Skip to main content

Advertisement

Fig. 7 | BMC Biology

Fig. 7

From: Control of vein network topology by auxin transport

Fig. 7

Functions of PIN6 and PIN8 in PIN1-dependent vein network formation. a-d. Dark-field illumination of mature first leaves illustrating phenotype classes: conspicuous marginal vein (a); fused leaves with conspicuous marginal vein (b); wide midvein (c); fused leaves with wide midvein (d). Phenotype classes I-III as in Fig. 6. e. Percentages of leaves in phenotype classes. Difference between pin1 and WT, and between pin1;6 and pin1 was significant at P < 0.001 (***) by Kruskal-Wallis and Mann–Whitney test with Bonferroni correction. Sample population sizes: WT, 53; pin1, 46; pin1;6, 42; MP::PIN6, 54; MP::PIN8, 49; MP::PIN6;pin1;6, 45; MP::PIN8;pin1;6, 60. f. First leaves. Indices are expressed as mean ± SE. Difference between pin1 and WT cardinality indices, between pin1;6 and pin1 cardinality indices, between MP::PIN6 and WT cardinality indices, between MP::PIN8 and WT cardinality indices, between pin1 and WT connectivity indices, between pin1;6 and pin1 connectivity indices, between MP::PIN6 and WT connectivity indices, and between MP::PIN8 and WT connectivity indices was significant at P < 0.001 (***) by F-test and t-test with Bonferroni correction. Sample population sizes as in (e). Bars: (a,b,d) 1 mm; (c) 0.25 mm

Back to article page