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Abstract
Background: The availability of genome sequences, and inferred protein coding genes, has led to
several proteome-wide studies of isoelectric points. Generally, isoelectric points are distributed
following variations on a biomodal theme that originates from the predominant acid and base amino
acid sidechain pKas. The relative populations of the peaks in such distributions may correlate with
environment, either for a whole organism or for subcellular compartments. There is also a
tendency for isoelectric points averaged over a subcellular location to not coincide with the local
pH, which could be related to solubility. We now calculate the correlation of other pH-dependent
properties, calculated from 3D structure, with subcellular pH.

Results: For proteins with known structure and subcellular annotation, the predicted pH at which
a protein is most stable, averaged over a location, gives a significantly better correlation with
subcellular pH than does isoelectric point. This observation relates to the cumulative properties of
proteins, since maximal stability for individual proteins follows the bimodal isoelectric point
distribution. Histidine residue location underlies the correlation, a conclusion that is tested against
a background of proteins randomised with respect to this feature, and for which the observed
correlation drops substantially.

Conclusion: There exists a constraint on protein pH-dependence, in relation to the local pH, that
is manifested in the pKa distribution of histidine sub-proteomes. This is discussed in terms of
protein stability, pH homeostasis, and fluctuations in proton concentration.

Background
The post-genomic era allows many basic questions to be
addressed, such as the nature of the biological compo-
nents [1], control of expression levels for these compo-
nents [2], their interaction networks and dynamics [3],
and the ultimate realisation of metabolic function from
the parts [4]. Even for proteins, the most studied nodes of
biological interaction and function, there is much to dis-
cover about how form relates to function. Differences in
the characteristics of amino acid sidechains, and in the

stoichiometry of their incorporation into proteins, means
that physico-chemical properties of proteomes and sub-
proteomes can be variable. Several reports of proteome-
wide properties have appeared. Features studied include
amyloidogenic potential and biological context [5], pro-
pensity for disorder and protein degradation [6], amino
acid composition and gene expression [7], protein target-
ing and N-terminal features [8], and the inclusion of phys-
ico-chemical properties into proteome browser resources
[9].
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Protein isoelectric point (pI) can be conveniently esti-
mated from amino acid sequence. Three-dimensional
structure gives rise to charge interactions that are impor-
tant in considering protein folded state stability, but gen-
erally give small changes in pI compared with linear
sequence [10]. Several groups have looked at computed
proteome-wide pI distributions, with the outcomes falling
into two overall categories. First, there has been discus-
sion of the form of the pI distribution with pH [11-13],
and demonstration that a general bimodality results from
the predominant acidic and basic pKas of the Asp/Glu and
Lys/Arg sidechains. Second, the relative populations of
peaks (acidity versus basicity, or pI bias) has been studied
with respect to organism environment and taxonomy,
and subcellular location. It has been proposed that aver-
age pI correlates with growth temperature for orthologues
[14], and with bacterial growth conditions [15], that pI
bias correlates with taxonomy [16], and that pI distribu-
tion varies according to compartmentalisation within the
Arabidopsis chloroplast [17]. Other work indicates that, for
the most part, pI distributions are not correlated with sub-
cellular location or taxonomy [18]. Amongst these varying
conclusions, observations reinforced by multiple reports
are that: individual protein pIs tend towards less extreme
values for longer sequences, as a result of sampling statis-
tics of acidic/basic amino acids [16,19]; subcellular pro-
teome pIs may give net charge at environmental pH to
mitigate against protein aggregation [18,20]; smaller pro-
teomes tend to be more basic [15,16]. This last trend is
particularly evident for the small proteomes of intracellu-
lar parasites, and does not appear to be fully explicable in
terms of genome AT bias. Processes suggested to underlie
the trend include adaptation to environmental con-
straints, such as elevated host pH [15], and differences in
the rate of accumulation of mutations (higher in intracel-
lular organisms than free-living ones) [16].

