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Abstract

Background: Transcriptome studies have revealed that many eukaryotic genomes are pervasively transcribed
producing numerous long non-coding RNAs (IncRNAs). However, only a few IncRNAs have been ascribed a cellular
role thus far, with most regulating the expression of adjacent genes. Even less INCRNAs have been annotated as
essential hence implying that the majority may be functionally redundant. Therefore, the function of IncRNAs could
be illuminated through systematic analysis of their synthetic genetic interactions (Gls).

Results: Here, we employ synthetic genetic array (SGA) in Saccharomyces cerevisiae to identify Gls between long
intergenic non-coding RNAs (lincRNAs) and protein-coding genes. We first validate this approach by demonstrating
that the telomerase RNA TLC1 displays a Gl network that corresponds to its well-described function in telomere
length maintenance. We subsequently performed SGA screens on a set of uncharacterised lincRNAs and uncover
their connection to diverse cellular processes. One of these lincRNAs, SUT457, exhibits a Gl profile associating it to
telomere organisation and we consistently demonstrate that SUT457 is required for telomeric overhang homeostasis
through an Exol-dependent pathway. Furthermore, the Gl profile of SUT457 is distinct from that of its neighbouring
genes suggesting a function independent to its genomic location. Accordingly, we show that ectopic expression of
this lincRNA suppresses telomeric overhang accumulation in sut457A cells assigning a trans-acting role for SUT457
in telomere biology.

Conclusions: Overall, our work proposes that systematic application of this genetic approach could determine the
functional significance of individual INncRNAs in yeast and other complex organisms.

Keywords: Long intergenic non-coding RNAs, Stable unannotated transcripts, Synthetic genetic array, Genetic
interactions, Telomere

Background

Genome-wide transcriptional studies have revealed that
eukaryotic genomes are pervasively transcribed, produ-
cing thousands long (>200 nucleotides) non-coding
RNAs (IncRNAs) [1]. Nevertheless, functional character-
isation of IncRNAs is lagging considerably behind their
discovery rate [2]. One reason for this discrepancy is the
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fact that only a small proportion of these molecules are
essential for life as shown by knockout studies of mam-
malian IncRNAs [3]. Therefore, the cellular effects of a
mutated IncRNA might be masked by other factors with
compensatory functions, indicating that the role of
IncRNAs should be interrogated under synthetic knock-
out conditions. Another challenge for determining
IncRNA functions stems from the fact that genetic ma-
nipulations of certain IncRNAs often affect the expres-
sion of other overlapping genes [2]. This issue is, of
course, less true for long intergenic non-coding RNAs
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(termed lincRNAs), which do not overlap any other gen-
omic features.

In Saccharomyces cerevisiae, approximately 85% of the
genome is transcribed, generating a large number of
IncRNAs [4, 5] that are reminiscent of those found in
higher eukaryotes [6]. Among these non-coding tran-
scripts there are classes of IncRNAs sensitive to RNA
decay machinery, such as cryptic unstable transcripts,
Xrnl-sensitive unstable transcripts and telomeric repeat-
containing RNAs [4, 7-13], as well as IncRNAs expressed
only under specific conditions such as meiotic unanno-
tated transcripts [14], cytoplasmically degraded-cryptic
unstable transcripts [15], stress-inducible IncRNAs [16]
and telomerase mutant IncRNAs [17]. In addition, there
are stable IncRNAs in wild-type yeast appropriately de-
fined as stable unannotated transcripts (SUTs), which rep-
resent approximately 12% of the yeast transcriptome [11].
SUTs evade degradation in the nucleus and are processed
in the cytoplasm in a similar manner to mRNAs [6]; thus,
it was suggested that these transcripts might be function-
ally important [2, 18].

Only a handful of SUTs have been experimentally in-
vestigated and most of these have been assigned roles in
regulating gene expression. In fact, it is the transcrip-
tional process of some of these characterised IncRNAs
that has a functional output and not the transcripts
themselves [2]. For example, transcription of the
IncRNA designated as IRT1 (IMEI Regulatory Transcript
1, also known as SUT643) represses the expression of its
adjacent IMEI protein-coding gene by establishing re-
pressive chromatin modifications at the IMEI promoter
[19]. Additionally, transcription of the GALIO IncRNA
(aka SUTO013) recruits similar chromatin modifying ac-
tivities to alter nucleosome occupancy and to repress the
expression of GALI and GALIO [20, 21]. Likewise, the
transcription of two other IncRNAs, ICRI and PWRI,
modulates chromatin structure and transcription factor
binding at the FLO11 promoter [22]. Other steady-state
yeast IncRNAs control gene expression through tran-
scriptional interference and not through recruitment
and modulation of chromatin modifications. For in-
stance, transcription of the IME4-antisense IncRNA
blocks sense strand transcription of the IME4 gene [23]
and transcription of the SRGI IncRNA prevents tran-
scription initiation at the SER3 promoter [24]. A com-
mon feature of almost all characterised yeast IncRNAs,
including the SUTs described above, is that they func-
tion in cis by regulating their cognate genes. Therefore,
it remains unclear whether a significant number of yeast
IncRNAs could also function in tramns, distant from the
locus from which they are transcribed, in order to regu-
late gene expression and other DNA-based processes.

The RNA component of the telomerase complex, known
as telomerase component 1 (TLC1) [25], constitutes the
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single most characterised yeast lincRNA that functions in
trans. TLC1 has a functional orthologue in human cells,
known as TERC [26], but these two RNAs vary in size and
nucleotide sequence. TLC1 is transcribed on chromosome
I and then interacts physically with proteins Est1, Est2 and
Est3 to form the telomerase complex, whose role is to solve
the end replication problem by synthesising telomeric
DNA repeats and preventing telomere shortening during
each cell division [27, 28]. TLC1 is recruited to telomeres
through a chain of physical interactions coordinated by the
heterodimeric Ku complex (yKu70/yKu80) [29-31]. Once
at the telomeres, TLC1 functions as the template for telo-
mere DNA synthesis by Est2, the reverse transcriptase
component of the telomerase complex [27]. In the absence
of functional telomerase, telomeres are significantly short-
ened and cells stop dividing and senesce [32]. Within a
population of senescing cells some survivors arise by fixing
their telomere length through a DNA recombination-based
mechanism [33]. This alternative telomere maintenance
mechanism is mediated by two distinct Rad52-dependent
DNA recombination pathways; a commonly induced Type
I pathway, which requires the Rad51, Rad54, Rad55 and
Rad57 proteins, or a Type II pathway, which involves the
trimeric MRX complex (consisting of Mrell, Rad50 and
Xrs2) and Rad59 [33, 34]. Additional proteins, including
the Ino80 chromatin remodelling complex, function as reg-
ulators of the telomere recombination mechanisms [34] in
order to preserve telomere length and function.

