Skip to main content
Fig. 5 | BMC Biology

Fig. 5

From: Altered neuronal physiology, development, and function associated with a common chromosome 15 duplication involving CHRNA7

Fig. 5

Neuronal migration is compromised in AP-derived cINs and this phenotype is partially reversed by CHIR-99021. a IPA analysis of AP-enriched DEGs (versus the UM sample, Fig. 4 above) identified a cluster of genes which regulate neuronal migration. b Schematic depicting the migration assay, which involves generating neuroids containing Synapsin promoter (Syn)-GFP-expressing cExNPCs (green) and Syn-RFP-expressing (red) cINPCs, apposition of these neuroids, and differentiation and migration of neurons in these co-cultures, with analysis at day 10. Neurons that migrated into the opposite neuroid are indicated by white arrowheads. c Migration of red cINs into the green cExN neuroid, and vice versa, is shown in representative confocal images from assays performed with neuroid co-cultures from all four models. d The number of cINs (red) that migrated into the cExN neuroid were quantified from six independent biological replicate experiments (n = 6), which used two clonal lines for the UM and AP models and one clonal line for the UC-M and UC-F models. Reduced cIN migration in the AP model was partially reversed by addition of CHIR-99021 (CHIR). e Numbers of cExNs (green) that migrated into the cIN neuroid were quantified, using data from six independent biological replicate experiments (n = 6) that used two clonal lines for the UM and AP models and one clonal line for the UC-F/UC-M models. Clones used, replicates, and data values are in Additional file 4. Scale bars=150 μm and higher magnification (BOX)=100 μm. P values: *P < 0.05, **P < 0.01, and ***P < 0.001 were calculated by using Kruskal-Wallis non-parametric tests as described in the “Methods” section. Plot shows the median value, calculated as described in the “Methods” section

Back to article page