod
(Figure 2). A single slab (0.1 m?) contains more than 300
specimens on the same bedding plane (Figure 2A,B)
and there is no evidence of preferential orientation
of the specimens, suggesting limited or no transport
(Figure 2C). The largest specimens are up to 2 cm in
length from the posterior margin of the telson to the an-
terior margin of the first somite. The preservation is
quite faint (Figure 2D,E), while other specimens from
other species occurring on the same slabs are well
preserved. The somite boundaries are preferentially pre-
served, producing a typical denticulate pattern, sugges-
ting that the tegument covering the segments was very
thin and possibly decayed. The trunk appendages are
poorly preserved, and the telson is missing in most cases
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(B,C); 1 cm (D,E).

Figure 1 Canadaspis perfecta (Walcott, 1912). (A,B) ROM 62274, supposed synchronized molting (-350 level); (A) complete slab; (B) close-up
image of (A) showing dozens of shields. (C,D) ROM 56954; (C) aggregation of carcasses from the same level (-350); (D) close-up image of
(C); (E) ROM 61119, close-up image of a single carcass showing limbs and evidence of gut (G) (-320 level). Scale bars: 10 cm (A); 2 cm

(but see Figure 2E,F). All specimens also appear to lack
the head shield (Figure 2E). When the frontal appen-
dages are present, they are often tilted ventrally and at a
right angle when seen in a lateral view (Figure 2E). The
lack of a cephalic shield, the right angle between the
frontal appendages and the trunk, the presence of nu-
merous isolated parts, and the poor preservation of
exoskeletons support the hypothesis that the specimens
observed in this study are molts and not carcasses.

The specimens clearly represent a megacheiran species
because of their similar number of segments (11) and
great appendage morphology, which features 3 elongated
finger-like spines that continue into (possibly) mul-
tiannulated feeler-like structures. The specimens seem
to differ from all other known megacheiran arthropods
from the Burgess Shale, however, in telson shape and or-
namentation. The telson shape of this form is elongated
and pentagonal, with spines arranged along the entire
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Figure 2 Supposed synchronized molting of megacheirans. (A-D) ROM 62275; (A) overview of the specimens (cross-polarized light); (B)
close-up image of (A); (C) rose diagram of relative orientation of megacheiran specimens (N = 306); (D) close-up image of (B) showing
associations with Dictyophycus gracilis Ruedemann, 1931, a putative alga, and Morania spp. Walcott, 1919, a putative cyanobacteria; (E,F) ROM
57711, single specimen with well-preserved telson (close up in (F)). Scale bars: 2 cm (A,B); 0.5 cm (D); 0.2 cm (E); 0.1 cm (F).

margin. These can be differentiated into larger and smal-
ler spines. Additionally, the telson has a pronounced keel
not known in other megacheirans from the Burgess Shale.
Whether these differences represent valid taxonomic dif-
ferences or whether these individuals can be considered
juvenile stages of known megacheirans, such as species of
Alalcomenaeus, is uncertain. A detailed morphological de-
scription of this material and a taxonomic treatment of
the species is not part of this study, and following previ-
ously published reports [5,15], the material is here referred
to as Alalcomenaeus sp.

Discussion

Exuvial nature of the fossils

As mentioned above, the specimens found here in ag-
gregations are interpreted as exuviae. The shields of
Canadaspis perfecta appear to be slightly deformed, dis-
tantly reminiscent of “Nathorstia transitans” specimens
of Olenoides serratus (Rominger, 1887) [20]. Nathorstia
transitans was originally considered to be a species of a
kind of soft-bodied trilobite, but Whittington [20] could
demonstrate that these are remains of freshly molted
specimens of Olenoides serratus.
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Figure 3 Anthonema problematicum Walther, 1904, Upper Jurassic, Solnhofen Lithographic Limestones, Southern Germany. (A) Mass
aggregation of exuviae under macrofluorescence, SMNS 70109, ex coll. Frattigiani, Laichingen; (B), close-up image of single exuvia under
microfluorescence conditions. See [18,19] for details on methods. Scale bars: 1 cm (A); T mm (B).

The exuvial nature of the small megacheirans is also
apparent due to their faint preservation in comparison
with other specimens on the same slab. In addition, the
incompleteness of the fossils, in this case the systematic
lack of the head shield and ventral rotation of frontal ap-
pendages, are clear indicators of their exuvial nature as
previously reported [15]. This state of preservation re-
sembles the “open molt position” of a number of mo-
dern decapod crustaceans [21,22], as well as fossil lobsters
and other fossil decapods [23,24].

