Skip to main content
Fig. 8 | BMC Biology

Fig. 8

From: An economical and highly adaptable optogenetics system for individual and population-level manipulation of Caenorhabditis elegans

Fig. 8

Population characteristics acquired with the WF-NTP are potential readouts of optogenetic stimulation with the OptoArm. A Schematic of experimental outline. D4 worms were assessed in liquid with the OptoArm being OFF and ON and population characteristics (bending frequency and eccentricity) were analyzed with the WF-NTP software. B Change in bends per 30 s when light is ON of worms grown with or without ATR. The percentual decline in thrashing capacity is annotated in the graph, n = 15. For acetylcholine: Mann-Whitney U test p < 0.001, GABA: two-tailed unpaired Student’s t test: p < 0.001. C Binned effect of blue light on swimming behavior of transgenic worms grown with or without ATR, n = 10. Two-way ANOVA (time, genotype, interaction: p < 0.001) with post hoc Sidak’s. D Change in bends per 10 s after optogenetic stimulation. Acetylcholine: only the last 10 s of 30-s illumination is used, GABA: only the first 10 s are used. n = 15. For acetylcholine: Mann-Whitney U test p < 0.001, GABA: two-tailed unpaired Student’s t test: p < 0.001. E Effect of blue light on eccentricity of worms grown with or F without ATR. n = 20–40, Mann-Whitney U tests acetylcholine + ATR: 0–10 s: not significant, 10–20 s: p = 0.0192, 20–30 s: p = 0.0033, for 0–30 s: p = 0.0427. Acetylcholine—ATR, and both GABA conditions: n.s. G The body length of worms expressing ChR2 under the unc-17 promoter after blue light stimulation. Bulk assayed worms (multiple) were compared to individual assayed worms (single). n = 15, two-tailed unpaired Student’s t test: n.s. Blue bars represent “light ON.” Acetylcholine: zxIs6 (Punc-17::ChR2::YFP), GABA: zxIs3 (Punc-47::ChR2::YFP). *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001

Back to article page