Skip to main content
Fig. 10 | BMC Biology

Fig. 10

From: An economical and highly adaptable optogenetics system for individual and population-level manipulation of Caenorhabditis elegans

Fig. 10

Automation of the OptoArm allows fine adjustment of light pulse width and intensity. A The electronic circuitry of the OptoArm under the control of a microcontroller (an Arduino Uno in this paper). B By using a pulse width modulator output pin of Arduino the pulse width (I, II), time intervals (III), and intensity (IV) of the OptoArm can be easily regulated. C By using an LCD shield on top of an Arduino Uno, all parameters can be adjusted in live-modus without the intervention of a computer. There are 5 buttons that can be used to go UP and DOWN in the different programs to select parameters and to adjust them by pressing LEFT or RIGHT. All changes can be confirmed with the SELECT button (see Table 5). D The different programs of the automated OptoArm. Program 1 (I) allows testing the system and manually turning the LED ON and OFF (II). Here, the intensity of the system can be changed as well. Program 2 (III) can be used to give single-timed pulses of light (IV). Program 3 (V) can be used to give trains of single-time pulses. One can adjust both the pulse-time (IV), the waiting time, and the number of cycles (VI). E The software provides a clear overview of the steps that are performed. When a run is started and then finishes, the user can use the option “Rerun” to execute the same program without having to adjust the parameters again

Back to article page