Skip to main content

Advertisement

Figure 5 | BMC Biology

Figure 5

From: Repair rather than segregation of damage is the optimal unicellular aging strategy

Figure 5

Comparison with some experimental results for E. coli . Mean growth rates of new-pole cells (blue) and old-pole cells (red), normalised by generation. Error bars show standard deviation. (A) Measured growth rates of E. coli as published in [16] but without removing rates from lower quality fits (n = 2 to 30). (B,C) Results of UnicellAge lineage simulations mimicking the experimental set-up of (A). The standard deviation of asymmetry was 0.25 and coefficients of variation were 0.05 for both the cell radius triggering division and mass fractions of daughter cells; see Figures S6,S7 for the effect of changing the extent of stochasticity in these processes. (B) Simulation assuming a high degree of segregation (α = 0.75) of low amounts of damage (a = 0.04 h−1) (n = 26 to 30). (C) Simulation assuming low degree of segregation (α = 0.05) of high amounts of damage (a = 0.35 h−1) (n = 30). Both scenarios (B, C) are consistent with the data (A), but only (B) is consistent with predictions of UnicellAge.

Back to article page