
Today’s diverse populations within the vast Eurasian 
continent, whether east, west, central or south, retain a 
horror of ‘the plague’ - as dreadful an agent of gruesome 
death as Ebola virus and yellow fever. Over the past two 
millennia, several pandemics of bubonic plague, caused 
by the flea-borne bacterium Yersinia pestis, have occur
red within Eurasia, spreading quickly and often then 
lingering. Using a stepped approach to a set of long 
historical time-series data, including climatic, pandemic, 
epidemic and social-political variables, a study by 
Kausrud and colleagues [1] published in BMC Biology 
concludes that naturally occurring climatic fluctuations, 
acting through their environmental, ecological and 
political impacts, may have influenced the human 
pandemic outbreaks.

Descriptions and theories about the occurrence of 
bubonic plague, particularly the Black Death (estimated 
to have killed one-third to one-half of Western Europe’s 
population), have engrossed many medical historians. In 
particular, the two great, recognized historical pandemics 
of bubonic plague have spawned various controversies.

The first was the Justinian Plague of 542 ad, which 
devastated Constantinople (by then the seat of the 
embattled Roman Empire). That great outbreak spread to 
engulf the greater Eastern Mediterranean region during 
the later sixth and seventh centuries. Second, in the 14th 
century, was the pandemic extending from China, 
through Central Asia, and eventually reaching Europe 
(the Black Death). Both pandemics occurred when great 
and complex political structures were becoming vul
nerable. Did the Justinian Plague contribute to the 
terminal weakening of the eastern Roman Empire [2]? 
Did the Black Death hasten the collapse of Europe’s 
feudal system, and the advent of liberalizing moves 
towards mercantilism, literacy and the Renaissance [3]? 
(And was the rise and fall of the Mongol-controlled Yuan 
Dynasty in China, from the mid-12th to mid-13th 
centuries, influenced by flickering pre-pandemic plague 
epidemics in China during that Medieval Warm period?)

The central research question
Kausrud and colleagues examine whether changes in 
climatic conditions over the past 15 centuries have 
potentiated these main excursions of the plague bacterium 
from its Central Asian, ground-burrowing, rodent host 
populations into human populations. They have used 
impressively extensive and detailed historical data for 
Central Asia (Kazakh region). Even so, when delving back 
over so many centuries, surrogate measures of paleo
climatic conditions are necessary - in this case, tree-rings, 
glaciers and stalagmites. The authors have also had to 
make simplifying assumptions about the determinants of 
(and, hence, the proxy index for) the changeable level of 
sylvatic (rodent) plague activity over time.

This research task is complex, and some readers will 
find the analytic methods and the inferences drawn as 
challenging as they are innovative. The initial fine-tuning 
of the model to estimate (from climatic conditions and, 
hence, vegetation cover) the changeable level of sylvatic 
plague activity within rodent populations over past 
centuries was achieved by the empirical comparison of 
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10,000 (yes, 10,000) computer-generated model variants 
tested against 20th century Kazakh data. Each variant 
comprised a slightly differing combination of the several 
proxy measures of climatic conditions - temperature, 
rainfall, and monsoonal shifts - and their own many 
possible representations.

This study is timely, as the world community is now 
increasingly attentive to the likely impacts of human-
induced climate change on the occurrence of infectious 
disease [4,5]. For many infectious agents, the probability 
of transmission is influenced variously by temperature, 
rainfall, humidity and wind patterns. The relationships 
between these factors are sometimes complex, and 
estimates of the impact of climate change on infectious 
disease have been contested [6]. Overall, though, it is 
certain that changes in climatic conditions will reset the 
boundaries, spatial and seasonal, on the transmission of 
many infectious diseases.

Salmonella food poisoning (diarrheal disease) occurs 
most often in summer, reflecting the faster proliferation 
of bacteria at higher temperatures. Cholera outbreaks 
occur more readily when coastal waters warm or when 
heavy rains cause flooding. The malarial parasite matures 
faster within the mosquito at warmer temperatures, and 
mosquito breeding, biting and survival are sensitive to 
temperature, surface water and humidity [4]. The 
northern limits of schistosomiasis transmission in China 
are set by the mid-winter ‘freezing zone’ - at which 
temperature the pathogen’s intermediate host, the water 

snail, cannot survive [7]. In warmer waters, development 
of the schistosomiasis parasite within the snail can only 
occur above 15.4°C.

For bubonic plague it is entirely possible that the 
natural reservoir populations of rodents would have been 
affected by regional climate changes, including impacts 
on regional vegetation food sources. Such a relationship 
has been previously postulated [8]. In the current work, 
Kausrud et al. [1] focus on the level of sylvatic plague 
activity in the multi-decadal period preceding each of the 
three major pandemic outbreaks of plague and the 
Manchurian epidemics of the early 20th century.