Telomere homeostasis is also dependent on the presence
of 3-end single stranded DNA (ssDNA) at chromosome
ends, known as telomeric overhangs. In most organisms,
the telomeric overhangs consist of G-rich repeats and ex-
tend over the C-rich strands at both ends of a chromosome
[27]. Telomeric overhangs are necessary during telomere
replication because they provide a substrate for the RNA
moiety of the telomerase complex. Formation of telomeric
overhangs is closely linked to DNA replication, occurs inde-
pendently of telomerase action and is regulated by evolu-
tionary conserved mechanisms [35]. In S. cerevisiae, various
exonucleolytic activities are involved in the formation of
telomeric ssDNA, including the MRX complex and the 5—
3" double-strand-specific exonuclease Exol [36]. The nucle-
ase activity of these enzymes towards chromosome ends is
inhibited by telomeric capping factors, such as Rapl, Rifl
and Rif2, that block MRX access, and the CST (Cdcl3-
Stnl-Tenl) and Ku complexes, which protect telomeres
from Exol-mediated degradation [37, 38]. Defects in telo-
mere capping that can impact on the activity of exonucle-
ases towards telomere ends lead to various problems,
including premature senescence, cell-cycle arrest and accu-
mulation of telomeric ssDNA [37, 39—41]. Hence, complete
understanding of the factors and mechanisms that control
telomere-end processing is important for determining how
telomeres maintain their structure and function [27].
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In this study, we sought to identify genetic interactions
(GIs) between yeast lincRNAs and protein-coding genes
in order to evaluate their functional relationships using
synthetic genetic array (SGA) technology. As proof of
principle, we initially demonstrated that the GI network
of the lincRNA TLCI1 is consistent with its function in
telomere maintenance. Therefore, we next applied the
same systematic genetic approach to six other uncharac-
terised intergenic SUTs. Interestingly, the GI profile of
SUT457 connected this lincRNA to telomere organisa-
tion and follow-up experiments established SUT457 as a
novel factor of telomere overhang homeostasis. This
study proposes that systematic analysis of GIs could un-
veil the function of lincRNAs in S. cerevisiae and other
complex organisms.

Results

The Gl network of TLCT corresponds to its cellular
function

Although genome-wide transcriptional studies have re-
vealed an enormous amount of non-coding RNAs that
can be synthesised from the S. cerevisiaze genome, a rela-
tively small number of these IncRNAs have been func-
tionally characterised [2, 42]. We reasoned that we could
obtain insights about the function of yeast lincRNAs by
comprehensively mapping their GIs through an ap-
proach that has been previously applied for protein-
coding genes [43]. Therefore, we employed the SGA
methodology to construct double mutants in which the
deletion of an intergenic SUT (sutA) is systematically
combined with individual deletions of non-essential
genes in budding yeast. GIs are scored in double mu-
tants that show significant deviation in fitness compared
to the growth of the corresponding single gene deletion
strains generated during the control SGA screen (Fig. 1la
and Methods). Specifically, a negative GI (NGI) refers to
a more severe fitness defect in the double mutant com-
pared to the corresponding single gene deletion mutants,
while a positive GI (PGI) corresponds to growth with a
less severe fitness defect in the double mutant in com-
parison to the single deletion mutants. The precise step-
wise procedure used for the SGA screens and the
deviations from a conventional approach [44] are shown
in Fig. 1a (see also Methods).

To demonstrate proof of concept for the aforemen-
tioned rationale, we initially applied the SGA procedure
to the yeast lincRNA TLCI, which has a well-defined
cellular role in telomere maintenance [27, 28]. The SGA
screen was carried out in duplicate by combining the
tlcIA strain against an ordered array of approximately
4300 viable protein-coding gene deletion strains. A total
of 116 NGIs and 261 PGIs of TLCI were identified
within the two SGA screens (Additional file 1: Table S1
and Additional file 2: Table S2). We identified NGIs with
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Ku complex components (YKU70/80) whose synthetic
lethal interactions with TLCI were previously reported
[30]. Moreover, TLCI showed NGIs with genes (RADS51,
RADS52, RADS54, RAD57) whose proteins are integral
components of the Rad52-mediated telomere recombin-
ation pathway [33] and the Ino80 chromatin remodelling
complex that is also implicated in telomere lengthening
via homologous recombination [34] (Fig. 1b). Since PGIs
are typically detected among components of the same
protein complex [45, 46], we also found that TLC1 has a
positive GI with its co-factors EST1 and EST2, which are
subunits of the telomerase complex. To further support
the relevance of the identified GIs with the function of
TLCI, we then performed gene ontology (GO) analysis
of our SGA data, as an objective metric for deriving
functional utility from GI datasets [47]. We chose to
perform GO enrichment analysis using only NGIs, since
the SGA technique demonstrates higher precision rate
on detecting true NGIs compared to true PGIs and, in
addition, NGIs frequently occur between genes with
overlapping functions [43, 46, 48]. In agreement with
the individual GIs mentioned above, GO analysis of all
TLC1 NGIs significantly enriched the biological process
terms, telomere organisation (P =0.00081) and DNA re-
combination (P =0.0049) (Figs. 1b and 2a). Furthermore,
TLCI NGIs significantly enriched the term chromatin
remodelling (P = 0.0027), a cellular activity that has been
associated with telomere maintenance [34, 49-51]
(Figs. 1b and 2a). These results show that the SGA-
derived GIs of TLCI are consistent with the cellular
function of this yeast lincRNA.

