Skip to main content
Fig. 5 | BMC Biology

Fig. 5

From: Differential DARC/ACKR1 expression distinguishes venular from non-venular endothelial cells in murine tissues

Fig. 5

Correlation of DARC expression and known venular markers. a RT-qPCR showing DARC (Darc), P- (Selp), and E-selectins (Sele) expression at the mRNA level in cell-sorted V-EC (CD45-CD31 + gp38-DARC+), NV-EC (CD45-CD31 + gp38-DARC-), and LEC (CD45-CD31 + gp38+) from skin tissue. b RT-qPCR showing Darc, Carbohydrate sulfotransferase 4 (Chst4), and Fucosyltransferase VII (Fut7) expression at the mRNA level in cell-sorted V-EC, NV-EC, and LEC from peripheral lymph nodes (PLN; pool of inguinals, brachials, axillaries, cervicals, and auriculars). c RT-qPCR showing Darc, Chst4, Fut7, and mucosal vascular addressin cell adhesion molecule 1 (Madcam1) expression at the mRNA level in cell-sorted V-EC, NV-EC, and LEC from mesenteric lymph nodes (MLN). Expression data are shown relative to GAPDH of a pool of three experiments for each gene and expressed in arbitrary units (A.U.). Error bars depict mean ± SEM. ns P > 0.05, **P ≤ 0.01, ***P ≤ 0.001. Supporting data values are included in Additional file 2. d–f Flow cytometry contour plots of DARC and peripheral node addressin (PNAd) expression (d), DARC and MAdCAM-1 expression (e), and DARC and ICAM-1 expression (f) in ear skin, PLNs, and MLNs. Cell suspensions were gated on CD45-CD31 + gp38-BEC subset for flow cytometry analysis in all the tissues. n = 3 experiments for each tissue

Back to article page