3D structures are known for many proteins, and may be
modelled for many more [21]. Structure can be used to
predict physico-chemical properties, which in turn can aid
understanding of function or environmental adaptation,
for example comparing proteins from mesophiles and
extremophiles [22] or distinguishing Enzyme Commis-
sion classes for enzymes [23]. Charges contribute to pro-
tein stability, evident from simple geometric analysis [24].
The role of ionisable groups has been studied extensively,
with regard to both protein stability and solubility [25],
and in terms of specific functionality, such as proton buff-
ering by hemoglobin [26]. Computational models of
charge interactions [27] can be applied across databases,
looking for example at predicted ionisations of amino
acids [28]. Varying degrees of model complexity have
been introduced, and are assessed through agreement
with experiment for properties such as pKas, the pH-
dependence of folding energy, and mutational effects. We

have found that a relatively simply model for charge inter-
actions captures the properties of surface ionisable groups
[29], whereas more detailed accounting of a protein/water
interface is required for substantially buried groups [30].
Since the great majority of ionisable groups lie at the sur-
face, the simplified method is appropriate for application
to wide-scale structural proteomics, so long as detailed
questions are not asked of the more buried, typically cat-
alytic site, ionisable groups. This has been shown in a pre-
vious study, where we focussed on comparing isoelectric
points predicted from sequence and structure [20]. It was
found that predicted pI, averaged over the protein struc-
tures in a subcellular compartment, tends to lie away from
the subcellular pH, consistent with a role in mitigating
against isoelectric point aggregation. The subcellular aver-
age of the pH at which proteins are predicted to be most
stable appeared to be a closer match to subcellular pH,
than was the average pI. This preliminary observation,
which is consistent with other computational work find-
ing that the predicted pH of maximal stability can be quite
different to the pI [31], is now investigated in detail. We
find that the (pH-dependent) maximum in protein stabi-
lisation relates to modulation of histidine pKas by 3D
interactions. These residues are largely at the surface and
not recognised individually to be of primary functional
importance, and yet their cumulative properties associate
with subcellular pH. We discuss the physiological context
for this result, including pH homeostasis, pH sensing and
stochastic effects.

Results and Discussion
pH-dependence of stability and subcellular pH
A dataset of protein structures annotated by subcellular
location was constructed as described in the Methods sec-
tion (Figure 1). Figure 2 illustrates the major ionisation
regions for proteins on a schematic plot of the pH-
dependence of folding energy (GFU, the difference
between the folded (F), and unfolded (U), states). Acidic
and basic titrations underpin the generally bimodal pI
distributions observed for proteins [32], since the num-
bers of (Asp + Glu) with acidic pKas, or (Lys + Arg) with
basic pKas, normally exceed the number of His, which
ionise in the central pH range. While the balance of (Asp
+ Glu) and (Lys + Arg) mostly determines pI, it follows
from the proportionality between GFU/pH and QFU
(the difference in net charge between folded and unfolded
forms) [33], that the pH-dependence of stability in the
central pH range is determined largely by histidine ionisa-
tion (Figure 2). Further, this slope (although small when
histidine content is low) is generally negative or positive
according to whether the protonated state of histidine is
stabilised (QFU positive) or destabilised (QFU negative)
in the folded protein. This in turn determines whether the
pH value at minimal GFU (pH [GFU(min)], Figure 2) is
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towards the acidic or basic titration block, again yielding
a generally bimodal distribution.

Isoelectric and pH-dependent properties were calculated
and examined for correlation with each other and with
the measured environmental pH values (Table 1). The
average across each subcellular compartment of the pH at
minimal GFU, denoted <pH [GFU(min)]> correlates bet-
ter with subcellular pH than do the analogous averages for
pI, <pI(F)> and <pI(U)> (see also Figure 3), although
none of these properties matches subcellular pH across
the entire range. Table 1 also shows the correlations when
calculations are repeated with histidine ionisations
removed. Here, only average isoelectric properties and
subcellular pH are correlated, demonstrating that histi-
dine ionisation lies behind the correlation of <pH
[GFU(min)]> with subcellular pH (Figure 2). Further,
histidine location rather than composition is implicated,
since neither subcellular pH nor <pH [GFU(min)]> cor-
relate with the subcellular averaged ratio of histidine to

other charged amino acids, <His/(Acid+Base)> (Table 1).
The nature of pH [GFU(min)] versus His/(Acid+Base) for
individual proteins (not shown) is that more acidic or
basic pH [GFU(min)] map to higher His/(Acid+Base),
while lower His content maps to a relatively underpopu-
lated central zone of pH [GFU(min)], bearing out the
schematic indications of Figure 2.