It was previously demonstrated that genes with highly
similar GI profiles have strong functional relationship to
the extent that they can be physical partners within the
same complex [43]. Hence, we hypothesised that TLCI
should have a GI profile that is highly correlated to the
profile of other components of the telomerase complex.
To test this hypothesis and support the validity of our
TLC1 SGA screens, we performed an independent SGA
screen for the protein-coding gene EST1, which encodes
a subunit of the telomerase complex. We identified 34
NGIs for ESTI, of which 22 interactions were common
with TLCI NGlIs (P = 2.004 x 10~>°), indicating that their
GI profiles are highly related (Fig. 1c). The shared GlIs
between ESTI and TLCI enrich for the GO terms telo-
mere organisation and DNA recombination that are re-
lated to their cellular function (Fig. 1c). To further
examine the validity of our SGA screens, we also com-
pared our identified TLC1 GIs to EST1 GIs reported in
previous studies. Notably, about 40% of TLCI NGIs
identified in this study were also identified as ESTI
negative GIs by two independent SGA studies [43, 52],
and once again, the common NGIs between TLCI and
EST1 enrich the GO terms telomere organisation and
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DNA recombination (Additional file 3: Figure Sla, b).
Overall, these findings demonstrate that SGA-derived
GIs can illuminate the biological role of TLC1, and sup-
port the utility of this approach in identifying the func-
tion of other uncharacterised yeast lincRNAs.

SGA analysis implicates intergenic SUTs in diverse cellular
processes

The S. cerevisiae genome encodes approximately 850 SUTs
[11], of which 95 are intergenic (Additional file 4: Table S3)
since they do not overlap any other known genomic fea-
tures (Additional file 5: Table S4). We applied the SGA
procedure to six intergenic SUTs that differ in size, dis-
tance from adjacent genes and level of expression [4, 11]
(Additional files 4 and 6: Table S3 and S5). The SGA
screen for each deleted lincRNA was paired with a control
SGA screen (Fig. 1la) to minimise the ‘batch effect’ [46].
We identified in total 606 negative GIs and 1079 positive

GlIs for all six tested SUTs (Additional files 1 and 2: Tables
S1 and S2). We subsequently analysed the NGIs of each
SUT (Additional file 1: Table S1) for the enrichment of GO
biological process terms as described for TLCI above. Not-
ably, all tested lincRNAs enriched at least one GO term
with the exception of SUT123 which did not highlight any
terms despite displaying 74 NGIs (Fig. 2a and Additional
file 1: Table S1). It is possible that this lincRNA is involved
in multiple processes that are diluted among the identified
GIs. The other five SUTs exhibited NGIs that result in dis-
tinct GO enrichment profiles (Fig. 2a). In particular, the
SGA screen using the sut457A strain enriched for the two
GO terms, telomere organisation (P =0.022) and not-yet-
annotated (Fig. 2a). The latter term consists of functionally
uncharacterised genes and therefore does not provide any
insights into the function of this lincRNA. Furthermore,
SUT042 also showed a specific profile since its screen
enriched GO terms (membrane fusion P = 0.039; organelle
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Drygin database (http://drygin.ccbr.utoronto.ca/) and Szappanos et al. [53]

fusion P =0.020; vesicle organisation P =0.020) associated
with vesicle function (Fig. 2a). On the other hand, the other
three lincRNAs, SUT014, SUT451 and SUT469, exhibited
GO profiles that are more diverse in function. SUT451 and
SUT469 SGA screens each enriched seven different bio-
logical processes, while SUT014 showed the most varied
profile with enrichment of ten different GO terms (Fig. 2a).
The heterogeneous GO term profiles suggest that the latter
three SUTs are pleiotropic or that the enriched cellular

processes are interconnected [43]. Altogether, these results
indicate that, under physiological conditions, intergenic
SUTs are implicated in a broad spectrum of biological pro-
cesses that are important for normal cell growth.

SUT457 and SUT042 exhibit distinct Gl profiles in
comparison to their adjacent genes

Previously characterised SUTs and other yeast non-
coding RNAs have been linked to transcriptional
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regulation of their neighbouring genes [2]. Therefore, we
reasoned that SGA analysis of lincRNAs, which control
their cognate genes, will lead to the discovery of GIs
which would be similar to those identified for their
neighbouring genes. To compare the GI networks of the
examined intergenic SUTs with those of their neighbour-
ing genes, we exploited the GI data of protein-coding
genes available on the DRYGIN dataset (http://drygin.cc-
br.utoronto.ca/; accessed 29 Feb 2016) and those gener-
ated by Szappanos et al. [53], which are compatible with
the SGA approach used in this study. We first compared
the GO enrichment profiles of TLCI with its upstream
and downstream gene, PDX3 and CSG2, respectively,
since TLC1 is not linked to the transcriptional control of
its neighbours. As predicted, the GIs of TLCI enrich GO
terms that are distinct to those enriched by the GIs of
its flanking genes (Fig. 2b). Similarly to TLC1, two other
lincRNAs, SUT457 and SUT042, exhibit GO enrichment
profiles that are completely different from those of their
upstream and downstream neighbouring genes (Fig. 2c
and Additional file 7: Figure S2). In contrast, SUT014,
SUT451 and SUT469, whose GIs enrich diverse bio-
logical processes, display GO profiles that partially over-
lap those of their adjacent genes (Additional file 7:
Figure S2). These findings suggest that SUT014, SUT451
and SUT469 might have functions that are linked to the
expression of their neighbouring genes, while SUT457
and SUT042 have roles that are independent to the func-
tion of their adjacent genes.