Drawing causal inferences
The relationship is summarized in Figure 1. The figure 
indicates a rise in plague activity (seen best in the red 
graph) in the bacterium’s natural homeland environment 
of Central Asia in the decades (often totaling a century or 
more) before spillover into human populations. Is that 
the critical influence - a prolonged multi-decadal increase 
in infected rodent numbers, as food sources expand and 
rodents and their fleas feast? And might the rapid decline 
in plague activity in the decade immediately preceding 
human spillover, evident for events 1, 2 and 4 in Figure 1, 
signify an acute reversal of fortune for rodent popu
lations  - disrupting colonies and displacing distressed 
animals, and thus facilitating human contact?

One cannot draw precise or certain inferences from 
these data. Nor is a test of statistical significance that 

Figure 1. Modeling the effects of climate on plague. In the top plot, the solid black line represents plague activity in the central Asian rodent 
population (Y(mean)) over the past 1,500 years, as estimated from the authors’ model of the effects of climate (including via observably correlated 
vegetation indices) on this natural reservoir (sylvatic) plague activity. The broken gray lines show 95% quantiles and the red line represents the 
multi-frequency (2 to 60 years) Gaussian moving average. The dark-blue plot represents the long-term (2 to 400 years) multi-frequency mean, with 
the maximum (upper broken line, Y(max)), minimum (lower broken line, Y(min)) and sum of minimum and maximum (solid line, Y(qu.)). The periods 
leading up to the Justinian Plague (1), the Black Death (2), the 19th-century pandemic (3) and the Manchurian epidemics (4) are shaded in pale 
blue. The third plot shows the index of conflict between Chinese and nomad societies (solid black line, War). Below this are shown the coverage of 
the climatic data used in the modeling: glacial series (blue), tree-ring index (green), and the decadal coverage in the monsoon proxy (brown). Taken 
from Figure 3d of Kausrud et al. [1].
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compares many hundreds of model runs as informative 
as would be a test of some hypothesized, temporally 
specific relationship between plague activity and human 
spillover. Nevertheless, there are contemporary analogs 
for assorted climatic influences on the transmissibility of 
a vector-borne infection, including some with reservoir 
non-human hosts. Examples of the latter, each with 
major mammalian reservoirs upon which the ‘vector’ 
insects mostly feed, are Lyme disease in North America 
[9] and tick-borne encephalitis in Sweden [10]. Spillovers 
into humans in both cases appear to be influenced by 
climatic changes.

Whereas regional climate may influence local vegeta
tion, rodent proliferation and infected flea numbers, 
long-distance transport of the pathogen typically requires 
human agency. Kausrud et al. [1] note that ‘the two main 
periods of border expansion, migration and warfare by 
central Asian nomad pastoralists found in Chinese 
records, and known in European history from the Hun 
invasion of the 5th century and the Mongol expansions of 
the 13th, are consistent with periods of high productivity 
in Central Asian grasslands having occurred prior to the 
great plague pandemics.’ Indeed, this offers a clue to the 
apparent delay (Figure 1) between the high level of 
Central Asian plague activity in the 12th and 13th 
centuries and the outbreak of the Black Death in mid-
14th-century Europe. The warmer, wetter, and hence 
grassier, steppes fueled the expansion of the horse-borne 
Mongol armies, who then extended their murderous 
reach westwards.

Meanwhile, the source of the Justinian Plague has long 
been disputed. Did it come from the east, or, as seems 
more likely, from Egypt and perhaps Ethiopia further 
down the Nile [2]? In this study the tree-ring time-series 
data (proxy for temperature) extend back only to the late 
seventh century. No clear answer is possible.

Other challenges, present and future
There is another twist in the postulated relationship 
between climate and plague. The pandemics may them
selves have affected the world’s climate [11]. A prime 
determinant of the total human-generated emissions of 
greenhouse gases, at any one time, is human population 
size. The paleoclimatic record shows downward dips in 
atmospheric concentrations of carbon dioxide and 
methane during times of plague-related depopulation - 
when forest clearing would have slowed, animal 
husbandry receded and rice growing declined.

Twists aside, this study illustrates the usual epidemio
logical research challenge of discerning a signal against 
considerable background noise. The plague bacterium is 
a recent descendant of Yersinia ancestors such as 

Y.  enterocolitica and Y. pseudotuberculosis. In parts of 
China, local pig and rodent populations infected by those 
two older pathogens display immunity to the ‘plague’ 
pathogen, Y. pestis. As humans too can be infected by 
these older forms, usually via the food chain, immunity 
to Y. pestis in human populations in (unhygienic) past 
times may have been quite high. That would add a further 
variable to an already complex mix; another potential 
time-related confounder to address. Meanwhile, inno
vative research initiatives - spanning bacterial DNA 
retrieval from human skeletons, analysis of inscriptions 
on gravestones, and evidence of fluctuations in building 
activity (engraved dates) - are enriching the microscopic 
and macroscopic archeology of plague research.

As Kausrud and colleagues [1] point out, though, 
today’s immediate challenge is to become better informed 
about the risks that human-induced climate change poses 
via impacts on major infectious diseases. Their innovative 
study has drawn, enterprisingly, on a set of long-run 
time-series data. It suggests that this ancient dread 
disease, bubonic plague, may not yet have run its course. 
We are on notice.
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