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Abstract

Background: Adaptation of the cellular metabolism to varying external conditions is brought about by regulated
changes in the activity of enzymes and transporters. Hormone-dependent reversible enzyme phosphorylation and
concentration changes of reactants and allosteric effectors are the major types of rapid kinetic enzyme regulation, whereas
on longer time scales changes in protein abundance may also become operative. Here, we used a comprehensive
mathematical model of the hepatic glucose metabolism of rat hepatocytes to decipher the relative importance of
different regulatory modes and their mutual interdependencies in the hepatic control of plasma glucose homeostasis.

Results: Model simulations reveal significant differences in the capability of liver metabolism to counteract variations of
plasma glucose in different physiological settings (starvation, ad libitum nutrient supply, diabetes). Changes in enzyme
abundances adjust the metabolic output to the anticipated physiological demand but may turn into a regulatory
disadvantage if sudden unexpected changes of the external conditions occur. Allosteric and hormonal control of enzyme
activities allow the liver to assume a broad range of metabolic states and may even fully reverse flux changes resulting
from changes of enzyme abundances alone. Metabolic control analysis reveals that control of the hepatic glucose
metabolism is mainly exerted by enzymes alone, which are differently controlled by alterations in enzyme abundance,

reversible phosphorylation, and allosteric effects.

Conclusion: In hepatic glucose metabolism, regulation of enzyme activities by changes of reactants, allosteric effects,
and reversible phosphorylation is equally important as changes in protein abundance of key regulatory enzymes.

Keywords: Diabetes, Enzyme abundance, Glucose metabolism, Hormonal enzyme regulation, Kinetic enzyme

regulation, Liver, Reversible phosphorylation

Background

An important feature of cellular metabolic networks is
their ability to adjust the functional output to largely vary-
ing external conditions such as changes in nutrient supply,
enforced synthesis of macromolecules during the growth
phase, varying hormone levels, or presence of toxins. This
adjustment is achieved by diverse regulatory mechanisms
tuning the activities of enzymes and transporters in a
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concerted fashion. The simplest mechanism operative for
virtually all reactions in the network consists in changes of
the enzymatic turnover rate owing to concentration
changes of substrates and products as long as these con-
centrations remain below the saturation level. Further,
during the natural evolution of living systems, two basic
regulatory mechanisms have been established to regulate
the activity of enzymes and transporters in a metabolic
network.

One such mechanism is to vary the amount of an en-
zyme, which linearly relates to the enzyme’s maximal
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catalytic capacity. Enzyme abundances can be regulated at
the level of gene transcription, mRNA translation or pro-
tein degradation. In the rat liver, significant changes of en-
zyme amounts in the carbohydrate metabolism occur
between 5 and 100 hours during a starvation-refeeding
cycle [1, 2].

A second fundamental regulatory concept, usually termed
kinetic regulation, consists of changes in the specific activity
of enzymes due to conformational changes of the protein
structure. This allows a rapid adaptation of the network to
varying external and internal conditions within a few sec-
onds. Conformational changes can be brought about by co-
valent or non-covalent binding of specific ligands (organic
and inorganic metabolites, proteins, metal ions) or by partial
proteolysis. The predominant concepts of kinetic regulation
are allostery and reversible chemical modification. Allostery
designates the modulation of enzyme kinetic properties by
non-covalent binding of an effector molecule at the protein’s
allosteric site, i.e. a site other than the binding site for the
substrates and products. Reversible chemical modification
encompasses the temporary covalent attachment of a mol-
ecule to and detachment from the enzyme protein. In a
given metabolic system, not all enzymes are equally import-
ant for the regulation of the systemic behavior. Rather, only
specific key enzymes carry the burden of the regulatory
control.

High-throughput technologies enabling the cell-wide mon-
itoring of RNA and protein levels have revealed high variabil-
ity in the abundance of transcripts and protein amounts of
metabolic enzymes, both among individual cells and among
cells exposed to different physiological settings. This finding
has promoted the current prevailing view that metabolic
regulation is basically achieved by variable gene expression.
For example, 90 % of contemporary scientific publications
containing the keyword ‘metabolic regulation’ deal with vari-
able gene expression of metabolic enzymes. This raises the
question of whether metabolic regulation can really be in-
ferred from changes in the expression profile of enzymes
and transporters. Serious doubts in this simplifying concept
emerge from several studies demonstrating that changes of
pathway fluxes commonly displayed poor or even lacking
correlation with changes of enzyme abundances (3, 4]. The
need for inclusion of all modes of enzyme control in the
regulation of cellular metabolism has already been pointed
out by the time-dependent regulation analysis of Westerhoff
et al. [5]. However, to date, such an analysis for a physiologic-
ally meaningful metabolic network is lacking. To this end,
herein, we use a detailed kinetic model of hepatic glucose
metabolism to quantify how variable protein abundances,
changes of reactant concentrations, allosteric regulation, and
reversible phosphorylation of metabolic enzymes contrib-
ute to the metabolic capacity of rat liver to assure the
homeostasis of plasma glucose levels in different
physiological settings including fasting, ad libitum
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feeding, and diabetes. The model takes into account
allosteric effects as well as hormonal regulation of
key metabolic enzymes by insulin and glucagon and
thus allows a detailed recapitulation of kinetic regula-
tion of the hepatic glucose metabolism. Experimen-
tally determined enzyme abundances were used to
scale the maximal rates of the respective enzymes.
The model was parameterized and calibrated for rat
hepatocytes because experimental information on up-
take and release rates of glucose, enzyme-kinetic pa-
rameters, and condition-dependent differences in
enzyme abundance is more extensive for rats than for
humans.

In this work, we address two interrelated questions. First,
what is the relative importance of different modes of
enzyme regulation for the dynamic behavior of hepatic glu-
cose metabolism? In other words, how would the regula-
tion of the metabolic system change if one mode of
regulation was lacking. Addressing this question we argue,
from an evolutionary perspective, that owing to continuous
mutational alterations of protein structures and natural
selection, increasingly sophisticated mechanisms of enzyme
regulation have been established. For example, allosteric
regulation requires the enzyme protein to possess specific
binding sites for potential effector molecules. Such binding
sites will not have been present for primordial enzymes. A
feasible computational method to study how the occur-
rence of different regulatory modes may have improved the
regulation of a metabolic system is to compare the dynamic
behavior of the system in the presence and absence of a
specific regulatory mode. We performed this analysis by
simulating the response of the net hepatic glucose uptake
to varying external concentrations of plasma glucose by
freezing those terms of the kinetic rate equations belonging
to a given mode of regulation. The second question
addressed in this work relates to the sensitivity of network
fluxes against changes in the regulatory properties of indi-
vidual enzymes. This is a question of practical importance
for the design of drugs affecting the activity of selected
target enzymes with the aim to change the dynamical
behavior of the network into a desired direction. Here, it is
important to know which regulatory mode of the target
enzyme is best suited for such intervention. As the network
response depends on the strength of the parameter change
as well as on the external conditions, we restricted our
analysis to selected stationary metabolic states of the liver
and to small parameter changes allowing the application of
sensitivity measures used in metabolic control theory.