Deletion of SUT457 accelerates senescence in telomerase-
deficient cells

SUT457 showed a very specific GO enrichment profile
that was distinct from its flanking genes (Fig. 2) and,
therefore, we decided to further characterise its cellular
role. Initially, we verified by northern blot analysis the loss
of SUT457 transcript (345 bp) in the sut457A strain which
was processed in the SGA screens (Additional file 8:
Figure S3). Then, we examined whether construction of
the sut457A strain genetically perturbs the expression of
its neighbouring genes (Fig. 3a). Quantitative RT-PCR
analysis showed that in sut457A cells the expression of
SUT457-adjacent genes SYPI, SNR65 and RPSI4A re-
mains unaffected compared to a wild-type control strain
(Fig. 3b). This result demonstrates that construction of
SUT457 deletion does not lead to the previously reported
neighbouring gene effect [54, 55] and, hence, it confirms
that the GI network of sut457A is directly associated with
SUT457 itself and not with its adjacent genes.

SUT457 genetically interacts with 12 out of 42 telomere
organisation genes (P = 0.0145) found in the SGA deletion
collection (Fig. 3c). These genes are associated with roles
in supporting telomerase function (HEK2, PBP2, YKU70,
TGS1, HSC82) [56-59], modulating subtelomeric
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chromatin changes (PBP2 and HEK2) [56], regulating
telomere-end processing (YKU70, GBP2, MRE11, CGI121,
TGSI and HSC82) [37, 58, 60—63], and controlling telo-
mere maintenance via recombination (RADS5I, RADS52,
RADS7, RAD59, MRE11, CGII121) [33, 34]. The genetic
link between SUT457 and telomere organisation initially
prompted us to determine if loss of this lincRNA leads to
changes in telomere length. To do this, we used denaturing
southern analysis and found that deletion of SUT457 alone
does not affect telomere length compared to an isogenic
wild-type strain (Fig. 3d, compare lanes 1 and 2, 28 and
29). Then, we examined whether sut457A, in combination
with deletion of any of its 12 genetic interactors (Fig. 3c),
affects telomere length. As expected, significantly shorter
telomeres were detected in the yku70A and mrellA single
mutants compared to wild-type cells, but telomere length
was not further affected in the yku70Asut457A or mrel1A-
sut457A double mutants (Fig. 3d, compare lanes 3 and 4, 5
and 6). Consistently, sut457A, in combination with deletion
of the remaining telomere-related genetic interactors
(Fig. 3c), does not have a significant change in telomere
length compared to its isogenic single deletion mutants
(Fig. 3d, lanes 7-14 and 16-27).

Based on the fact that some of the telomere-associated
GIs of SUT457 (e.g. RADSI, RADS2, RADS7, MRE11) are
known to affect entry into senescence in telomerase-
deficient cells [34, 52], we next sought to determine if de-
letion of SUT457 influences the rate of senescence in
TLCI null cells. Therefore, we performed liquid senes-
cence assays using the four isogenic strains, namely wild-
type, sut457A, tlic1A and the double mutant sut457Atic1A.
Consistent with the fact that single deletion of SUT457
had wild-type telomeric length (Fig. 3d), we observed that
sut457A and wild-type strains had a very similar growth
profile in senescence assays (Fig. 3e and Additional file 9:
Figure S4). However, we found that the double mutant
sut457AtlcIA had an accelerated entry into senescence
compared to the tlcIA single mutant (Fig. 3e and
Additional file 9: Figure S4). Interestingly, this faster in-
duction of senescence correlates with the appearance of
shorter telomeres in the sut457AtlcIA double deletion
strain compared to the tlcIA single mutant (Fig. 3f, left
panel). Moreover, deletion of SUT457 did not affect the
generation of Type II survivors in strains lacking telomer-
ase (Fig. 3f, right panel). Altogether, these findings link the
function of SUT457 to telomere organisation and specific-
ally show that SUT457 participates within a telomerase-
independent pathway.

Loss of SUT457 leads to accumulation of telomeric single-
stranded DNA

It has been previously reported that faster senescence in
telomerase-negative cells can be attributed to abnormal
accumulation of telomeric ssDNA [40, 41]. Thus, we
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and mutant strains at passage 1. The extracted DNA was fragmented with Xhol and subjected to denatured southem blotting using a biotinylated
probe against telomeric repeats. e Senescence assays performed using liquid cultures of the indicated isogenic wild-type and mutant strains. The
strains were generated through tetrad dissection of the heterozygous diploid double mutant SUT457/sut457ATLC1/ticTA. This plot represents one of
three independent tetrads examined (see also Additional file 9: Figure S4). f Telomere length analysis performed as in (d) using genomic DNA isolated
from the indicated wild-type and mutant strains during passages 1 and 8
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hypothesised that deletion of SUT457 may lead to the
accumulation of ssDNA at telomeres. This hypothesis
was further supported by the SGA findings above, which
show that SUT457 genetically interacts with the genes
YKU70, MRE11, TGS1, CGIi21, HSC82 and GBP2
(Fig. 3c) that encode for factors implicated in telomere-
end protection and in the formation of telomeric ssDNA
overhang [35]. To examine this hypothesis, we extracted
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at an early passage and performed native southern blot-
ting using a C-rich oligonucleotide probe. In addition,
we extracted genomic DNA from a later passage to
mimic the subculturing of cells resulting from the serial
pinning steps performed during the SGA procedure. Ab-
sence of SUT457 led to an increase in the signal of telo-
meric ssDNA compared to wild-type cells in passage 1
(P1), which became even more intense after subculturing

