Skip to main content
Fig. 1. | BMC Biology

Fig. 1.

From: Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility

Fig. 1.

Predicted population suppression depends on the costs of the drive allele to the fertility of heterozygous females. The ideal scenario is that the drive allele is fully recessive and so heterozygous females are fully fit (a), though some degree of dominance may arise from somatic expression of the drive allele (b, d), and parental effects caused by deposition of Cas9 in sperm or egg may also reduce heterozygous fitness (c, d). Dots in c and d indicate the 8-year suppression predicted by the spatial model. All results shown follow the same default release strategy described in the text, of 5000 males released in 1% of human settlements per year, which are selected at random independently each year

Back to article page
\