Methods

Metabolic reactions

The mathematical model of hepatic glucose metabolism
encompasses the reactions of the pathways of glycolysis,
gluconeogenesis, and glycogen turnover (Fig. 1). For all
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Fig. 1 Schematic representation of the model of rat hepatocyte carbohydrate metabolism. The model contains enzymes involved in glycolysis,
glyconeogenesis, and glycogen synthesis and utilization (ALD, EN, FBP1, FBP2, GAPDH, GK, GP, G6P, GPI, G1PI, GS, LDH, NDK, MDH, PC, PEPCK,
PFK1, PFK2, PGK, PGM, PK, TPI, UGT) and transporters (ER < - > cytosol: GIcT, G6PT; mito < - > cytosol: MalT, PEPT, PyrMalT, PyrT; external space < - >
cytosol: GLUT2, LacT). Enzymes (E) that are phosphorylated or dephosphorylated (y) in response to insulin (Ins) and glucagon stimulus are marked
by a yellow P, allosteric modification of enzymes is marked by a red A. The model contains the metabolites: DHAP, Fru6P, Fru16P,, Fru26P,, GAP,
Glc, GIc1P, GIcéP, Glyc, Lac, Mal, OA, P, PEP, 13P2G, 2PG, 3PG, PP, Pyr, and UDP-Glc. The cofactors NAD, its reduced form NADH, ADP, and ATP are
not treated as dynamic variables. GDP and GTP as well as UTP and UDP are generated from ATP and ADP by NDK. The physiological metabolic
processes consuming Pyr in the hepatocyte during glycolysis are comprised into Lac formation and export. The rate equations are given in the
Additional file 1. ADP, Adenosine diphosphate; ALD, Aldolase; EN, Enolase; ATP, Adenosine triphosphate; DHAP, Dihydroxyacetone phosphate; ER,
Endoplasmic reticulum; FBP1, Fructose-1,6-bisphosphatase; FBP2, Fructose-2,6-bisphosphatase; Fru26P,, Fructose 2,6-bisphospate; GAP, Glyceralde-
hyde 3-phosphate; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; GDP, Guanosine diphosphate; GK, Glucokinase; GIcT, Glucose transporter;
GLUT2, Glucose transporter 2; Glyc, Glycogen; G1PI, Glucose-1-phosphate isomerase; G6P, Glucose-6-phosphate phosphatase; GPI, Glucose-6-
phosphate isomerase; GTP, Guanosine triphosphate; LacT, Lactate transporter; LDH, Lactate dehydrogenase; MDH, Malate dehydrogenase; mito,
Mitochondrion; NAD, Nicotinamide adenine dinucleotide; NDK, Nucleoside-diphosphate kinase; P, Orthophosphate; PP, Pyrophosphate; Pyr,
Pyruvate; PyrMalT, Pyruvate/malate antiporter; PC, Pyruvate carboxylase; PEPCK, Phosphoenolpyruvate carboxykinase; PEPT, Phosphoenolpyruvate
transporter; PFK1/2, Phosphofructokinase-1/2; PGK, Phosphoglycerate kinase; PGM, Phosphoglycerate mutase; PK, Pyruvate kinase; PyrT, Pyruvate
transporter; TP, Triose-phosphate isomerase; UDP-GIc, uridine diphosphate glucose; UGT, Uridine diphospho-glucuronosyltransferase; UTP, Uridine
triphosphate; 2PG, 2-phosphoglycerate; 3PG, 3-phosphoglycerate; 13P2G, 1,3-bisphosphoglycerate
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reactions, detailed liver-specific enzymatic rate equations
have been established based on literature data (Additional
file 1). Enzymatic rate equations describe the relationship
between the reaction rate (i.e. amount of substrate con-
verted into product per time unit) and the concentration
of substrates, products, and allosteric effectors (activators
or inhibitors). A list of fixed parameters is given in
Additional Table S2 (Additional file 1). The overall rate
law of enzymes regulated by reversible phosphorylation
was composed as weighted linear combination of two rate
laws, one holding for the phosphorylated form of the en-
zyme and the other holding for the dephosphorylated
form. The weighting factor represents the relative fraction
of the phosphorylated form and is related to the concen-
tration of the hormones insulin and glucagon by empirical
transfer and signal functions (Figs. 2 and 3, and Sig-
naling transfer functions in Additional file 1).
Parameterization of rate laws was carried out for rat
hepatocytes.

In all model simulations, we have chosen the exchange
flux of glucose with the external space as the crucial tar-
get flux determining the capacity of the metabolic net-
work to counteract changes in the plasma concentration
of glucose. Numerical values for kinetic parameters of
the enzymes were extrapolated from values determined
in in vitro enzyme assays. However, numerical values for
the maximal enzyme activities (V) in vivo are un-
known. The V.. values of enzymes depend on the
(varying) expression level of the enzyme protein as well
as effectors acting inside the cell but being (yet) un-
known. Thus, there was no other option than to esti-
mate these parameters by minimizing the difference
between model predictions and experimental data. In
order to use the model for predicting the impact of
changes in the expression (= protein) level of enzymes
elicited by changes in the physiological status (fed,
fasted, normal, diabetic) of the rat it is compulsory to
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estimate the V., values for only one of these states
(serving as reference state) and to relate the V,,,, values
for all other states to the V., values of the reference
state by the ratio of enzyme abundances, thereby
exploiting the fact that the V., value is a linear func-
tion of enzyme abundance. We have chosen the fed state
as the reference case. With an‘igx denoting the V ,,, value
of an enzyme in the reference state, the V., value of
this enzyme in the fasted and diabetic state is put to

asted ef ef
meax = dfasted Vg, and Viax =aq Vi, where the
scaling factors arasteq and agy are given by the ratio of
mean enzyme abundances (E) shown in Fig. 4:

<E>fasted/< and ag= (Ea

E) fed / <E> fed

Afasted =

We additionally defined a fourth physiological state,
the so-called normal state, referring to a situation
where the rat is kept under limited but energetically
balanced food supply. As for the normal state no ex-
perimental data on enzyme abundances are available
in the literature we made the assumption that the
Vimax values in the normal state can be reasonably
well approximated by the V., values in the fed and
fasted state:

1
®normal = ) (“fasted + “fed) (6)

With these settings, the only adjustable parameters to

be estimated are the values of V for the (fed) refer-
ence state.

Relationship between plasma levels of glucose and the
hormones insulin and glucagon

The phosphorylation state of enzymes controlled by re-
versible phosphorylation is determined by the insulin and
glucagon concentrations within the liver sinusoids. Both
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Fig. 2 Glucose-hormone-transfer (GHT) functions. The GHT functions describe the dependence of plasma insulin (a) and plasma glucagon

(b) on plasma glucose levels. Experimentally determined plasma concentrations of glucose and hormone (grey dots) from various sources (insulin:
[59-61], glucagon: [42, 62-65]) were pooled (black lines — mean values, light grey boxes — standard deviations). The additional Tables S3 and $4
summarize the used values (Additional file 1). A Hill-type function was used to fit the data by least-square minimization yielding the normal GHT
function (blue line). The red line depicts diabetic GHT function. For details of the used fit functions see Additional file 1
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hormones are secreted by the pancreas into the portal
vein. The secretion rate is mainly controlled by the glu-
cose concentration of the blood. An increase of glucose
concentration stimulates the release of insulin from beta
cells and reduces the release of glucagon from alpha cells
in the pancreatic islets of Langerhans. Similarly to Koenig
et al. [6], we established an empirical GHT function, which
describes the relationship between the plasma level of glu-
cose and of insulin and glucagon. To this end, we fitted a
sigmoid function of Hill-type to a large data set of experi-
mentally determined glucose-insulin and glucose-
glucagon relations determined in the rat (Fig. 2).

Relationship between plasma hormone level and
phosphorylation state of enzymes

On the short-term, insulin and glucagon control the phos-
phorylation state of key regulatory enzymes by glucagon-
stimulated enzyme phosphorylation and insulin-mediated
inhibition of enzyme phosphorylation. We constructed an
empirical signal function to describe the relationship be-
tween hormone levels and the relative share (y) of the phos-
phorylated enzyme in the total enzyme pool (Fig. 3). We
assumed that, at saturating concentrations of the hormone
(set to 10°> pM), the phosphorylated fraction of the enzyme
tends to y =1 (glucagon) or y = 0 (insulin), respectively.
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Fig. 4 Experimentally determined variations in the abundance of key metabolic enzymes. The circles denote the average ratio between measured
protein abundances in hepatocytes from fasted versus fed hepatocytes (blue) and diabetic versus normal hepatocytes (red). Vertical lines indicate the
range of reported values. Experimental data are from various sources [2, 7, 19-38]
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Experimentally determined variations of enzyme abundances
Long-term alterations on the average values of plasma
glucose and hormone concentrations induce changes in
the abundance of key metabolic enzymes in the liver.
Such adaptation occurs under extreme physiological and
pathological settings like starvation or diabetes. Figure 4
shows the range of reported ratios of enzyme abun-
dances, which were experimentally determined in fed
and fasted hepatocytes and in ‘normal’ hepatocytes (for
which the enzyme abundances were set to the mean
values of abundances from fasted and fed hepatocytes)
and diabetic hepatocytes. For example, the abundance of
the glycolytic enzyme pyruvate kinase was found in dif-
ferent publications to be between two- and four-fold
higher in diabetic hepatocytes compared with normal
hepatocytes. We used the mean of the reported ranges
for the fold-change of enzyme abundances depicted
in Fig. 4 to scale the maximal enzyme activities
when we parameterized the model for different
physiological settings.