genomic DNA from isogenic wild-type and sut457A cells  yeast cells for five passages (P5) (Fig. 4a). In order to
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Fig. 4 Loss of SUT457 leads to Exo1-dependent accumulation of telomeric ssDNA. a Analysis of telomeric ssDNA overhangs in isogenic wild-type
and sut457A strains. Yeast colonies were restreaked on agar plates and genomic DNA was extracted at passages 1 (lanes 1 and 2) and 5 (lanes 3
and 4), fragmented with Xho/ and subjected to native southern blotting (left panel) using a biotinylated probe against telomeric repeats. The
southern blot was then treated with 0.4 N NaOH and the denatured DNA was re-probed to monitor equal loading (right panel). b Accumulation
of telomeric ssDNA in eleven sut457A strains compared to their respective wild-type strains during passages 1 and 5 (P1 & P5). The ssDNA signal
for each wild-type and mutant strain detected in the native southern blot was normalised to the corresponding signal in the denatured southern
blot. Error bars represent standard error of the mean. * P < 0.05; ** P < 0.01; n/s, not significant (generated by nonparmetric one-tailed Mann-Whitney
t-test). ¢ Cell growth was monitored for the indicated isogenic strains at passages 1 and 5. d Analysis of telomeric ssDNA levels at passage 5 of
wild-type, sut457A, exol1A and exoTAsut457A isogenic strains generated through dissection of the heterozygous diploid double mutant EXO1/exo1A-
SUT457/sut457A. Southern blotting was performed as in (a) above. e Telomeric ssSDNA levels analysed at passage 5 in the indicated isogenic wild-type
and mutant strains generated from three independent tetrads (n = 3). The quantification of the ssDNA signal for each wild-type and mutant strain was
performed as in (b) above. Error bars represent standard error of the mean. ** P < 0.01; n/s, not significant. The statistical analysis was performed using
one-way ANOVA (Dunnett's test)
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verify that the detected ssDNA signal is due to an in-
crease in 3’ terminal overhang and not due to accumula-
tion of internal DNA replication intermediates, we
treated the native DNA with bacterial Exonuclease I that
can only degrade terminal ssDNA in a 3’ to 5 direction.
The single stranded DNA that accumulated in sut457A
mutant was sensitive to bacterial Exonuclease I digestion
(Additional file 10: Figure S5), indicating that the de-
tected ssDNA indeed corresponds to telomeric 3’ over-
hang. We also validated the increase in telomeric
overhang by comparing the levels of ssDNA among 11
different sut457A mutant clones and their corresponding
wild-type strains. As above, we observed statistically sig-
nificant accumulation of telomeric ssDNA in sut457A
strains at an early passage (P1) which became even more
substantial at a later passage (P5) (Fig. 4b).

Accumulation of telomeric ssDNA has been proposed
to be a signal for cell cycle arrest [39]. However, we did
not observe a growth reduction in the sut457A mutant
strain compared to wild-type cells (Figs. 3e and 4c). It
was previously demonstrated that growth arrest associ-
ated with telomeric overhang accumulation is masked by
telomeric ssDNA binding proteins like Gbp2 [60]. Inter-
estingly, GBP2 was identified as a SUT457 NGI (Fig. 3c)
and, therefore, we next examined how lack of Gbp2 can
affect the growth of sut457A cells. We observed a strong
growth arrest of gbp2Asut457A cells at passage 5
(Fig. 4c), which coincides with the robust accumulation
of telomeric ssDNA (Figs. 4a, b). Altogether, these data
suggest that SUT457 controls the levels of telomeric
ssDNA overhang in order to maintain proper cellular
growth.

Exo1 nuclease is required for the accumulation of
telomeric ssDNA in sut457A cells

The 5'-3” exonuclease Exol plays a key role in telomere
G-rich overhang formation in yeast by mediating C-rich
strand degradation [64]. The action of Exol is blocked
by the Ku complex since lack of Yku70 leads to unpro-
tected telomere ends and results in Exol-dependent ac-
cumulation of telomeric ssDNA [37, 38, 65]. Because
SUT457 genetically interacts with YKU70 (Fig. 3c), we
hypothesised that Exol activity may be responsible for
the accumulation of telomeric overhang in sut457A cells.
To test this hypothesis, we wanted to generate an exolA-
sut457A double mutant strain by crossing the exolA and
sut457A single mutants, but we realised that EXO1 was
not properly deleted in the exoIA strain found in the
SGA knockout library. Therefore, we constructed a new
exolA deletion strain, mated it to the suz457A mutant
and generated isogenic haploid strains that were ana-
lysed for telomeric ssDNA levels. Consistent with the
above findings, we detected a strong signal in sut457A
corresponding to the accumulation of telomeric ssDNA
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after subculturing yeast for 5 passages (Fig. 4d). Notably,
the telomeric overhang signal in the exolAsut457A
double mutant cells is reduced back to wild-type levels
(Fig. 4d, compare lanes 1, 3 and 4). This result was veri-
fied by quantifying the levels of telomeric ssDNA in iso-
genic mutant strains generated from three independent
tetrads (Fig. 4e). Furthermore, deletion of EXOI in
gbp2Asutd57A cells rescued their growth arrest at pas-
sage 5 suggesting that exolA suppresses the effect of
sut457A (Additional file 11: Figure S6). Altogether, these
findings show that SUT457 functions within an Exol-
dependent pathway to affect telomeric overhang
accumulation.

The lincRNA SUT457 acts in trans to regulate the levels of
telomeric ssDNA

The GI profile of SUT457 was distinct from that of its
adjacent genes (Fig. 2c) and this is also consistent with
the fact that loss of SUT457 does not affect the expres-
sion of its neighbours (Fig. 3b). Therefore, we hypothe-
sised that, unlike most characterised yeast IncRNAs,
which control the expression of their cognate genes,
SUT457 may function in trans distant from its locus of
synthesis. To address this hypothesis, we examined
whether ectopic expression of SUT457 could rescue the
phenotype of telomeric overhang accumulation observed
in sut457A cells (Fig. 4a). For this purpose, we deleted
SUT457 from its endogenous locus on chromosome III
and re-introduced it on chromosome V under the con-
trol of the URA3 promoter (Fig. 5a, sut457A [ectop-
SUT457]). We also constructed another strain in which
SUT457 was ectopically expressed at the URA3 locus in
wild-type cells to serve as an additional control (Fig. 5a,
wild-type [ectopSUT457]). Native southern blot analysis
indicated that deletion of sut457A from its endogenous
locus results in robust increase in telomeric ssDNA at
passage 5 as previously shown (Figs. 4 and 5b, compare
lanes 1 and 3), but concomitant ectopic expression of
SUT457 reduces the telomeric overhang signal to corre-
sponding wild-type levels (Fig. 5b). This result was verified
by quantifying the levels of telomeric ssDNA in five inde-
pendent constructed strains (Fig. 5c). Collectively, these
findings demonstrate that SUT457 can control the levels
of telomeric ssDNA overhang regardless of its genomic
location, indicating that this lincRNA functions in tranus.