It must be noted that, although the specimens of
Canadaspis perfecta (ROM 62274) as well as those of
Alalcomenaeus sp. (ROM 62275, ROM 57711) are in-
terpreted as exuviae, they differ significantly. The speci-
mens of C. perfecta almost exclusively feature preserved
shields, while the small megacheirans show preservation
of most of the body, but always lack the shield. This
could indicate that only the more strongly sclerotized
parts of the organisms are preserved, but, given that the
shield is usually more strongly sclerotized than other
parts, it would be expected to be present in the spe-
cimens of the megacheiran arthropod. The absence of
preserved megacheiran arthropod shields could also be
understood as an indication of a two-step molting
process: for example, first the shield is molted, and
then, later, the remaining body parts. A two-step molting
process would explain why there are mostly shields
preserved in the C. perfecta specimens, while in the
Alalcomenaeus sp. specimens, everything other than the
shield is preserved. Two-step molting is known in extant

arthropods, especially in isopods. In isopods, the anterior
and posterior body regions are molted separately [25].
This demonstrates that two-step molting is possible in
principle. The pattern assumed for the two fossil assem-
blages described here, that of molting head shields and
then molting the remaining body parts, however, is not
known from modern arthropods. The inference of such
a molting pattern must therefore remain speculative.
Nevertheless, this pattern provides a plausible explan-
ation for the observed fossils. A taphonomic explanation
is less likely; the fossil assemblages are mixed with speci-
mens of different sizes belonging to different species,
and there is no evidence of preferential sorting by size,
which could have selectively preserved some parts and
not others.

Synchronized molting: triggers

The presence of many aggregated exuviae of a single
species indicates synchronized molting behavior of an
entire population or, at least, of a cohesive part of it,
that is, of a sub-population. Such coordinated molting
behavior is known from a wide variety of extant arthro-
pod groups, including various crustaceans, insects and
arachnids.

Synchronization of molting can be triggered by ex-
ternal abiotic factors. Johnson et al. [26] reported syn-
chronized molting in aphids, and interpreted this to be
caused by the circadian rhythm. Circadian rhythms have
also been suggested to be important for synchronizing
molt timing in aquatic organisms, for instance, for larval
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molts in lobsters [27]. Tarling and Cuzin-Roudy [28],
however, discussing the possibility of the influence of
external factors, excluded external Zeitgebers (factors
influencing timing) from the factors responsible for syn-
chronized molting in krill. They propose active com-
munication among individuals as the main trigger for
synchronization.

For terrestrial arthropods, synchronized molting ap-
pears particularly often to be actively induced by the
organisms themselves through pheromone communica-
tion. This has been demonstrated for colonial spiders
[29] and group-living collembolans [30], and was also
suggested for dermestid beetles [31]. In these examples,
however, the groups that synchronize their molting are
relatively small. In krill, which congregate in much larger
groups, molting is synchronized at the population level
[28] with at least 50% of the entire population molting
within 48 h [32]. For krill, pheromones may well play
an important role, but it remains to be demonstrated;
visual communication has also been proposed (see
[28] for references).

It is, of course, difficult to infer the means of commu-
nication among fossilized individuals. Yet, the fact that a
large part of a (sub-) population molted at the same time
must be seen as an example of a “smoking gun” (for ex-
ample, [33]), indicative of communication among in-
dividuals or an external stimulus, or both. The most
plausible assumption concerning communication would
be that it was mediated by pheromones, especially given
that hormones coupled to molting are known to be used
for communication in modern arthropods. For instance,
the sex pheromone of shore crabs is assumed to be a
metabolic derivative of the molting process [34], and ap-
pears to be also present in other decapods. Sea spiders
(Pantopoda) also use molting pheromones as a feeding
deterrent for defense against attacking arthropods [35].
It is therefore not unlikely that, even as early as half a
billion years ago, arthropods “communicated” via phero-
mones to synchronize their molts. Recent findings in-
dicate that the brains of Cambrian arthropods were
already relatively complex, facilitating quite complex be-
havior [36,37].

The fossil assemblages described here as possible ex-
amples of synchronized molting are also important for
understanding the ontogeny of these arthropods, as
there is likely an external trigger influencing the timing
of molting and, therefore, also growth. The developmen-
tal biology of fossil organisms has become an important
field of research, known as palaeo-evo-devo [38,39] (see
also [40]). The developmental biology of extant organ-
isms has also gone one step further toward understand-
ing which external factors influence ontogeny, under the
name of eco-devo [41,42]. The Burgess Shale examples
described here could be seen as a first step toward a
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paleo-eco-devo approach. It is a first indication of how
external triggers may have influenced the development
of individual fossil arthropods.