Software

Computations were performed with MATLAB Release
2009a, The MathWorks, Inc., Natick, Massachusetts,
United States. The SBML version of the model is sup-
plied as Additional file 2.

Results

Validation of the model

We checked the validity of the kinetic model by compar-
ing simulated glucose exchange fluxes, metabolite con-
centrations and filling states of the glycogen store with
experimental data. Throughout the paper, we use the
term glucose exchange flux to designate the glucose
transport flux from the external space into the cell
(= glucose net uptake), i.e. negative flux values indicate
net release of glucose from the cell to the external space.
The literature data used for the parametrization and
validation of the model were obtained from liver tissue or
hepatocytes of rats that have adopted different physio-
logical states owing to either nutritional, genetic, or chem-
ical interventions. The fed state designates a situation
where rats are routinely fed ad libitum, i.e. food is avail-
able at all times in unlimited quantities. These animals are
thus moderately obese and display elevated plasma glu-
cose levels compared to rats in the normal state kept
under well-controlled feeding. The fasted state is attained
after 24 hours of complete food deprivation and is charac-
terized by low plasma glucose levels. The diabetic state re-
fers to a situation in which the animals exhibit an
impaired glucose-insulin and glucose-glucagon relation-
ship (for details see below). Finally, in the normal state,
the rats have limited access to food without any signs of
malnutrition. For the sake of convenience, livers or
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hepatocytes from fasted, fed, diabetic, and normal rats will
be referred to as fasted, fed, diabetic, and normal livers/
hepatocytes in the following sections.

The gene expression and, thus, the protein abundance of
metabolic enzymes differs in these different physiological
states. Figure 4 depicts ratios of enzyme abundances gath-
ered from different literature sources. These ratios were used
to put the maximal enzyme activities of different physio-
logical states into a linear relation, thereby using the enzyme
abundances in the fed state as reference. The relative max-
imal activities are given in Table 1. Using protein abundances
for scaling maximal enzyme activities exploits the fact that
the maximal activity of an enzyme is a linear function of the
enzyme abundance with the turnover number (number of
catalytic events per time unit) serving as a proportionality
factor. For details of the procedure used to fix the numerical
values of these scaling factors see Methods.

Hepatic glucose production (HGP) from lactate

In this simulation, we compared rates of gluconeogene-
sis (also referred to as hepatic glucose production, HGP)
from lactate with experimental data obtained in perfused
fasted livers (Fig. 5). We set the maximal enzyme
activities to fasting conditions (Table 1) and varied the
external concentration of lactate as done in various

Table 1 Relative maximal enzyme activities for the normal, fasted,
and diabetic rat liver. The numbers represent relative maximal
enzyme activities with respect to those of the fed state (= reference
state). They are based on the experimentally observed protein
abundance ratios shown in Fig. 1. For the absolute values of
maximal enzyme activities in the fed (reference) state see section
model parameters in Additional file 1. Where there is no range
given, only the given fixed ratio was used

Enzyme Normal liver Fasted liver Diabetic liver
mean mean range mean range

FBP1 1.00 1.00 - 4.00 -

FBP2 0.66 043 04-0475 026 0.20-040
GK 048 0.23 0.12-046 0.24 0.19-0.33
GlcT 1.00 1.00 - 135 1.00-2.00
GP 0.89 0.80 0.65-1.0 045 0.40-0.63
G6P 141 2.00 - 354 1.48-7.07
GS 1.00 1.00 - 1.70 1.24-2.25
PC 1.25 1.56 - 375 2.50-5.00
PEPCK 141 2.00 - 4.24 2.83-5.66
PFK1 0.76 0.57 0.3-0.85 0.30 0.23-041
PFK2 0.66 043 04-0475 026 0.20-040
PK 0.58 0.33 0.25-0.5 0.29 0.17-0.52

FBP1 Fructose-1,6-bisphosphatase, FBP2 Fructose-2,6-bisphosphatase, GK
Glucokinase, GIcT Glucose transporter, G6P Glucose-6-phosphate phosphatase,
GP Glycogen phosphorylase, GS Glycogen synthase, PC Pyruvate carboxylase,
PEPCK Phosphoenolpyruvate carboxykinase, PFK1/2 Phosphofructokinase-1/2,
PK Pyruvate kinase
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Fig. 5 Gluconeogenesis from lactate. The solid line depicts the simulated stationary hepatic glucose exchange flux for fasted hepatocytes as
function of the external lactate concentration (Lace,y), which was varied between 0-10 mM. Data points represent experimental data taken from

experiments. As the perfusion medium used in the ex-
periments was devoid of glucose and hormones, we put
these concentrations to zero. The integration time was
chosen long enough to reach a stationary steady state. In
agreement with the data, for lactate concentrations
larger than 5 mM, the glucose exchange flux starts to
become saturated to finally reach a maximum of ap-
proximately 60-70 umol/g/L (= maximal net glucose
production rate).

Transition between HGP and hepatic glucose utilization
(HGU) in vivo

In a second simulation, we varied the plasma glucose level
between 3—-12 mM and calculated the stationary glucose
exchange flux of the fasted, normal, and fed liver in vivo.
The relative enzyme abundances for the normal, fasted, and
diabetic state relative to those of the fed (reference) state
are given in Table 1. The plasma level of the hormones in-
sulin and glucagon associated with a given value of plasma
glucose was obtained by means of glucose-hormone trans-
fer (GHT) functions (see Methods, Fig. 2). The external
lactate concentration was put to the average physiological
value of 1 mM. Again, we let the simulations run long
enough to obtain a metabolic steady state. Figure 6 shows
simulated and experimentally determined glucose ex-
change fluxes for normal, fasted, and fed livers in depend-
ence of plasma glucose levels in vivo. Note that the
experimental data in Fig. 6 merely indicate the expected
range of glucose exchange fluxes because a clear assign-
ment of these data to the specific state of the laboratory
rat was not extractable from the literature sources. The
simulated curves suggest that the glucose output of the
liver is shifted to higher values in the fasted state com-
pared with the fed state. In what follows, we define the

glucose set point by the plasma glucose level at which the
glucose exchange flux is zero, i.e. the liver neither utilizes
nor produces glucose. This glucose set point is shifted
from about 6.5 mM of the fed liver to about 9 mM of the
fasted liver.

Hepatic glycogen storage during a starvation-refeeding
cycle

Thus far we considered stationary fluxes under various ex-
ternal conditions. Stationarity implies that the intrahepatic
glycogen store also adopts a steady state where rates of gly-
cogenolysis and glycogen synthesis are equal and thus do
not contribute to the glucose exchange flux. However, in
vivo, the plasma concentrations of glucose and hormones
are continuously changing thus preventing the attainment
of a steady state. Therefore, in a third simulation, we inves-
tigated the time-dependent variation of the glycogen pool
during a starvation-refeeding cycle, which starts at time t =
0 with a fasted liver that is completely emptied in glycogen
after 48 hours of starvation (plasma glucose concentration
set to 4 mM). The corresponding glucagon and insulin con-
centrations were calculated from the GHT functions shown
in Fig. 2. Figure 7 shows the simulated time-dependent fill-
ing state of the hepatic glycogen store together with experi-
mental data during 20-h refeeding (plasma glucose
concentration set to 8 mM) and subsequent fasting over a
32-h period. During the fasting period starting at t =20 h,
depletion of the glycogen store contributes to net glucose
production.

Conversion of imported glucose to glycogen

In the feeding phase, hepatocytes take up plasma glucose
that is either used to replenish their glycogen store or to
form pyruvate via glycolysis. To check the relative share
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12

of these two alternative modes of glucose utilization we
simulated an oral glucose tolerance test applied to fasted
rats [7]. Figure 8 shows the average fluxes of glucose up-
take and glycogen synthesis during the first 60 minutes.
The absolute values of measured and computed flux
rates as well as the flux ratios are in good concordance,
indicating that more than 90 % of the glucose taken up
by the fasted liver is used to replenish the glycogen
store.