Discussion

Despite the plethora of long non-coding RNAs identified
by genome-wide approaches, rigorous genetic studies that
could aid in the functional characterisation of individual
IncRNAs are missing [2]. Here, we took advantage of the
genetic tractability of yeast and employed a high-
throughput SGA methodology to systematically catalogue
the GIs of six intergenic SUTs. Initially, we verified the
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denatured DNA was re-probed to monitor equal loading (right panel).
c Telomeric ssDNA levels were analysed in five independent clones of
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utility of the approach by demonstrating that GIs identified
for the telomerase RNA TLCI enrich GO terms corre-
sponding to its known cellular function. Subsequent SGA
screens and analysis of GI profiles implicated the six tested
intergenic SUTs in diverse biological processes. One of
these lincRNAs, SUT457, exhibited GIs that enriched a
definitive GO annotation linking it to telomere biology.
Further functional characterisation unveiled the role of
SUT457 in preventing the accumulation of telomeric
ssDNA. Moreover, phenotypic rescue experiments showed
that SUT457 acts in trans to maintain physiological levels
of telomeric ssDNA. Our work reveals that systematic
mapping of the GIs of IncRNAs could associate these mol-
ecules with specific biological processes and pinpoint their
individual functions.

In yeast, the function of identified IncRNAs has been
mainly linked to the regulation of gene expression. Most
IncRNAs characterised so far regulate their cognate genes
either through transcriptional interference [23, 24, 66] or
by modulating their local chromatin structure [19-22].
However, emerging evidence suggest that IncRNAs could
have roles beyond gene regulation [42]. The GO enrich-
ment profiles of the tested intergenic SUTs have linked
them to nuclear functions such as DNA repair, meiosis
and telomere organisation but also to cytoplasmic pro-
cesses including membrane fusions and vesicle formation,
for example, in the case of SUT042 (Fig. 2a). The latter
observation is consistent with the fact that a large number
of SUTs are transported to the cytoplasm and have been
proposed to represent functional transcripts within this
cell compartment [18]. Moreover, human IncRNAs are
co-expressed with cytoplasmic membrane proteins [67]
and are present within extracellular vesicles [68]. There-
fore, future in-depth characterisation of lincRNAs, like
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SUT042, could elucidate the role of these molecules in
cytoplasmic processes such as vesicle biogenesis and
trafficking.

Only rare examples of trams-acting yeast IncRNAs
have been reported to date. Specifically, the PHO84 anti-
sense IncRNAs and a cryptic unstable transcript associ-
ated with Tyl retrotransposons control transcriptional
silencing of their target genes in trans [69, 70]. We show
here that GI profiling could also provide insights about
the mode of action of lincRNAs in addition to inferring
their biological function. This is achieved by comparing
the GI profiles of lincRNAs with those of their adjacent
protein-coding genes. For example, TLCI has a GI net-
work that completely differs from that of its upstream
and downstream genes (Fig. 2b) which is in line with the
fact that TLCI has a function unrelated to its neighbours
and acts in trans at chromosome ends [71]. Similarly,
SUT457 and SUT042 have distinct GO profiles com-
pared to their neighbouring genes (Fig. 2c and
Additional file 7: Figure S2), suggesting that these SUTs
may also work in trans. Accordingly, SUT457 deletion
does not affect the expression of its neighbouring genes
(Fig. 3b) and regulates a telomeric process occurring dis-
tal from its transcriptional site (Fig. 5). However, there is
still a possibility that the SUT457 locus is proximal to a
gene involved in telomere-end processing within the
three-dimensional architecture of the genome. Hence, in
such a scenario, SUT457 would have a role in telomere-
end processing by controlling its spatially proximal gene.
Nevertheless, the phenotypic rescue obtained by ex-
pressing SUT457 from a different chromosome (Fig. 5)
makes this scenario rather unlikely. Three of the other
intergenic SUTs tested (SUT014, SUT451 and SUT469)
exhibit GIs with GO enrichment profiles that overlap
those of their flanking genes (Additional file 7: Figure S2),
indicating that these lincRNAs may be involved in the regu-
lation of their nearby genes in cis. Of course, we cannot
eliminate, at this point, the likelihood that construction of
these three SUT deletions leads to a neighbouring gene ef-
fect [54, 55], which might be responsible for the observed
overlap among enriched GO profiles (Additional file 7:
Figure S2). We note that two of the six tested intergenic
SUTs (SUT042 and SUT457) exhibit GI profiles consistent
with a trams-acting role and, therefore, in contrast to
current evidence in the literature, we anticipate that a con-
siderable number of budding yeast lincRNAs would func-
tion at sites distal from their locus of synthesis.

Lack of SUT457 exhibited accelerated senescence in
telomerase-negative cells (Fig. 3e and Additional file 9:
Figure S4) associated with enhanced telomere shortening
(Fig. 3f) and an accumulation in telomeric ssDNA over-
hang (Fig. 4a). Interestingly, analogous phenotypes have
been reported for mutations of factors involved in
telomere-end protection [38, 40, 41, 52]. Consistent with
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the above observations, SUT457 shows a positive GI with
the telomere-capping factor YKU70 (Fig. 3c and Additional
file 12: Figure S7), implying that these two molecules affect
the same molecular process [46]. Notably, Yku70 binds to
and protects telomeres from Exol nucleolytic processing,
thus preventing the accumulation of telomeric ssDNA
overhang [30, 37, 64]. Our data also show that the Exol
nuclease is required for the increase in telomeric ssDNA
detected in the absence of SUT457 (Figs. 4d and e). Fur-
thermore, in agreement with the fact that EXOI-dependent
accumulation of telomeric ssDNA induces cell-cycle arrest
[37, 72], we show that loss of the telomeric ssDNA mask-
ing protein Gbp2 in sut457A cells results in growth inhib-
ition after subculturing (Fig. 4c) and, importantly, this
growth arrest is rescued by deletion of EXOI (Additional
file 11: Figure S6). Based on the above evidence, we specu-
late that SUT457 functions in a pathway that protects
telomere-ends from nucleolytic processing in order to
regulate the levels of telomeric ssDNA overhangs. Interest-
ingly, the telomere-associated IncRNA telomeric repeat-
containing RNA has also been implicated in this pathway
but instead facilitates the nuclease activity of Exol at
chromosome ends [73].