Synchronized molting, function 1: reproduction and
predation prevention

Molting in malacostracan crustaceans is often coupled
to reproduction and maturation of the ovaries (for ex-
ample, [43,44] and references therein), as both molting
and gametogenesis are controlled by the same hormone
[45]. One such example is krill, where synchronized
molting behavior has been demonstrated to be coupled
to ovary development and spawning [28]. This synchro-
nization of spawning in krill is thought to reduce the
predation pressure on the spawning adults and the off-
spring [46].

The coupling of molting and mating (in this context,
mating should be clearly distinguished from spawning,
see below) is also known from other extant arthropods,
but is restricted to “soft-shell maters,” that is, species
that only mate right after molting. Examples can be
found in different crustaceans (see [47]), for example, in
crabs [34] and isopods [48,49]. This behavior is a highly
derived feature, and as far as it is known, it is not linked
to synchronized molting involving more than one mat-
ing couple. Synchronized molting has been suggested to
be coupled to mating for fossil organisms such as trilo-
bites [50,51] and eurypterids [52,53]. In some of these
studies, such an assumption appears to be partly based
on comparisons with extant xiphosurans, but such com-
parisons are problematic; while indeed several popula-
tions of Limulus polyphemus (Linnaeus, 1758) meet in
large groups to come ashore and mate (e.g., [54]), this
process is not coupled to molting at all. Furthermore,
not all populations of L. polyphemus mate in large den-
sities, and under low densities the females exhibit mon-
ogamous mating behavior [55]. Therefore, synchronized
mating is not a behavior generally characterizing the
species of extant xiphosurans. It does not appear to be
a ground pattern feature of Xiphosura; so, based on
phylogenetic reasoning, there is no indication for syn-
chronized mating in eurypterids [53]. Newer evidence
indicates that spermatophores were involved in euryp-
terid mating, so their mating was more similar to
that in scorpions and other arachnids than to that in
xiphosurans [56]; considering this aspect, mating and
spawning was most probably decoupled in eurypterids.
Although we cannot completely exclude a coupling of
synchronized molting and mating in eurypterids or in
trilobites, these data do not provide positive evidence for
such a coupling. In both groups, however, the coupling
of synchronized molting and spawning, as is known
to occur in krill and other crustaceans, could vyield a
plausible explanation for the observed aggregations of
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exuviae; this hypothesis could be supported if also eggs
and/or larvae are found in these places.

In the examples described in this paper, synchronized
molting coupled to spawning is also a possible explan-
ation for the aggregation of Canadaspis perfecta exuviae.
The specimens are of large size and appear to represent
adults exclusively. Thus, it is plausible to assume that
a whole population, or sub-population of a seemingly
gregarious species actively coordinated molting. The
coupling of molting en masse to spawning would have
reduced the predation pressure not only on individual
organisms, but especially on the resulting offspring.

For the case of the small megacheiran fossils, this ar-
gument cannot explain the supposed synchronization of
the molts. All specimens noted are most likely immature
juveniles, much too small to be adults (supposed adults
are present in further material still under study), but too
large to represent young larvae. Nevertheless, the reduc-
tion of predation pressure on animals molting in a group
seems to be applicable here as well.

Aside from the coupling of synchronized molting and
reproduction, another ecological function has been pro-
posed for the aggregation of exuviae. Kim [57] suggested
that group molting among colonial spiders is an adapta-
tion that maintains a similar size among all individuals,
which helps to reduce cannibalism during the molting
period. This could indeed be an explanation for the
case of the supposed synchronized molting in the
new megacheiran, as megacheirans are also interpreted as
predators [2,3,58].

Mass molting to reduce cannibalism could also be appli-
cable in other cases in which predatory species synchro-
nize their molting, for example, the above-mentioned case
of eurypterids, or the occurrence of large masses of man-
tis shrimps (Stomatopoda) in Carboniferous deposits in
Germany [59]. A coupling of cannibalism prevention to
reproduction would be plausible in these predatory spe-
cies; if molting is coupled to reproduction, there should be
multiple selective pressures at play to reduce predation on
the new young and the molting parents simultaneously,
one part of it being the reduction of cannibalism.

Given the multiple selective pressures favoring syn-
chronized molting over uncoordinated molting, it would
follow that synchronized molting should be the rule
among arthropods, but it is not. Coordination of behav-
ior has several costs. In particular, and most importantly,
a communication system, in this case, most likely a
pheromone that triggers the behavior, has to evolve.
These costs only pay off if the density of individuals is
high enough to truly provide real “safety in numbers”
during the molt, that is, if synchronized molting pro-
vides such a mass of possible prey that the danger to a
single individual is significantly reduced. Additionally,
if the synchronized molting is communicated via a
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pheromone, this pheromone could also act as a kairo-
mone to attract predators. The presence of large car-
casses of the priapulid Ottoia prolifica on the slabs
with the megacheiran exuviae could be interpreted as
an indication for such an interpretation. Still, given
the fact that the evolution of a pheromone coupled to
molting appears to be relatively simple and that there
are numerous examples among extant species where
synchronized molting provides a benefit, such phero-
mones might have been more widespread among fos-
sil arthropods than currently recognized.