Range of intracellular metabolite levels

Finally, we compared the intracellular metabolite con-
centrations in fed, normal, and fasted hepatocytes with
reported tissue concentrations. To this end, we varied
plasma glucose concentration within the physiological

range of 3-12 mM and calculated the concentration
range of all cellular metabolites occurring in the model.
Lactate was fixed at 1 mM while glucagon and insulin
concentrations were determined by means of the GHT
functions (Fig. 2). Figure 9 demonstrates the good agree-
ment between the computed ranges of intracellular me-
tabolite concentrations for fasted and fed hepatocytes
and ranges of reported experimental values.

Model applications

The impact of variable protein abundance on glucose
exchange fluxes in different conditions

The liver switches from glucose production to glucose
utilization depending on the plasma glucose level and the
two main hormones insulin and glucagon. Depending on
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Fig. 7 Hepatic glycogen storage. The solid line depicts the time course of intrahepatic glycogen content (Glyc) during refeeding and fasting of

initially fasted hepatocytes. Open circles represent experimental data [45], where 48-h fasted rats were fed ad libitum for 20 h before they were
fasted again. The broken vertical line indicates the transition from refeeding to fasting conditions
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the timing of nutrient uptake this switch may occur sev-
eral times during a day and is mainly controlled by
hormone-dependent reversible phosphorylation of key
regulatory enzymes. If changes of the external conditions
persist over several days or even longer time periods,
regulation of protein abundance represents a further
mechanism of metabolic adjustment. To reveal the
physiological implications of metabolic adaptation
through variable abundance of metabolic enzymes we cal-
culated the glucose exchange flux of the liver over a broad
range of blood plasma glucose concentrations. Lactate
concentration was set to 1 mM, the intrahepatic filling
state of the glycogen store was put to fixed values between
0 and 100 %, and insulin and glucagon values were deter-
mined by the GHT functions (Fig. 2).

Figure 10 depicts stationary exchange fluxes in response to
varying plasma glucose levels at various filling states of the
glycogen store. In the fasted liver, the glucose set point at
which the glucose exchange flux is zero (indicated by bold
black lines) lies between 8.0 and 9.2 mM depending on the
filling state of the glycogen store. For the normal and fed
liver, the set point is increasingly shifted to lower values lying
between 6.7 and 7.7 mM and between 5.9 and 6.6 mM,

respectively. These computations clearly demonstrate the
impact of variable enzyme abundance on the capability of
the liver to utilize or produce glucose at given plasma glu-
cose levels — fasting shifts the range of glucose exchange
rates into the direction of glucose production and decreases
the capacity for glucose uptake. In contrast, fed hepatocytes
possess about equal capacities for glucose production and
glucose uptake.

Putting the filling state of the glycogen store to 100 %
and the blood plasma glucose concentration to 3 mM
and, conversely, putting the filling state of the glycogen
store to zero and the blood plasma glucose concentration
to 10 mM, the maximal observable rates of the glu-
cose exchange flux predicted by the model were ap-
proximately between —-70 pmol/g/h and +80 pmol/g/h
for the fed hepatocyte and approximately between —
120 pmol/g/h and +20 pmol/g/h for the fasted hepatocyte.

The impact of diabetes type 2 on the hepatic glucose
exchange flux

The diabetic liver is not only characterized by changes in
the abundance of metabolic enzymes (Table 1) but also by
alterations in the glucose-hormone relationships (see GHT



Bulik et al. BMC Biology (2016) 14:15 Page 10 of 22

ol |
<
e}

Lac -
Mal |-
2PG [
3PG -

3.5
3, .
25 -
2 2 B
c
i<l
g
€15 -
(9]
o
c
o
O
1, .
05 H H -
0 - HI D- - \l
o & s
8 a &
S

DHAP ’-n

i
FrueP ({
Glc1P |1

Fig. 9 Simulated and measured concentration ranges of metabolites. Experimentally determined concentration ranges of metabolites (gray) are shown
together with simulated concentration ranges (black) for the fed, normal, and fasted liver. Simulated concentration ranges were obtained as steady state
concentrations when plasma glucose concentration was varied between 3-12 mM with constant plasma lactate (1 mM). Experimental data are from various
experimental sources [46-54]. Experimental concentration values given in umol/g wet weight were converted into mM by dividing these by the factor 046
and corrected for the liver density of 1.067 g/mL [55]. DHAP, Dihydroxyacetone phosphate; Fru6P, Fructose 6-phosphate; Glc1P, Glucose 1-phosphate; GIc6P,
Glucose 6-phosphate; Mal, Malate; OA, Oxaloacetate; PEP, Phosphoenolpyruvate; 2PG, 2-Phosphoglycerate; 3PG, 3-Phosphoglycerate; Pyr, Pyruvate

L 100 100 100
= 80 = 80 = 80 I
s 50
g g g
5 60 5 60 5 60
o
& 40 & 40 £ 40
5 S 5 -50
S s >
G 20 @ 20 o 20 -100
0 : -150

6 7 8 9 10 03456?8910 03456?8910

3 4

Plasma glucose [mM] Plasma glucose [mM] Plasma glucose [mM]

100 100 100, ; 200
- - — 80 150
5 80 § 80 B 100
8 8 8 f
< 60 < 60 « 60 50
o o o i 0
& a0 & a0 £ 40
o U o -50
= = =
G 20 G 20 o 20 -100

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 “150
Plasma glucose [mM] Plasma glucose [mM] Plasma glucose [mM]

Fig. 10 Stationary glucose exchange fluxes in dependence of plasma glucose and glycogen store. Plasma glucose was varied between 3 and

10 mM and filling state of glycogen storage was variably fixed to values between 0 and 100 %. The color encodes the steady state flux rates of
glucose exchange of fasted (a), normal (b), fed (c), and diabetic hepatocytes (d—f). Green colors indicate small values of the glucose exchange
flux around the set point where the net glucose exchange is zero (marked by bold black lines). Warm colors indicate net glucose uptake and
cool colors indicate net glucose release. The legend is given on the right-hand axis in units of umol/h/g tissue. Thin black isoclines connect equal
exchange fluxes (in steps of 25 umol/h/g tissue). Note that the set point values at 6.5 mM (fed), 7.5 mM (normal), and 9 mM (fasted) at half-filling
of the glycogen store are identical with those in Fig. 6, where the glycogen contribution is zero due to the condition of stationarity. For the
diabetic liver, the calculations were performed for three different scenarios: (d) no change of enzyme abundances compared with the normal
state but impaired glucose-hormone relationship (see red curves of the GHT function in Fig. 2); (e) altered protein abundances (see Table 1 for
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functions represented by the red curves in Fig. 2). Portal in-
sulin was found to be reduced to about 10 %, while portal
glucagon was increased to almost 200 % of normal concen-
trations [8]. In order to quantify the impact of either of
these changes on the glucose exchange flux we performed
three different simulations where changes in either the
glucose-hormone response, the enzyme abundances, or
both were taken into account.

We simulated the glucose exchange flux of the diabetic
liver over a wide range of plasma glucose concentrations
spanning from approximately 3 mM (observed during
hypoglycemic crises) to approximately 20 mM (a com-
monly observed level in untreated diabetic rats [9]). Lactate
concentration was set to 1 mM. Insulin and glucagon
values were either computed by the normal or diabetic
GHT (represented by the blue or red curves in Fig. 2,
respectively).

Taking into account alterations of the glucose-hormone
profiles only (Fig. 10d) our model predicts a shift of the set
point to the right, i.e. an increase of the capability of the
liver to function as glucose producer. This right-shift is
even more pronounced if only changes in protein abun-
dances are taken into account (Fig. 10e). The combined ef-
fect of altered hormonal control and altered enzyme
abundances results in an additional right-shift of the set
point such that the diabetic liver works as a glucose produ-
cer up to plasma glucose levels of 15 mM (Fig. 10f).

The importance of variable enzyme abundances for the
adaptation of the liver to different physiological settings is
summarized in Fig. 11 showing the calculated maximal
range of glucose exchange rates at variations of the plasma
glucose level between 3 and 10 mM, with and without
adaptation of enzyme abundances and altered glucose-
hormone relationship. These ranges were estimated by
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setting the filling of the glycogen store to 0 or 100 % at
3 mM and 10 mM plasma glucose, respectively.