The primary nucleotide sequence of SUT457 (Additional
file 6: Table S5) does not display significant sequence simi-
larity with any other regions within the S. cerevisiae gen-
ome and lacks conservation even amongst closely related
yeast species ([11] and data not shown). Nevertheless, con-
sidering its unveiled role in the fundamental and conserved
cellular process of telomere overhang homeostasis [35], we
believe that functional analogues of SUT457 may exist in
other eukaryotes. Likewise, TLC1 is a IncRNA whose pri-
mary sequence is not evolutionarily conserved but which
has functional analogues in other organisms [26].

Conclusions

Transcriptome studies have enabled the discovery of a
large number of IncRNAs in various species. However, it
remains unclear how many of these IncRNAs serve a bio-
logical function or are a mere result of transcriptional
noise [74, 75]. We show here that systematic analysis of
pairwise Gls can provide insights about the function of in-
dividual IncRNAs. The functional maps obtained by GIs
could complement the information derived by other high-
throughput approaches [76, 77] to help unravel the bio-
logical significance of IncRNAs. Although the present
study focuses on stable lincRNAs, future work could also
analyse GIs for yeast antisense IncRNAs since methodolo-
gies are being developed that abrogate the transcription of
a specific non-coding RNA without disrupting the expres-
sion of its associated sense mRNA [78]. Furthermore, glo-
bal mapping of GIs for IncRNAs can be conceivably
extended to complex organisms because recent advances
in RNAi and CRISPR/Cas technologies allow for efficient
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pairwise gene disruptions in human cells [79-82]. Such
analyses may unveil interspecies conservation of GI maps
[83] that could shed light on the evolution and functional
conservation of IncRNAs [84, 85].

Methods

Yeast strains and plasmids

Yeast strains used in this study are described in Additional
file 13: Table S6. SGA query strains were constructed by
substituting the TLC1, EST1 or a candidate SUT locus
with the NatMX4 cassette, which confers cloNAT (Nour-
seothricin) antibiotic resistance in Y7092 background
strain (MATalpha canlA:STE2pr-Sp_his5 lyplA his3A1
leu2A0 ura3A0 met15A0). The PCR fragment used for the
above deletions was generated by primers listed in
Additional file 14: Table S7. The SGA library consists of
4309 BY4741 (MATa his3A1 leu240 ura340 met15A40)
single knockout strains with each one carrying deletion of
a non-essential gene. The genes were replaced with the
antibiotic marker KanMX4, which confers resistance to
G418 (Geneticin). The exolA strain was constructed from
scratch by transforming BY4741 cells with a PCR frag-
ment that replaced the EXOI Open Reading Frame with
the KanMX4 cassette. The Y8835 strain in which the HIS3
gene is substituted by the NatMX4 cassette is used as the
query strain in control SGA screens [44].

All isogenic strains used for follow-up experiments were
generated by crossing the sut457A single mutant with sin-
gle knockout strains of interest. Diploid cells were sporu-
lated on 2% potassium acetate for 7 days at room
temperature. Tetrads were isolated and subsequently ma-
nipulated using a dissection microscope (SporePlay, Singer
Instruments) to generate isogenic wild-type, single and
double mutant strains. All genotypes were verified by PCR
analysis. For the construction of strains ectopically ex-
pressing SUT457, isogenic wild-type and sut457A cells
were subcultured to passage 5 and then transformed with
a PCR fragment containing the SUT457 sequence. The
PCR fragment was integrated on chromosome V by hom-
ologous recombination in front of the URA3 promoter.
The ectopic expression of SUT457 was verified by quanti-
tative real-time PCR (qRT-PCR).

Selection of intergenic SUTs

To select intergenic SUTs, we developed an in-house
perl script (filter-SUTs-2.pl) that identified, among all
SUTs listed in the supplementary material of Xu et al.
[11], the ones that did not overlap any of the genomic
features (file SGD_features.tab, date stamp 20070811,
listed in Additional file 5: Table S4) annotated in the
SGD database (http://www.yeastgenome.org; accessed:
Jan 2013). For any given SUT, genomic elements in both
strands were taken into account. The list of selected
intergenic SUTs is shown as Additional file 4: Table S3.
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Synthetic genetic array (SGA)

The knockout query strain harbouring the deletion of inter-
est (Y7092), in this case of a lincRNA or ESTI gene, was
crossed against the SGA single deletion library described
above. The diploid cells were sporulated, germinated and
passaged as previously described [44], using a BM3-BC col-
ony processing robot (S&P Robotis Inc.). Haploid mutants
containing the deletion of interest (lincRNA or ESTI) and/
or the corresponding protein-coding gene deletion were
isolated as described previously [44], apart from the follow-
ing modifications in the protocol in order to improve popu-
lation purity: (1) strains were pinned two times instead of
one on media selecting for canlA, lyplA and STE2pr-
Sp_his5, and (2) strains were pinned two times instead of
one on media selecting for double deletions (Fig. 1a). The
same procedure was followed in parallel SGA screens using
the control query strain (Y8835).

Quantification of yeast colony size on the final selection
plates of the SGA screen was accomplished using spIma-
ger (S&P robotics Inc., Toronto, Canada). For each plate,
we carried out a normalisation procedure (using a custom
built perl script) based on the average colony growth de-
tected on the specific plate, in order to correct for uneven
plate growth. We excluded from further analysis: (1) col-
onies on the periphery of the plate (YOR202W), (2) genes
for which the single deletion strain harbouring the relative
library gene deletion grew less than 60% of the average
growth, and (3) linkage group loci (composed of 30 genes
upstream and downstream from the query gene of inter-
est) to avoid artefacts related to potential linkage disequi-
librium [44]. Finally, we report, as potential GIs, those
genes for which the double deletion strain has at least a
+30% change in growth fitness compared to the single de-
letion strain. This threshold was defined based on growth
changes observed for known TLCI GIs.

