Skip to main content
Fig. 1 | BMC Biology

Fig. 1

From: Modeling confinement and reversibility of threshold-dependent gene drive systems in spatially-explicit Aedes aegypti populations

Fig. 1

Inheritance and landscape features of the modeling framework. a Reciprocal translocations (T1 and T2) result from the mutual exchange between terminal segments of two non-homologous chromosomes (N1 and N2). The cross here depicts possible parental gametes, with respect to the translocation, and offspring that result from matings between them. Matings between wild-type organisms or translocation homozygotes result in viable offspring, but translocation heterozygotes produce unbalanced gametes, and many of the resulting offspring are unviable (shaded). This results in a heterozygote disadvantage and threshold-dependent population dynamics. b UDMEL is composed of two unlinked constructs (here referred to as A and B), each consisting of a maternally expressed toxin and a zygotically expressed antidote for the toxin on the opposite construct. The cross here represents matings between two of the nine possible parental genotypes (“+” represents the wild-type allele, and “A” and “B” represent alleles corresponding to the two UDMEL constructs). The complete inheritance pattern is depicted in Additional file 2: Fig. S1. Offspring lacking the antidotes to the maternal toxins produced by their mother are unviable (shaded). At high population frequencies, the selective advantage on the constructs, by virtue of the antidotes, outweighs the fitness load due to the toxins and hence results in frequency-dependent spread. c Distribution of households in Yorkeys Knob (blue) and Trinity Park (red) in Cairns, Queensland, Australia. Households serve as individual Aedes aegypti populations in our metapopulation framework, with movement of adult Ae. aegypti between them. Yorkeys Knob serves as a simulated release site, and Trinity Park as a simulated control site

Back to article page