Diurnal metabolic profiles of fasted, fed, and diabetic
hepatocytes

We used the model to investigate the response of the
liver to diurnal variations of the plasma glucose level
in different physiological settings. Measured plasma
glucose profiles monitored over 24 hours were used
as model input. Since the diurnal plasma glucose
levels differ significantly between the fasted, fed, and
diabetic conditions, we used representative profiles for
each condition. The associated hormone profiles were
again calculated by means of the GHT function
(Fig. 2). To estimate the impact of random individual
variations in enzyme abundances on the simulation
results we repeated the simulations 50 times with
protein abundance ratios randomly sampled from the
experimentally determined ranges (Table 1).

Figures 12 and 13 show simulated diurnal variations of
the glucose exchange flux for the fed and fasted state. At
rich nutrient supply (fed state), the liver acts either as glu-
cose producer or utilizer depending on the actual plasma
glucose level (Fig. 12d). Over one day, glycogen decreases
by approximately 50 %, but is fully replenished, resulting
in no net glycogen utilization (Fig. 12e). Integrated over
1 day, the net glucose exchange rate of the liver is close to
zero. In contrast, at fasting conditions, the model simula-
tion predicts the liver to act persistently as glucose produ-
cer (Fig. 13d). Moreover, the hepatic glycogen store
remains low over the whole day as it cannot be substan-
tially replenished in phases of elevated plasma glucose
(Fig. 13e).
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Fig. 11 Maximal ranges of the glucose exchange fluxes. Plasma glucose was varied between 3 and 10 mM. Normal: protein abundance of normal
hepatocytes; fasted: protein abundance of fasted hepatocytes; fed: protein abundance of fed hepatocytes; DR: diabetic GHT function, protein abundance of
normal hepatocytes; DP: protein abundance of diabetic hepatocytes; diabetic: diabetic GHT function and protein abundance of diabetic hepatocytes
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Fig. 13 Diurnal variations of the glucose exchange flux and glycogen in the fasted state. (a) Measured diurnal profiles of plasma glucose for fasted
hepatocytes taken from [56] and used as model input. (b, ¢) Diurnal profiles of insulin and glucagon calculated from the plasma glucose profile in
(@) by means of the GHT function. (d) Simulated diurnal glucose exchange flux. (e) Simulated diurnal glycogen content in fasted hepatocytes. The
simulation was repeated 50 times with uniformly sampled protein abundances from the observed range for each enzyme (Table 1)
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For the simulation of the diurnal glucose exchange
flux of the diabetic liver (Fig. 14) we tested three dif-
ferent scenarios regarding the abundance of glycogen
synthase and glycogen phosphorylase as the respective
literature findings are controversial (see legend of
Fig. 14). Here, glucose plasma levels are extraordinar-
ily high, but insulin levels are still low due to
impaired beta cell function, while glucagon levels are
elevated. Although the plasma glucose remains
persistently above 14 mM, there is a time window
between 2 and 5 h where the liver acts as glucose
producer. This is the result of the remarkable right-
shift of the glucose set point (Fig. 10f). Glycogen
levels range between almost filled and almost empty
depending on enzyme abundance of glycogen synthase
and glycogen phosphorylase.

The thin grey curves in Figs. 12, 13 and 14 illus-
trate how the diurnal profile of the glucose exchange
flux is affected by variations of enzyme abundances
around their mean. In these simulations, the enzyme
abundances were randomly sampled within the re-
ported ranges given in Table 1. The simulations reveal
large differences in the impact of individual variations
of enzyme abundances on the deviation of diurnal
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profile of the hepatic glucose exchange flux from the
average. Whereas these deviations remain moderate
for fed and fasted hepatocytes, they are substantially
higher in diabetic hepatocytes because of large varia-
tions of enzyme abundances in this condition (see red
bars in Fig. 4).

Adaptation of the cellular enzyme endowment to
long-term fed or fasted conditions shifts the meta-
bolic output of the liver towards a better response to
the ‘anticipated’ physiological state. However, this
beneficial effect may turn to a regulatory disadvantage
if the ‘anticipated’ external situation suddenly changes.
This is illustrated in Fig. 15, showing the response of
the glucose exchange flux to a perturbation of the
typical plasma glucose profile for fasting conditions
by a pulse-like increase of glucose as it may occur
after intake of a glucose-rich meal. In the fasted state
(liver metabolism shaped to deliver glucose to the
plasma), the capability of the liver to rapidly and effi-
ciently clear an excess of plasma glucose by increased
glucose uptake and channeling into the glycogen pool
is significantly lower than the capability of a liver
which is adapted to persistent conditions of rich nu-
trient supply.

200

< 304 D
£ 25 . 150 | q
2 ®
g 20 o 100
2 %’@
(=] =
s 15 %g 50
£ x5
g 10 o= o
a 0 6_ 12 18 24 3 \/
Time [h]
50 i
310
1 L L L
0 6 12 18 24
- Time [h
=305 ime [h]
=
c
= 300
= B 300
28,6 12 18 24 TR L bbb
Time [h] 250 - ]
83 s
c €200
= €
82 o)
& €150 1
c o
g g
@ 81 >
S & 100
(O] e e R TR TR R TETEE S EISTE R EEE R R TS S SRR e s s e e e e e ee
80 ‘ ‘ ;
0 6 12 18 24 50 5 13 15 4
Time [h] Time [h]

Fig. 14 Diurnal variations of HGP/HGU and glycogen in the diabetic state. (@) Measured diurnal profiles of plasma glucose for diabetic hepatocytes
taken from [8] and used as model input. (b, ¢) Diurnal profiles of insulin and glucagon calculated from the plasma glucose profile in (a) by means of
the GHT function (Fig. 2, red curve). (d) Simulated diurnal glucose exchange flux. (e) Simulated diurnal glycogen content in diabetic hepatocytes. The
simulation was repeated 50 times with uniformly sampled protein abundances from the observed range for each enzyme (Table 1). Due to conflicting
experimental data regarding the amount of glycogen synthase (GS) and glycogen phosphorylase (GP) in diabetic hepatocytes, we set up three
different scenarios: increased activity of GS by 70 % and diminished activity of GP by 50 % [29] (top trace - solid line); increased activity of GS by 70 %
and decreased activity of GP by 50 % and reduced total glycogen storage capacity to 75 % [57] (bottom trace — dashed line); and decreased GS
activity by 50 % and unchanged GP activity [58] (middle trace — dash-dotted line)
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Fig. 15 Different capabilities of fasted and fed hepatocytes to cope with transient hyperglycemic conditions. The figure depicts glucose
exchange flux (b) and glycogen content (c) of fasted (blue), normal (green), and fed (red) hepatocytes in response to the 24-h glucose profile of
fasted rats (a). The dotted lines refer to a situation where a transient glucose bolus (between 12 and 16 h) was added, driving the plasma glucose
to a peak value of 10 mM. While the fasted hepatocyte has the highest glucose release rates in the unperturbed case it is clearly less efficient than
the normal and fed hepatocyte to take up large amounts of glucose under sudden hyperglycemic conditions

The impact of varying enzyme abundances, reversible
phosphorylation and allosteric regulation on the long-term
regulation of hepatic glucose metabolism

The central homeostatic function of the liver in the
regulation of systemic glucose metabolism consists of
efficiently counteracting deviations of plasma glucose
from the normal level. This is reflected in the diurnal
changes of the glucose exchange flux shown in
Figs. 12, 13 and 14 mirroring, in an inverse manner,
the variations of plasma glucose. Thus, a physiologic-
ally meaningful measure for the relative importance
of various modes of metabolic regulation for plasma
glucose homeostasis is the change of the diurnal pro-
file of the glucose exchange flux that would result if
changes of enzyme abundances, allosteric effects, and
hormonal regulation were not present. As the refer-
ence state for such comparisons we have chosen the
normal state, which refers to a situation where the
rat is neither fasted nor fed ad libitum. Such a nutri-
tional regime should better reflect the typical situ-
ation of a wild rat than extreme laboratory feeding
regimes. The maximal enzyme capacities of the nor-
mal state are chosen as arithmetic mean of the max-
imal capacities in the fed and fasted state (Table 1).
Technically, the absence of a specific regulatory mode
was accomplished by freezing, in the kinetic rate
equations, those terms belonging to a selected mode
of regulation to their values adopted at the glucose
set point of the normal state at which the glucose ex-
change flux is zero. Owing to this setting, the full
model and the reduced models (lacking one mode of
regulation) yield the same stationary state at the set
point. Choosing the set point as the common point
of reference for all model variants takes into account
the fact that the homeostatic function of the liver
with respect to plasma glucose consists in preventing
larger deviations from the set point despite larger
changes in plasma glucose.