Histidine pKas and subcellular location
Histidine pKa deviations from the model compound
value, obtained in the pH-dependence calculation and
averaged for each protein, correlate well with <pH
[GFU(min)]> (R2 = 0.99, not shown). In Figure 4(a), his-
tidine pKa deviations are plotted against subcellular pH,
again with good correlation. These are now averaged per
histidine, < pKa [His]>, since the protein-specific condi-
tion implicit in pH [GFU(min)] is lost. Figure 4(b) shows
compartment-specific <pKa [His]> with the ranges
observed, using the 5% and 95% ranked pKa [His] val-
ues within each location. Variation across the subcellular
averages is much smaller than the variation of histidine
pKas. We have investigated previously whether calcula-
tions of <pH [GFU(min)]> change substantially upon the
inclusion of more a detailed charge interaction scheme, or
a model for residual charge interactions in the unfolded
state [20]. Although pKas can be perturbed in the U form
[34,29], it was found that the effect of these modelling
adjustments on <pH [GFU(min)]> was small [20]. Fur-
thermore, in the current work, we looked at a sequence-
based U form model for charge interactions, with nearest
neighbour pairs dominating. If this were to yield correla-

Construction of the protein structural datasetFigure 1
Construction of the protein structural dataset. Uni-
Prot and the PDB were used to cross-reference subcellular 
annotation and structure, with filtering for sequence identity 
and structure quality to give a set of protein chains for calcu-
lation. See the Methods section.
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Major ionisation zones in the pH-dependence of protein sta-bilityFigure 2
Major ionisation zones in the pH-dependence of pro-
tein stability. A schematic diagram of the major ionisation 
regions in a plot of folding stability (GFU) versus pH. Proper-
ties describing this pH-dependence, in the notional case of no 
protein unfolding over the pH range, are shown. Cysteine 
and tyrosine have been omitted from this figure since they 
are mostly unionised at physiological pH.
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tions with subcellular pH, then the analysis would not be
restricted to protein structures. However, the U form
model proved too simple, yielding relatively poor correla-
tions (e.g. R2 = 0.29 between <pKa [His]> and subcellu-
lar pH), and this line of enquiry was not pursued further.

Having established that the predicted and averaged ioni-
sation properties of histidine sidechains are strongly cor-
related with subcellular environment, but also bearing in
mind that average isoelectric points show some correla-
tion, we investigated further the role of histidine position-
ing in protein structures. Figure 5(a) illustrates a scheme

in which, for each protein, acid and base charges other
than histidine are fixed and the ionisable groups of histi-
dine explore alternate surface locations (see also the
Methods section). One hundred passes were made
through the entire dataset, randomising the location of
histidine sidechain charge for each protein and recalculat-
ing pKas. In order to make these computations feasible,
estimates of pKa from full Monte Carlo sampling were
substituted by summation of acid/base interactions at
each histidine site, assuming protonated bases and depro-
tonated acids. For the set of non-randomised proteins,
this procedure gave the same R2 (0.92) for <pKa [His]>
versus subcellular pH, as did the results of Monte Carlo
sampling displayed in Figure 4(a), and the <pKa [His]>
values themselves correlated with R2 = 0.999 between the
two calculations. Figure 5(b) shows that the correlation
with subcellular pH, for calculations with the real distri-
bution of histidine ionisable groups, exceeds that for the
randomisations. The net charge of a protein can influence
His pKa, simply due to an environment weighted
towards positive or negative charge, i.e. positive overall
destabilises histidine protonation leading to negative His
pKas, and a negatively charged background stabilises His
protonation, giving positive His pKas. Indeed, the net
charge has some correlation with subcellular pH, as seen
in Table 1 and Figure 3(a), whereas Figure 5 demonstrates
that an additional element of correlation with subcellular
pH is attributable to histidine location, beyond the net
charge background (which remains constant in the ran-
domisations). Reinforcing this conclusion, R2 for the cor-
relation between the average of net charge on a protein
(excluding histidine), over subcellular location, and sub-
cellular pH is 0.42, substantially less than that for <pKa
[His]> and subcellular pH of 0.92. Next we consider the
physiological context for our observations.