Gene ontology (GO) analysis

The genes corresponding to the NGIs identified in each
SGA screen were grouped into their annotated GO bio-
logical processes according to the Saccharomyces Genome
Database (SGD) GO Slim Mapper (http://www.yeastgen-
ome.org/cgi-bin/GO/goSlimMapper.pl). A comprehensive
list of all 102 GO biological processes used during this ana-
lysis is provided in Additional file 15: Table S8. The Fisher
exact test (significance level o =0.05) was used to identify
statistically significantly enriched GO terms. The same GO
analysis was performed on NGI datasets generated in this
work and NGIs obtained from previous studies.

Venn diagrams

Venn diagrams for GI datasets were generated using the
on-line tool Venny 2.0 (http://bioinfogp.cnb.csic.es/
tools/venny/). Significance of the overlap between gene
sets was evaluated using the hypergeometric test, as
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implemented in the R function ‘phyper’ (http://www.R-
project.org/), setting the significance level to a = 0.05.

RNA isolation and gene expression analysis

Total RNA from logarithmically grown (ODgoy of 0.8)
yeast cells was isolated using the hot phenol extraction
method [86] and treated with the TURBO DNA-free
DNase kit (Ambion, AM1907). For cDNA preparation,
0.5 pg RNA (DNase treated) was treated with PrimeScript
Reverse Transcriptase (Takara, 2680A). The quantity of
c¢DNA was determined by qRT-PCR analysis performed
on a Bio-Rad CFX96 Real-Time PCR system using SYBR
Green (Kapa SYBR Fast Master Mix # KK4602) and the
primers listed in Additional file 14: Table S7.

Northern blot analysis

Isolated total RNA was first treated with DNAse and then
mixed with 10 puL deionised formamide, 3.5 pL 37% for-
maldehyde and 2 pL loading buffer (0.1 M MOPS pH 7,
40 mM sodium acetate, 5 mM EDTA pH8.0) to a final vol-
ume of 20 pL. The sample was then heated at 70 °C for
10 min and electrophoresed on agarose-formaldehyde gel
(1% agarose, 200 mM MOPS pH 7, 10 mM EDTA,
50 mM NaOAC, 6.7% formaldehyde) at 100 volts for
30 minutes. The gel was stained with ethidium bromide
(0.75 pg/mL) to ensure RNA integrity and then equili-
brated with 10x SSC buffer for 30 min (150 mM NaCl
and 15 mM sodium citrate, pH 7) prior to transferring
onto Hybond-N + membrane (GE Healthcare, RPN303B)
using overnight capillary transfer with 20x SSC. The RNA
was UV cross-linked (700 Joules/cm?) onto the membrane
and hybridised with 50 ng/mL biotinylated probes
(Additional file 14: Table S7) in 25 mL Church buffer
(0.5 M NaPO, pH 7.2, 1 mM EDTA pH 8, 7% SDS, 1%
BSA) at 50 °C overnight. The membrane was treated with
Chemiluminescent Nucleic Acid Detection Module (Ther-
moFisher Scientific, 89880) and then exposed using the
UVP Bioimaging system (Syngene).

Native and denatured southern blotting

Genomic DNA from non-synchronised saturated cell
cultures was digested overnight with Xhol (Takara,
1094A) and then separated on 1% agarose gel (15 cm in
length) for 18 hours at 25 volts. E. coli exonuclease I di-
gestion (New England biolabs, M0293S) was performed
prior to Xhol digestion of the genomic DNA. Analysis of
the telomeric single-stranded overhangs was performed
under native conditions by treating the agarose gel with
10x SSC buffer (0.17 M trisodium citrate, 1.5 M NaCl)
for 30 minutes at room temperature. The DNA bands
were then transferred onto Hybond-N + membrane (GE
Healthcare, RPN303B) using a Trans-Blot Semi-Dry
electrophoretic transfer cell (Bio-Rad Laboratories) as
previously described [87]. The DNA was UV cross-linked
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(700 Joules/cm?) on the membrane and hybridised with
50 ng/mL biotinylated C;3A probe (Additional file 14:
Table S7) in 25 mL Church buffer (0.5 M NaPO, pH 7.2,
1 mM EDTA pH 8, 7% SDS, 1% BSA) at 50 °C overnight.
Probe-bound DNA fragments corresponding to telomeric
single-stranded overhangs were treated with the Chemilu-
minescent Nucleic Acid Detection Module Kit (Thermo-
Fisher Scientific, 89880) and detected using the UVP
Bioimaging system (Syngene). Following detection of the
single-stranded telomeric overhang, the blot was incubated
under denaturing conditions (0.4 M NaOH, 0.1% SDS) at
45 °C for 30 minutes. The blot was then probed and proc-
essed as above to detect denatured telomeric fragments.
The intensity of the signals corresponding to native and de-
natured Y’ telomeric bands were quantified by histogram
analysis (Adobe Photoshop CC 2015).

Single-colony re-streaking assay

Isogenic haploid strains derived from tetrad dissection are
streaked on solid YPAD (Yeast extract, Peptone, Adenine
hemisulfate, Dextrose) medium and incubated at 30 °C for
2 days until the appearance of single colonies (~25 cell divi-
sions) corresponding to passage 1. Then, individual colonies
from each wild-type and mutant strain were sequentially
re-streaked on new solid YPAD plates until the appearance
of colonies corresponding to passage 5 [34].

Senescence assay

A single colony from each indicated isogenic haploid
strain was used to inoculate YPAD liquid medium and
the culture was grown overnight at 30 °C until satur-
ation. The following day, each culture was diluted to
ODgog of 0.01 in fresh YPAD medium, incubated for
24 hours at 30 °C and the ODgy, was then determined
corresponding to the value of passage 1. The culture was
then re-diluted to ODg of 0.01 and the same procedure
was repeated for passages 2—10 [34].

Additional files

Additional file 1: Table S1. Negative genetic interactions of all tested
lincRNAs. (XLSX 35 kb)

Additional file 2: Table S2. Positive genetic interactions of all tested
lincRNAs. (XLSX 45 kb)

Additional file 3: Figure S1. Overlap between TLCT and ESTT negative
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