For the comparison of the full model with the
regulation-depleted models we used the following dis-
tance measure:

24h
A= J 0 vyl |de /

(1)

24h
J | V;z)zczrmal ’ dt
0

0.

Here, v™“! denotes the glucose exchange flux in the
presence of all modes of metabolic regulation and v{;) is
the glucose exchange flux if one mode of regulation is
dropped in the model simulations (for more details see
legend of Fig. 16). From the values of A summarized in
Table 2 and the corresponding diurnal profiles of the
glucose exchange flux shown in Fig. 16 follows that all
three modes of regulation have a significant impact on
the response of the hepatic glucose exchange flux to var-
iations of plasma glucose. Whereas the impact of the fast
regulatory modes (reversible phosphorylation and allo-
steric regulation) is almost equal in the fed and fasted
state, the change of enzyme abundances results in the
essential mechanism in adapting the hepatic glucose me-
tabolism to the fed state.

Flux control coefficients, enzyme elasticities, and regulator
strengths

Flux control coefficients In the previous section, we
studied the global impact of different modes of enzyme
regulation on the metabolic response of the liver to vary-
ing plasma glucose concentrations. In this section, we
use the model to study how individual enzymes are con-
trolled by different modes of regulation and how they
contribute to the overall regulation of the hepatic glu-
cose exchange flux. The established method to address
such questions is the Metabolic Control Analysis (MCA)
[10]. In this concept, the regulatory importance of any
reaction is quantified by its so-called flux control
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Fig. 16 Influence of different levels of metabolic control on diurnal glucose exchange rates. Black curves: Full control — enzyme abundances are adapted
to the fed (a) and fasted (b) state (Table 1) with full allosteric and hormonal control. Blue curves: No change of enzyme abundance — enzyme abundances
of fed and fasted livers are the same as in the normal liver; full allosteric and hormonal control. Green curves: Lacking hormonal control — enzyme
abundances are adapted to the fed (a) and fasted (b) state with full allosteric control. The value of the function y controlling the ration between the
phosphorylated and non-phosphorylated form of all enzymes is put to the constant value of 0.32, which holds at the reference case (= set point of the
normal hepatocyte). Red curves: No allosteric regulation — enzyme abundances were adapted to the fed (a) and fasted (b) state, with full hormonal control.
The saturation terms for allosteric effectors in the enzymatic rate equations were fixed to the values achieved in the reference state

coefficient, defined as the relative change of the target
flux of interest (in our case the glucose exchange flux,
Vex) elicited by an infinitely small relative change in the
flux (v;) of a single reaction:

Vi OVex
Ci=——
Vex 0V

(2)

According to the summation theorem, the flux control
coefficients add up to unity. We calculated the control

Table 2 Average curve difference A

Scenario Difference of diurnal HGP/HGU profile
Fasted Fed

No change of enzyme abundance 0.25 1.54

No allosteric effectors 0.60 047

No interconversion 0.89 0.88

coefficients of the system for two extreme complementary
physiological states, fasted hepatocytes at a hypo-
glycemic plasma glucose level of 4 mM and fed he-
patocytes at a hyperglycemic plasma glucose level of
10 mM (Table 3).

The control analysis revealed that the glucose ex-
change flux is under control of only seven enzymes
(out of 32) exhibiting C; values larger than 0.1 in at
least one of the two physiological conditions studied
(Table 3). Importantly, these key regulatory enzymes
are known to change their abundance in response to
altered external conditions. Moreover, each of these key
regulatory enzymes is relevant in only one extreme physio-
logical setting. In the fasted, hypoglycemic state, the glucose
exchange flux is controlled by only two reactions catalyzed
by pyruvate carboxylase and lactate transporter, which on
the other hand exert no control in the fed, hyperglycemic
state. Conversely, the hepatic glucose exchange flux in
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Table 3 Control coefficients in the fasted and fed state. 0.00 means —0.005 < value <0.005

Enzyme Fasted state Fed state Enzyme Fasted state Fed state

4 mM 10 mM 4 mM 10 mM 4 mM 10 mM 4 mM 10 mM

glucose * glucose ° glucose ° glucose * glucose ° glucose ° glucose © glucose °
ALD 0.00 0.00 0.00 0.00 MDHnito 0.00 0.00 0.00 0.00
EN 0.00 0.00 0.00 0.00 NDKyrp 0.00 0.00 0.00 0.00
FBP1 0.01 -0.03 0.04 0.00 NDKgrp 0.00 0.00 0.00 0.00
FBP2 0.00 -2.01 0.12 -0.18 NDKitoGTe) 0.00 0.00 0.00 0.00
GAPDH 0.00 0.00 0.00 0.00 PC 0.66 -0.25 0.60 -0.01
GK 0.00 2.87 -0.05 0.56 PEPCK 0.00 0.00 0.00 0.00
GlcT 0.00 027 004 0.54 PEPCK, 1o 0.00 0.00 0.00 0.00
GlcTer 0.00 0.00 0.00 0.00 PEPT 0.00 0.00 0.00 0.00
GP -0.04 0.11 -0.08 0.00 PFK1 0.00 0.22 0.00 0.01
G6P 0.06 -234 0.30 -0.12 PFK2 0.00 201 -0.12 0.18
GPI 0.00 0.00 0.00 0.00 PGK 0.00 0.00 0.00 0.00
G6PTer 0.00 0.00 0.00 0.00 PGM 0.00 0.00 0.00 0.00
GS 0.04 -0.15 0.06 0.00 PK -0.01 028 -0.06 0.01
LacT 0.28 0.01 0.14 0.00 PyrT 0.00 0.00 0.00 0.00
LDH 0.00 0.00 0.00 0.00 PyrMalT 0.00 0.00 0.00 0.00
MDH 0.00 0.00 0.00 0.00 TPI 0.00 0.00 0.00 0.00

For the numerical calculation of the control coefficients the amounts of the catalyzing enzymes were varied by 5 % (0.5 % yielded similar results). The sum of all
control coefficients is equal to unity (summation theorem) within the limit of numerical accuracy
 In bold font are the control coefficients for the physiological states (i.e. fasted protein profile and 4 mM plasma glucose and low glycogen store and fed protein

profile and 10 mM blood glucose and high glycogen store)

® In normal font are the control coefficients for the two states with the respective other protein profile. The reference flux values are -64 umol/g/h for fasted

hepatocytes and 81 umol/g/h for fed hepatocytes

ALD Aldolase, EN Enolase, ER Endoplasmic reticulum, FBP1 Fructose-1,6-bisphosphatase, FBP2 Fructose-2,6-bisphosphatase, GAPDH Glyceraldehyde 3-phosphate
dehydrogenase, GK Glucokinase, GIcT Glucose transporter, G6P Glucose-6-phosphate phosphatase, GPI Glucose-6-phosphate isomerase, G6PT Glucose-6-phosphate
transporter, GTP Guanosine triphosphate, GS Glycogen synthetase, LacT Lactate transporter, LDH Lactate dehydrogenase, MDH Malate dehydrogenase, mito
Mitochondrion, NDK Nucleoside-diphosphate kinase, PyrMalT Pyruvate/malate antiporter, PC Pyruvate carboxylase, PEPCK Phosphoenolpyruvate carboxykinase,
PEPT Phosphoenolpyruvate transporter, PFK1/2 Phosphofructokinase-1/2, PGK Phosphoglycerate kinase, PGM Phosphoglycerate mutase, PK Pyruvate kinase, PyrT

Pyruvate transporter, TP/ Triose-phosphate isomerase, UTP Uridine triphosphate

the fed, hyperglycemic state is controlled by fructose-
2,6-bisphosphatase (FBP2), glucokinase (GK), glucose
transporter, glucose-6-phosphate phosphatase, and
phosphofructokinase-2 (PFK2), which exert no control
in the complementary physiological setting.