Relevance of correlation between Histidine pKas and 
subcellular pH
We have found that protein populations tend towards
their most stable, on average, at the pH of the relevant
subcellular environment. A couple of notes should be
made about these results, which are based on predictions
of pH-dependent properties from protein structures. The
calculation model is simple (Debye-Hückel), based
largely on geometry of the charge network. This works
well for groups at the protein surface, with charge-charge
interactions dominated by water, which is the vast major-
ity of ionisable groups. In addition, the linear correlation
of predicted properties with subcellular pH is good, but
the fit between these properties and actual subcellular pH
values falls away for the acidic vacuolar and lysosomal
compartments (Figure 3(b)). We presume that in these
cases the restrictions imposed by overall ionisation
regions (Figure 2) prevent realisation of more acidic aver-
age values.

Subcellular pH and pH-dependent propertiesFigure 3
Subcellular pH and pH-dependent properties. (a) The 
average over subcellular compartments of predicted folded 
form pI, plotted against subcellular pH, with R2 = 0.44. (b) 
The pH of maximal folded state stability, averaged over pro-
teins for each subcellular location, is plotted against subcellu-
lar pH, R2 = 0.84. For both panels, the line of property = pH 
is marked (rather than the best fit line).
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Taking the basic observation, of predicted maximal stabil-
ity at subcellular pH, it is important to note that the bimo-
dal distribution of individual protein pH [GFU(min)]
values means that generally each protein is not most sta-
ble at the pH of its surroundings i.e. the observed correla-
tion relates to a sum over proteins in a particular
environment. If this correlation were not observed, then
in principle the folding free energy of proteins could (on
average) be more stabilising at an alternate pH. Thus, with
the observed correlation, the unfolded population of pro-
teins is (on average) minimised with respect to subcellular
pH. However, pH-dependent changes in GFU for each
protein, and related alteration in the F/U population, are
generally small, but possibly could be significant over the
subcellular population of proteins. This is a protein fold-
ing perspective on the results.

An alternative view would be to consider protonation, pH
buffering and pH homeostasis, which is directly related to
protein folding since GFU/pH QFU [33]. The regula-
tion of pH is of critical importance [35] and histidine imi-
dazoles are important components of intracellular
buffering power [36]. Histidine pKas underpin the rela-
tionships that we observe in the current work. In overall
terms, we see that more acidic environments tend towards
more acidic pH [GFU(min)], which in turn relates to
higher His pKas, more positive His pKas and relatively
stabilised protonated states. For example, His pKas move
towards higher values, away from the subcellular pH, for
acidic compartments relative to other environments. The
general trend is thus to reduce the buffering power associ-
ated with His, in each location. However, this movement
is small. Taken as an average value per His, the total range
of pKa shift between most acidic and most basic environ-
ments is about 0.2 pH unit. Although histidine ionisation
properties underlie our results, it may be that their direct
contributions to proton/pH buffering are not the most
important factor.

The reason that small average changes in His pKa give rise
to larger changes in <pH [GFU(min)]> (displayed sche-
matically in Figure 2), is that the stability term includes a

difference to the U state, and therefore also to the model
compound pKa for His (6.3). Of key importance is pKa,
determined by charge interactions in the F state, so that if
the model compound value changes, the overall result
remains. Thus far we have discussed our results in the con-
text of overall protein stability and pH buffering. Next we
combine these aspects.

When a protein folds or unfolds it may release or take-up
protons. Another way of looking at the correlations we
find is that, on average and with the caveat about acidic
compartments not falling directly on the line in Figure
3(b), net proton release or up-take is predicted to be close
to zero upon folding or re-folding. However, this need not
be the case generally, since metabolic processes leading to
net changes in proton concentration are handled by the
mechanisms of pH homeostasis [37].

