Skip to main content
Fig. 1 | BMC Biology

Fig. 1

From: Divergent CPEB prion-like domains reveal different assembly mechanisms for a generic amyloid-like fold

Fig. 1

Computational sequence analysis of neuronal CPEB orthologs. a Domain analysis and organization. The selected CPEB proteins have a defined role in memory persistence in different species. CPEB4 from Hydra magnipapillata, a fresh-water member of the cnidarian, was selected as the most primitive animal to have neurons. The two RRMs (orange) and ZZ domain (green) are located in the conserved C-termini. The divergent N-termini of all analyzed CPEB proteins, where the PLD is located, show amyloid-prone (black boxes) and disordered (red boxes) segments. b Pairwise sequence identity of the N-terminal region represented as a matrix, from the first residue to the first residue of RRM1. ApCPEB PLD and Orb2A PLD share 28% sequence identity. c CC probability (from 0 to 1, per residue) obtained using the Coils algorithm for N-terminal regions of neuronal CPEB isoforms. ApCPEB PLD is the only domain with segments whose CC formation propensity is over 0.8 (highlighted in red), followed by Drosophila Orb2A PLD and Orb2B PLD with a propensity near 0.5. d Prediction of disorder propensity using PONDR-FIT, and amyloid-spine formation using ZipperDB, along the 160 residues of the ApCPEB PLD sequence. The dark line shows the predicted disorder score per residue. Values above or below 0.5 predict disordered or ordered, respectively. Each colored bar indicates the hexapeptide starting position for amyloid-spine prediction. Segments with lower energy than the threshold at -23 kcal/mol are indicated in red as prone-amyloid segments

Back to article page