Figure 17 illustrates, for hepatocytes adapted to
either fed or fasted conditions, the variation of the
flux control coefficients of the relevant regulatory
enzymes over one day. In the fed state, the variations
are larger than in the fasted one and assume, in the-
ory, infinitely large values at time points where the
plasma glucose level approaches the set point at
which the glucose exchange flux (appearing in the
denominator of Equation 2) tends to zero during the
switch from net glucose utilization to net glucose
uptake and vice versa.

The flux control coefficient of a reaction is independent
from the specific regulatory mechanism underlying the
(small) change of the reaction rate. However, (small) rela-
tive changes of different kinetic parameters py of the i-th
enzyme may have largely different influence on the glucose

exchange flux, which in the frame of MCA is expressed by
the so-called response coefficient Ry, as follows:

. Pik OVex _ [ Vi avex] {& oV
! Vex 0Pk Vi Opy

Vex OV;

] =Cimk  (3)

According to Equation 3, the response coefficient Ry
is given as product of the flux control coefficient C; and
the so-called m-elasticity coefficient i

Pk
ik Vi apk

(4)

quantifying the relative impact of the kinetic parameter
pic on flux v; [11]. Note that the m-elasticity coefficient
mix has to be distinguished from the common elasticity
coefficient

ﬂ av;
Vi aEk

(5)

Eik =

expressing the relative variation of the velocity v; of the
isolated enzyme caused by relative variations in the
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profiles of the fasted (a) and fed (b) liver (see Figs. 12 and 13)

Fig. 17 Control coefficients of regulatory enzymes. The control coefficients of the key regulatory enzymes are shown for the diurnal glucose
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concentration of effector Ey. Both coefficients are closely
related because, in the rate equation, the dependence of
the rate v; from the effector Ey is usually a function of

the term X = 5—: with py having the meaning of a bind-

ing constant of Ej. In this case, it follows immediately
from Equation 4 and Equation 5 that gy = —mj, ie. a
large value of the m-elasticity coefficient implies a large
value of the common elasticity coefficient and vice versa.
We thus used m-elasticities to characterize the control-
lability of key regulatory enzymes by their effectors.

ni-Elasticity coefficients In our model, the enzyme-
kinetic parameters py. fall into four categories: (1) the
maximal enzyme activity (Vi) being a linear function
of the enzyme abundance E;, (2) the binding constants
for reactants (substrates and products), (3) the binding
constants for allosteric effectors, and (4) the signal func-
tion y determining the phosphorylation state of the en-
zyme and being itself a non-linear multi-parametric
function of the plasma level of insulin and glucagon (see
Additional file 1 and Methods, Fig. 3). By definition, the
ni-elasticity coefficient of an enzyme with respect to the
enzyme’s abundance E; is unity, i.e. the response coeffi-
cient with respect to E; equals the flux control coeffi-
cient. For a better comparison of individual elasticity
coefficients we calculated relative elasticity coefficients
by relating the absolute value of an elasticity coefficient
for a given enzyme to the sum of absolute values of all
elasticity coefficients, i.e. the relative elasticity coeffi-
cients of an enzyme add up to unity. Figure 18 depicts
the magnitude of the relative m-elasticity coefficients of
the most important regulatory enzymes for the two
complementary states, fasted hepatocytes at 4 mM
plasma glucose and fed hepatocytes at 10 mM plasma
glucose, considered in the previous sections. The

complete list of elasticity coefficients is given in Additional
Table S1 (Additional file 1).

Notably, with the exception of the glucose transporter,
the kinetic effects caused by changes in the concentra-
tion of ligands and effectors prove to have a significant
share in the total control of the key regulatory enzymes
of hepatic glucose metabolism. For example, GK, which
has a strong control of the glucose exchange flux in the
fed state, exhibits a remarkable sensitivity against
changes of its substrate glucose. GK activity is mainly
regulated by a binding protein so that changes in the
respective binding (Michaelis) constant have a large
impact on the glucose exchange flux, especially at
high plasma glucose levels. The physiological implica-
tions of the result of the control analysis are dis-
cussed below.

Discussion

General considerations

In this work, we used a detailed kinetic model of the
hepatic glucose metabolism to investigate the contri-
bution of the liver to the homeostasis of blood
glucose under physiological and pathological condi-
tions. We validated the model by comparing model
simulations with a variety of experimental data on
glucose exchange fluxes, metabolite concentrations
and filling/emptying of the intrahepatic glycogen
store. Our central goal was to dissect the relative im-
portance of individual enzyme-regulatory mechanisms
for the adequate response of the liver to varying
plasma glucose levels. The general finding of this
analysis is that changes in the hormone-induced
phosphorylation state of key regulatory enzymes as
well as changes in the concentration of allosteric
effectors are at least of the same importance as
changes in the enzyme abundance for the adjustment
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Fig. 18 Relative enzyme m-elasticity coefficients. The m-elasticity coefficients (defined in Equation 4) with respect to protein abundance (blue),
reactants (brown), allosteric effectors (pink), and reversible phosphorylation (green) for fasted hepatocytes at 4 mM plasma glucose (a) and fed
hepatocytes at 10 mM plasma glucose (b). The elasticity coefficients for each enzyme were normalized to their absolute sum. For the reference

flux values see legend of Table 3

of the metabolic output to the metabolic demand de-
fined by the external conditions. The strong influence
of regulators beyond changes in protein abundance is
presumably the main reason for the poor correlation
usually observed between metabolic fluxes and abun-
dance of the associated catalyzing enzymes.

The need for a concerted action of different modes of
enzyme regulation can be reasoned by considering that
even extremely high challenges to the adaptation of the

cellular metabolism (e.g. during periods of starvation or
overnutrition, exposure to toxic agents, inflammation or
proliferation) are never constant over time but fluctuat-
ing, and thus cannot be met by just increasing or de-
creasing the abundance of enzymes. Therefore, it is fair
to claim that any theoretical concept aiming at a better
understanding of the regulation of metabolic networks
has to take into account regulation of enzyme activities
beyond the gene expression level.
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Functional consequences of changes in protein
abundance during the transition between fasted and fed
nutritional states and in diabetes

First, we analyzed how changes in the abundance of key
metabolic enzymes reported for the rat liver under fasted
and fed nutritional conditions influence the metabolic
output at various physiological conditions. Changes in
the abundance of key regulatory enzymes of the glyco-
lytic and gluconeogenic pathways were found to entail
significant differences in the relationship between
plasma glucose levels and the hepatic glucose exchange
fluxes — the ‘fasted’ liver becomes a stronger glucose
producer, whereas the ‘fed’ liver becomes a stronger glu-
cose utilizer. This adaptation is achieved by changes in
enzyme abundance and is of advantage for the homeo-
stasis of plasma glucose as long as the anticipated
physiological situation persists. It may, however, turn to
a disadvantage if a sudden (unexpected) change occurs.
A liver adapted to fasting for 1-2 days is less prepared
to respond to a sudden strong increase of plasma glu-
cose than a liver experiencing continuously elevated
plasma glucose levels (Fig. 15). A well-known clinical
complication occurring during refeeding in strongly mal-
nourished patients is glucose intolerance [12], a type of
metabolic dysregulation that typically occurs in early
stages of diabetes type 2. In line with this observation,
the relation between plasma glucose levels and hepatic
glucose exchange rates predicted by the model are very
similar in fasting conditions and diabetes (Fig. 10), i.e.
gluconeogenesis is increased and the glycolytic capacity
reduced.

Diurnal glucose production and utilization by the liver

The rates of HGP and HGU depend on the plasma level
of nutrients and hormones that are permanently changing
during the time course of the day. Taking measured diur-
nal plasma profiles as input, the kinetic model allows the
simulation of diurnal changes of HGP and HGU and the
filling state of glycogen (Figs. 12, 13 and 14). These simu-
lations show that, in the fed nutritional state, the liver is
able to switch between HGP and HGU. During the day
time, the liver works predominantly as a glucose utilizer
and during the night it is a glucose producer. Depending
on the timing of food intake and the duration and inten-
sity of physical exercise, the individual metabolic profiles
may significantly differ from the generic profile used as in-
put for our simulations. In contrast to the fed state, during
long-term starvation, the liver is predicted to constantly
work as a glucose producer to ensure that plasma glucose
levels remain sufficiently high to fuel obligate glucose con-
sumers such as the brain and erythrocytes. In the diabetic
case, alterations in enzyme abundance of the glycolytic
and gluconeogenetic enzymes together with impaired glu-
cose hormone responses lead to a pathological shift
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towards gluconeogenesis (Fig. 11). The good concordance
between the shift of the set point and the observed plasma
glucose levels underpins the importance of the liver in de-
termining plasma glucose levels. These fundamental dif-
ferences in the basal metabolic states of the liver are also
reflected in the filling states of glycogen. In the fed nutri-
tional state, glycogen is degraded during HGP and replen-
ished during HGU, glycogen store filling thereby varying
between 50 % and 80 % of the total storage capacity. In
the fasted state, the overall filling state of the glycogen
store is much lower and varies between 10 % and 25 %
only.