Outside of net changes in protein folding, and without
considering intrinsically unstructured proteins [38], a
subset of proteins or domains will be unfolded at any
given time. It is of interest to estimate the number of his-
tidines associated with this unfolded population. Given a
protein density of about 1.35 g cm-3 [39], a volume frac-
tion of around 15% for proteins in the cytoplasm [40],
and an average amino acid molecular weight of 110 dal-
tons, the cytoplasm is approximately 1.8 Molar in protein
amino acids. With an estimate of histidine amino acid
composition at about 2.3% [41], this gives a histidine
Molarity of 0.042. If an average folded state stability is
taken at around 25-30 kJ/mole [42], then about 1 in 105

domains will be unfolded, so that an approximate con-
centration of histidine in the unfolded state is 4 × 10-7

Molar. Thus the sub-population of histidine ionisable
groups that are transiently in the unfolded state could be
larger than the concentration of protons. Of itself this may
not be a problem, since transient changes across a com-
partment will average out. What could be an issue though,
is whether changes in the populations of folded and
unfolded histidine sites couple to local pH-dependent
phenomena. This may be protein folding itself, for exam-
ple with low numbers of protons at pH 7, fluctuations

Table 1: Correlations between calculated properties and subcellular pH

First property Second property R2(with His) R2 (without His)

Subcellular pH <pI(F)> 0.44 0.47
Subcellular pH <pI(U)> 0.50 0.50
Subcellular pH <His/(Acid+Base)> 0.02 n/a
Subcellular pH <pH [GFU(min)]> 0.84 0.00
<pH [GFU(min)]> pI(F) 0.70 0.03
<pH [GFU(min)]> pI(U) 0.74 0.01

<pH [GFU(min)]> <His/(Acid+base)> 0.02 n/a

Squares of correlation coefficients are given. Without His refers to calculations with histidine ionisable groups removed.
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could impede protein refolding that is associated with
proton uptake. Alternatively, the mechanisms of pH-sens-
ing and pH homeostasis could be inappropriately acti-
vated and modulated by sufficiently large fluctuations.
Whether these processes occur in vivo depends on the
details of protein and proton diffusion properties as well
as on pH-sensing mechanisms, and their response func-
tions, all of which are unknown at the required level of
detail. However, the observed tendency to average proto-
nation changes towards zero for protein folding/unfold-

ing, in each subcellular location, would mitigate against
such processes.

Conclusion
In this work we have asked whether the pH-dependence
of organelle sub-proteomes, derived with structure-based
predictions, correlates with environmental pH. We find
that restrictions imposed by the composition of ionisable
groups means that individual proteins have minima in
pH-dependence, (the predicted pH at maximal stability),
that tend to lie on either side of subcellular pH. Averages
over proteins within each subcellular location though
reveal a strong correlation with subcellular pH. Investigat-
ing further it is found that histidine ionisations and pKas
from charge interactions in the folded state underlie this
correlation.

While net charge and pI also correlate with subcellular
pH, and pI correlates with the pH-dependent properties

Histidine and subcellular pHFigure 4
Histidine and subcellular pH. (a) Predicted pKa per his-
tidine imidazole, averaged over histidines in each subcellular 
location, is plotted against subcellular pH. The line of best fit 
is drawn (R2 = 0.92). (b) For each subcellular compartment, 
the average of calculated pKa per histidine is shown, and 
the 5% and 95% ranked values for pKa in each compart-
ment. LYS, lysosome; VAC, vacuole; GOL, golgi; ER, endo-
plasmic reticulum; CYT, cytoplasm; MIT, mitochondrion; 
NUC, nucleus; PER, peroxisome.
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reported here, the strongest relationship is found between
pH-dependence (and histidine pKas) and subcellular
pH. Thus, while a net charge relationship with subcellular
pH could be understood in terms of solubility and avoid-
ing isoelectric aggregation, there is also the question of
what lies behind the observed correlation of predicted
pH-dependence and subcellular pH. At face value, it could
be simply that folding stability tends towards maximal in
each subcellular location. However, it is only the average
that gives the correlation, rather than the stability maxima
for individual proteins.

