Skip to main content
Fig. 1 | BMC Biology

Fig. 1

From: Global analysis of dorsoventral patterning in the wasp Nasonia reveals extensive incorporation of novelty in a regulatory network

Fig. 1

Summary of similarities and differences between Nasonia and Drosophila embryogenesis. Representation of wasp (left) and fly (right) embryos from the mid-blastoderm stage (1) through the completion of gastrulation (6). Patterning and tissue establishment is represented by the following colors: extraembryonic (purple), dorsal ectoderm (gray), neuroectoderm (green), mesoderm (red). As the blastoderm cellularizes (1–3), retraction of the expression domain of extraembryonic marker genes is observed in both insects. While the domains of the other tissue-specific markers fluctuate very little in the fly, the mesoderm marker gene expression domain expands dynamically at the expense of lateral ectoderm marker expression in the wasp. These wasp-specific changes precede a stable pattern nearly identical to that of the fly just prior to the start of gastrulation (3). However, once gastrulation begins (4–6), the behavior of the different tissue domains diverges again. In the fly a ventral furrow internalizes the mesoderm. In the wasp, the epithelium breaks at the border of the mesoderm and neuroectoderm, and the free edges of the ectoderm migrate towards each other until they meet and re-form a continuous epithelium at the ventral midline. At the end of gastrulation, the fly amnioserosa remains in place and slowly shrinks; however, the wasp extraembryonic tissue expands at this time. The dorsal ectoderm flanking the serosa and amnion folds and eventually breaks, again creating free edges. The free edges of the serosa then migrate over the ectodermal epithelium, forming a squamous epithelium that eventually covers the entire embryo. Dmel Drosophila melanogaster, Nvit Nasonia vitripennis

Back to article page