Assessing the relative importance of variable enzyme
abundance and kinetic regulation of enzyme activities for
the regulation of hepatic glucose exchange rates

To investigate the relative importance of the different
regulation modes of enzyme activities we simulated the
glucose exchange flux of the liver for different nutri-
tional states (Fig. 16 and Table 2). In the fed state, the
strongest regulatory influence is exerted by the changes
of enzyme abundances, whereas in the fasted state, re-
versible phosphorylation has the largest impact. An im-
portant finding is that the short-term metabolic
adaptation of the liver can be largely attributed to hor-
monal regulation as the glucose exchange fluxes become
almost constant when we fix the phosphorylation state
of the interconvertible enzymes. Nevertheless, the im-
pact of allosteric regulation is substantial both in the
fasted and the fed state, accounting for approximately
50 % of flux changes brought about by reversible phos-
phorylation in the fasted and fed state, respectively. It
has to be noted that the role of allosteric regulation is
certainly underestimated in our model as the concentra-
tion values of important cofactors (adenosine tri-/di-/
monophosphate, nicotinamide adenine dinucleotide, and
its reduced form NADH) and of allosterically important
metabolites of the citric acid cycle (e.g. citrate inhibition
of the phosphofructokinase) were not taken into
account.

Metabolic control analysis (MCA)

To dissect the importance of individual enzymes for
hepatic glucose exchange rates under different condi-
tions we used the MCA concept. Calculation of flux
control coefficients for the ‘fed’ and ‘fasted’ states re-
vealed that enzymes carrying significant control are
those showing significant changes of their abundance
under different physiological conditions. Furthermore,
the flux control is shared between different groups of
enzymes in different conditions — enzymes being im-
portant in the glycolytic phase of liver metabolism are
different from the ones central during gluconeogenesis
(Table 3). Importantly, the control coefficients for the
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glucose exchange flux exhibit significant fluctuation over
one day and diverge (by definition) when the glucose ex-
change flux is zero (Fig. 17).

We also calculated m-elasticity coefficients to quantify
the relative share of reversible phosphorylation and con-
centration changes of reactants and allosteric effectors
in the regulation of individual enzymes of hepatic glu-
cose metabolism (Fig. 18). This analysis revealed a large
variability in the relative contribution of the three fast
regulatory modes to the control of regulatory enzymes
and hence the control of glucose exchange flux.

Direct experimental validation of the computed elasti-
cities in vivo is unfeasible because this would require
monitoring of the glucose exchange flux of the liver at
clamped plasma levels of glucose and hormones in re-
sponse to the gradual variation of an effector specifically
influencing one kinetic parameter of the target enzyme
under study. As a surrogate, we checked whether the
predicted elasticities are concordant with observed
changes in plasma glucose levels induced by targeting a
single key regulatory enzyme either by drugs or genetic
interventions.

GK

The maximal control that can be exerted by GK is low in
the fasted-hypoglycemic state but becomes large in the
fed-hyperglycemic state. Experimentally, glucosamine-
induced inhibition of GK caused only marginal reduction
of glucose uptake in euglycemia, whereas in hypergly-
cemia a significant reduction of the net hepatic glucose
uptake of about 40 % was observed [13], confirming our
simulation results. Clinically, the regulatory importance of
GK in hyperglycemia is used to target this enzyme in dia-
betes type 2 [14, 15].

Glycogen phosphorylase (GP)

Torres et al. [16] investigated the effects of a GP inhibi-
tor (GP;) and metformin on hepatic glucose in presence
of basal and four-fold increased levels of plasma gluca-
gon in 18-h fasted conscious dogs. In euglycemic condi-
tions, no change in the net hepatic glucose balance and
plasma glucose was observed in the presence of GP.
However, after glucagon stimulation, the presence of
GP; significantly diminished the glucose output. Both
findings confirm the predicted relatively high control of
the GP in hypoglycemic conditions as well as the large
share of allosteric regulation of this enzyme.

Phosphofructokinase-1 (PFK1)

To our knowledge, a rate-limiting role of this enzyme in
the liver is not reported. In several non-hepatic tissues,
PFK1 exerts only insignificant control of glycolytic flux
[17], which agrees with the predicted very small values
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of control coefficients in both the hypo- and hypergly-
cemic cases.

PFK2/FBP2

The enzyme PFK2/FBP2 exerts control of the glucose
exchange flux mainly by changes in its phosphorylation
state, whereas changes in the abundance of this enzyme
have no impact of the glucose exchange flux. The reason
for the latter is the bifuncionality of this enzyme — the
phosphorylated enzyme (PFK2) acts as a kinase catalyzing
the formation of fructose 2,6-bisphosphate (Fru26P,), an
efficient allosteric activator of PFK1, whereas the non-
phosphorylated enzyme (FBP2) acts as a phosphatase
catalyzing the degradation of Fru26P, to fructose 6-
phosphate (Fru6P). These two opposite reactions create a
futile cycle Fru6P — Fru26P, — Fru6P that consumes one
molecule of ATP. Obviously, unequal modulation of these
opposite activities cannot be achieved by changes of pro-
tein abundance because any change in enzyme amount in-
fluences both activities to the same extent and thus leaves
the net flux unchanged. However, reversible phosphoryl-
ation enhances FBP2-activity and in parallel diminishes
the PFK2-activity of this enzyme, resulting in a high sensi-
tivity of the glucose exchange flux to changes in the phos-
phorylation state of the PFK2/FBP2.

Phosphoenolpyruvate carboxykinase (PEPCK)

Metabolic control of liver gluconeogenesis was quanti-
fied in groups of mice with varying PEPCK protein con-
tent. Surprisingly, livers with a 90 % reduction in PEPCK
content showed only a 40 % reduction in gluconeogenic
flux, indicating a lower than expected capacity for
PEPCK protein content to control gluconeogenesis (esti-
mated control coefficient of about 0.18) [18]. This is in
good agreement with our theoretical predictions. She
et al. [18] concluded that the liver PEPCK functions
more as an integrator of hepatic energy metabolism than
as a determinant of gluconeogenesis.

Knowledge of the flux control exerted by a specific en-
zyme and of the regulatory mechanisms that contribute to
its control is valuable information for the design of new
drugs. For example, our analysis revealed that changing
the protein abundance of the bifunctional enzyme PFK2/
FBP2 should have no influence on the stationary glucose
exchange flux of hepatocytes. Hence, drugs targeting this
enzyme as non-competitive inhibitors can be expected to
have little impact on the modulation of the hepatic glu-
cose exchange flux. However, our analysis suggests that
drugs specifically targeting only the phosphorylated
enzyme (phosphatase) or non-phosphorylated enzyme
(kinase) have a strong impact on the glucose exchange
flux. These theoretical findings are supported by the fact
that cancer cells express a specific phosphatase (TIGAR)
that catalyzes the degradation of the glycolytic activator
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Fru26P, in order to suppress glycolysis and to redirect the
glucose flux through the oxidative pentose phosphate
pathway. Flux control by PFK2/FBP2 may serve as a good
example of why up or down regulation of the abundance
of an enzyme does not necessarily imply corresponding
flux changes as is assumed in numerous publications deal-
ing with the potential metabolic consequences of varying
protein abundances.

Conclusions

In summary, our work underlines the utility of kinetic
modeling for the integration of experimental data from
proteomics, metabolomics, and flux measurements, and
for a wide range of physiological conditions into a unify-
ing computational framework. Unraveling the role of
different metabolic enzymes and different modes of en-
zyme regulation in the control of the hepatic glucose
flux, the presented model may guide the design of novel
drugs that reduce excessive glucose production of the
liver in diabetic patients.
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