We have shown that histidine ionisation underlies the
pH-dependence correlation. Further, histidine locations
are key since random placement of equivalent numbers of
histidines, in preserved charge backgrounds, does not
reproduce the strength of correlation. This leads us to con-
sider the proton buffering of histidine, but the differences
between subcellular environments (i.e. how much histi-
dine pKas are predicted to move) are relatively small.

Finally, we address the role of histidine ionisation in pro-
tein folding/unfolding. The direct implication of our
results is a prediction that proton release and proton
uptake are balanced in a random subset of folding or
unfolding proteins. Presumably such a balance would not
be required during net protein synthesis or degradation,
since the mechanisms of pH homeostasis regulate proton
concentration. We speculate that a balance of proton
uptake and release could play a role in guarding against
activation of pH homeostatic processes during folding
and unfolding fluctuations in a steady state subcellular
compartment. This can be examined experimentally, with
more detailed characterisation of the dynamics of pH
homeostasis mechanisms, and computationally with sys-
tems level models. It will also be of interest to study the
subcellular and extracellular distribution of protonation
changes upon complexation. This extends to protein-pro-
tein complexation [43] and to protein-small molecule, for
example the Bohr effect in hemoglobin [44].

Methods
Dataset
Release 55.5 of UniProtKB/Swiss-Prot [45] was searched
for annotation according to the following subcellular
compartments: nucleus; vacuole; cytoplasm; extracellular;
lysosome; chloroplast; mitochondrion; endoplasmic
reticulum; peroxisome; Golgi. Entries with uncertain key-
words such as similar, potential, probable were omitted.
Requiring at least one cross-reference from the Protein
Data Bank (PDB) structural database [46] gave 5278 Uni-
Prot entries referencing 16311 PDB identifiers. These PDB
identifiers were filtered using the PISCES server [47] for X-
ray diffraction structures better than 3 Å resolution, a min-
imum chain length of 30 amino acids and redundancy at

90% sequence identity, yielding 3,713 protein chains. The
90% sequence filter was chosen so that identical chains
would be eliminated, but allowing for amino acid varia-
tion on a common fold, since the calculated charge inter-
actions will change with such variation. Of the 3,713
chains, we excluded those with extracellular (1,048) and
chloroplast (90) annotation, as these locations present a
broad pH distribution. A further 534 were annotated with
more than one subcellular location and were also
excluded, as well as 20 failures in the calculation scheme
(for example, due to non-standard residue names). Struc-
ture-based predictions of pH-dependent properties were
made for the remaining 2,021 protein chains (see Addi-
tional file 1), roughly double the number compared with
previous work [20]. Figure 1 summarises this dataset.

Calculations
Continuum models are commonly used for calculating
charge interactions in biomolecules. The complexity and
computational requirements of these models varies
according to the accuracy with which the boundary
between solute and solvent is described. In the current
work, we require a relatively fast method, enabling calcu-
lations not just for many proteins, but also for a ran-
domised dataset that is generated to evaluate the central
hypothesis. A simple Debye-Hückel method is sufficient
for these purposes, since most of the ionisable charge pro-
teome is exposed to solvent, with water dominating the
solvation response [29]. In earlier work in this area, it was
found that the relatively simple Debye-Hückel method
gave very similar results to the more computationally
demanding Finite Difference Poisson-Boltzmann method
[20]. A uniform relative dielectric of 78.4 and an ionic
strength of 0.15 Molar were used in calculations of charge
interactions. To compute ionisable group pKas [48] from
these interactions, Monte Carlo sampling of protonation
states was used [49]. Changes in folding energy were
derived from the charge difference between folded (F) and
unfolded (U) states of a protein (QFU) [33], with an ori-
gin set from the ionisable group contribution to the fold-
ing energy calculated at an extreme pH with the reduced
sites method [48]. The following model compound pKas
were used; sidechains: Asp 4.0; Glu 4.4; His 6.3; Lys 10.4;
Arg 12.0; terminal groups: N-terminal 7.5; C-terminal 3.8.
Cysteine and tyrosine ionisation has not been considered,
since although important in certain catalytic processes,
these ionisations are of less interest in a study of global
charge properties around neutral pH. The unfolded state
is approximated as lacking interactions between ionisable
groups. While there are known to be charge interactions in
the U state [50], the current work focuses on the relation-
ship between pKas in the folded state (histidine in partic-
ular) and subcellular location. Of interest is that ionisable
group interactions in the unfolded state appear to be
dominated by local sequence neighbours, in part recapit-
Page 7 of 10
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ulating the interactions of the folded state [29]. We tri-
alled a simple model for pKa changes in the unfolded
state [29] as a mimic for folded state pKas, examining
whether the correlations observed with subcellular pH
were reproduced. If this had been successful, it would
have broadened the study to bypass protein structure in
examining proteomes; however this trial failed, with sub-
stantially lower correlation observed between calculated
properties and subcellular pH, compared with structure-
based calculations.