Synchronized molting, function 2: Burgess Shale fossil
associations, possible nursery habitats

Associations of juveniles of marine invertebrates with
macrophytes are well documented in many marine en-
vironments from temperate to tropical waters. These
zones are referred to as nursery or juvenile habitats
[60,61]. Macrophytes provide a food supply and support
for organisms with complex life histories that require
settlement sites during their post-larval and juvenile
stages, and offer ideal conditions for animals to molt in
a relatively safe environment [61-63]. Experiments on
seagrass meadows have shown that predation upon sea-
grass shrimps is higher on unvegetated bottoms than on
vegetated ones, demonstrating the role of macrophytes
as predatory refuges as well [64]. Nursery habitats do-
minated by macrophytes are usually in shallow littoral
zones and in relatively protected areas, for example, the
nursery habitats of shallow water palinurids usually
range from 1 m to 4 m deep, though they can also be
found much deeper than 20 m [65]. Algal cover can re-
main abundant below 200 m in tropical waters [66], and
nursery habitats dominated by algae can potentially
extend down to the limit of the photic zone. A diverse
fauna associated with detached algae has also been dis-
covered in a deeper benthic community in an open sho-
reline environment, demonstrating that algae play an
important role in the recruitment of marine inverte-
brates even after algal death and transport [67]. Even
though macrophytes are crucial to the organization and
diversity of modern marine shallow communities [61],
the origin and evolutionary significance of nursery areas
have never been assessed. One potential reason for this
disinterest is that nursery areas, which are composed of
juveniles of many invertebrates, have a very low potential
of preservation: many marine invertebrates, especially
juveniles, are usually composed of soft tissues that do
not preserve well in the fossil record [68]. The Burgess
Shale megacheirans are often associated with Dictyophy-
cus gracilis Ruedemann, 1931, a putative algae (Figure 2D;
[69]), and are often entangled with fragments of Mo-
rania spp. Walcott, 1919, a group of putative cyano-
bacteria (Figure 2D; [70,71]). These organisms might have
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provided suitable substrates for the megacheirans to molt.
While it is difficult to be positive about this implied rela-
tionship, the Burgess Shale might represent one of the
oldest examples of a nursery habitat preserved in the fossil
record (see [72] for a possibly older example).

Synchronized molting: fossil record

The cases described in this paper represent the oldest
known occurrences of possible synchronized molting in
non-calcified arthropods. The only older supposed ex-
ample was described from trilobites from the early
Cambrian of South Australia [72]. The next youngest
examples are the supposedly synchronized molts of
Ordovician trilobites [51] and of eurypterids in the
Silurian [52,53]. Trilobites from the Devonian are also
known to occur as aggregated exuviae, although in smaller
groups [50]. Another example is that of fossil mantis
shrimps from the Carboniferous [59]. In the latter, how-
ever, the exuviae appear to co-occur with carcasses. From
the Jurassic, the supposed mysid shrimp Anthonema
problematicum has been found in (calculated) abundances
of up to 30,000 specimens per m? all of them
representing exuviae (Figure 3A,B; [73]).

As these examples show, there are several cases of
supposed synchronous molting events in the fossil re-
cord of representatives of modern groups. Trilobites,
however, are a counterexample, as they are derivatives
of the evolutionary lineage towards Crustacea sensu lato
(= Mandibulata plus close relatives) [74-76]. Both cases
described in this paper also represent species that bran-
ched off their evolutionary lineages before the crown
group of, possibly, Euarthropoda and Chelicerata, res-
pectively. This indicates that early forms of arthropods
also appear to have performed complex interactions at
population levels in similar ways to those known from
various extant in-group representatives.

Conclusions
Whether the supposed synchronized molting events de-
scribed here were indeed coupled to complex chemical
communications among individuals of the same popula-
tion must remain speculative. This is, after all, the first
case described in which supposed synchronized molting
has been found in two separate species in the same
Lagerstdtte. It may also be likely that different ecological
functions triggered the two cases described here. While
synchronized molting might have also occurred in other
Burgess Shale species, in particular those that occur in
large clusters of specimens (for example, in the bradoriid
Kunmingella burgessensis), the fossil examples provided
in this study are the clearest cases found so far.

The Burgess Shale biota once more contributes exci-
ting new insights into Cambrian life. The new findings
presented here and the resulting discussion can be seen
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as first steps into a palaeo-eco-devo approach. This ap-
proach, combining population-level ecology (demecology)
and coordinated behavior, again, promises more surprises
in the future.
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