An additional test of the Debye-Hückel-based method for
calculating maximal stability was made, following a pro-
tocol established in previous work [31]. Briefly, the
BRENDA enzyme database [51] was searched for text
strings associated with maximal or optimal pH of stabil-
ity, and these results cross-referenced with PDB entries for
the same species and enzyme. The literature references
retrieved from BRENDA were checked for data pertaining
to a well-defined optimum, rather than a pH-range, and
also for confirmation of the optimum in relation to stabil-
ity as opposed to activity. Additional file 2 gives informa-
tion for the 19 enzymes retrieved in this analysis. The
listed criteria, and in particular the requirement for a pre-
cise species match between structure and stability data,
leads to a smaller dataset than that reported previously
[31]. The calculated root mean square deviation between
calculated and experimental pH stability optima is 0.78
for the dataset of 19 enzymes, comparable with the value
of 0.72 for the earlier work [31], and supporting the use of
Debye-Hückel modelling in this study.

The quantity His/(Acid + Base) was calculated as the
number of histidine residues divided by the sum of Asp,
Glu, Lys and Arg residues. In many cases, averages of prop-
erties were calculated over a set of protein structures anno-
tated with a particular subcellular location, and denoted
by <> symbols.

In order to test the importance of histidine sidechains,
predictions of pH dependence for proteins were made
with the ionisable charges of histidine sidechains
removed. Additional tests made use of proteins that con-
served the number of histidine sidechain charges, but not
their locations. Their positions were randomly assigned to
surface atoms (within amino acids of accessible surface
area > 5 Å 2), ensuring ionisable charges were separated by
at least 3.5 Å. This distance constraint applied also to the
background acidic and basic groups whose locations were
unchanged. One hundred datasets of proteins (each mir-
roring the 2,021 proteins of the wild-type dataset) were
constructed in this way, and pH-dependent features calcu-
lated. The extent of these computations required us to
look at whether the full Monte Carlo sampling, to obtain
pKas, could be circumvented for the properties of interest.

It was established that the pKa deviations of histidine
sidechains (pKa = pKa - pKa [model compound]) could
be estimated accurately (in relation to the Monte Carlo
sampling) from summation of charge interactions at each
ionisable site, at neutral pH (see Results and Discussion).

Subcellular pH
Experimentally-determined pH values for subcellular
compartments were collated from various sources in pre-
vious work [20], with an update for vacuolar pH to reflect
its position in the organelle acidification pathway [52,53]:
nucleus 7.7; vacuole 5.3; cytoplasm 7.3; lysosome 4.8;
mitochondrion 7.5; endoplasmic reticulum 7.1; peroxi-
some 8.2; Golgi 6.6. There will be some uncertainty in
precise values for individual locations, for example due to
compartmentalisation, but the overall trend of more
acidic, neutral, or more basic compartments is the key fac-
tor.

Abbreviations
3D: three-dimensional; F: folded (protein); PDB: protein
databank; pI: isoelectric point; U: unfolded (protein).
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Additional file 1
Dataset. An Excel file containing the PDB and chain identifiers, and sub-
cellular annotations, of proteins used in this work is provided. The data 
follow the description given in Figure 1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1741-
7007-7-69-S1.XLS]

Additional file 2
pH of max stability. Information for the proteins used in a test of pH sta-
bility predictions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1741-
7007-7-69-S2.XLS]
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