Kenkre JS, Bassett JHD. The bone remodelling cycle. Ann Clin Biochem. 2018;55(3):308–27. https://doi.org/10.1177/0004563218759371.
Article
CAS
PubMed
Google Scholar
Tiede-Lewis LM, Dallas SL. Changes in the osteocyte lacunocanalicular network with aging. Bone. 2019;122:101–13. https://doi.org/10.1016/j.bone.2019.01.025.
Article
PubMed
PubMed Central
Google Scholar
Witten PE, Harris MP, Huysseune A, Winkler C. Chapter 13 - Small teleost fish provide new insights into human skeletal diseases. In: Detrich HW, Westerfield M, Zon LI, editors. Methods in Cell Biology, vol. 138: Academic Press; 2017. p. 321–46.
Google Scholar
Ofer L, Dean MN, Zaslansky P, Kult S, Shwartz Y, Zaretsky J, et al. A novel nonosteocytic regulatory mechanism of bone modeling. PLoS Biol. 2019;17(2):e3000140. https://doi.org/10.1371/journal.pbio.3000140.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suniaga S, Rolvien T, vom Scheidt A, IAK F, Bale HA, Huysseune A, et al. Increased mechanical loading through controlled swimming exercise induces bone formation and mineralization in adult zebrafish. Sci Rep. 2018;8(1):3646.
Article
PubMed
PubMed Central
Google Scholar
Khajuria DK, Karasik D. Novel model of restricted mobility induced osteopenia in zebrafish. J Fish Biol. 2021;98(4):1031–8. https://doi.org/10.1111/jfb.14369.
Article
PubMed
Google Scholar
Zhao A, Qin H, Fu X. What Determines the Regenerative Capacity in Animals? BioScience. 2016;66(9):735–46. https://doi.org/10.1093/biosci/biw079.
Article
Google Scholar
Lleras-Forero L, Winkler C, Schulte-Merker S. Zebrafish and medaka as models for biomedical research of bone diseases. Dev Biol. 2020;457(2):191–205. https://doi.org/10.1016/j.ydbio.2019.07.009.
Article
CAS
PubMed
Google Scholar
Sehring IM, Weidinger G. Recent advancements in understanding fin regeneration in zebrafish. WIREs Dev Biol. 2020;9(1):e367. https://doi.org/10.1002/wdev.367.
Article
Google Scholar
Sire JY, Donoghue PC, Vickaryous MK. Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates. J Anat. 2009;214(4):409–40. https://doi.org/10.1111/j.1469-7580.2009.01046.x.
Article
PubMed
PubMed Central
Google Scholar
Yasuo M. The source of calcium in regenerating scales of the goldfish, Carassius auratus. Comp Biochem Physiol Part A: Physiology. 1980;66(3):521–4. https://doi.org/10.1016/0300-9629(80)90202-9.
Article
Google Scholar
Cox BD, De Simone A, Tornini VA, Singh SP, Di Talia S, Poss KD. In Toto Imaging of Dynamic Osteoblast Behaviors in Regenerating Skeletal Bone. Curr Biol. 2018;28(24):3937–47.e4.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Simone A, Evanitsky MN, Hayden L, Cox BD, Wang J, Tornini VA, et al. Control of osteoblast regeneration by a train of Erk activity waves. Nature. 2021;590(7844):129–33. https://doi.org/10.1038/s41586-020-03085-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Metz JR, de Vrieze E, Lock EJ, Schulten IE, Flik G. Elasmoid scales of fishes as model in biomedical bone research. J Appl Ichthyology. 2012;28(3):382–7. https://doi.org/10.1111/j.1439-0426.2012.01990.x.
Article
Google Scholar
Sire JY, Akimenko MA. Scale development in fish: a review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio). Int J Dev Biol. 2004;48(2-3):233–47. https://doi.org/10.1387/ijdb.15272389.
Article
CAS
PubMed
Google Scholar
Dhouailly D, Godefroit P, Martin T, Nonchev S, Caraguel F, Oftedal O. Getting to the root of scales, feather and hair: As deep as odontodes? Exp Dermatol. 2019;28(4):503–8. https://doi.org/10.1111/exd.13391.
Article
PubMed
Google Scholar
Shimada A, Kawanishi T, Kaneko T, Yoshihara H, Yano T, Inohaya K, et al. Trunk exoskeleton in teleosts is mesodermal in origin. Nat Commun. 2013;4(1):1639. https://doi.org/10.1038/ncomms2643.
Article
CAS
PubMed
Google Scholar
Donoghue PCJ, Sansom IJ. Origin and early evolution of vertebrate skeletonization. Microsc Res Tech. 2002;59(5):352–72. https://doi.org/10.1002/jemt.10217.
Article
PubMed
Google Scholar
Aman AJ, Fulbright AN, Parichy DM. Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development. eLife. 2018;7:e37001. https://doi.org/10.7554/eLife.37001.
Article
PubMed
PubMed Central
Google Scholar
Sire JY, Allizard F, Babiar O, Bourguignon J, Quilhac A. Scale development in zebrafish (Danio rerio). J Anatomy. 1997;190((Pt 4)(Pt 4)):545–61.
Article
Google Scholar
Pasqualetti S, Banfi G, Mariotti M. The zebrafish scale as model to study the bone mineralization process. J Mol Histology. 2012;43(5):589–95. https://doi.org/10.1007/s10735-012-9425-z.
Article
Google Scholar
Richardson R, Slanchev K, Kraus C, Knyphausen P, Eming S, Hammerschmidt M. Adult Zebrafish as a Model System for Cutaneous Wound-Healing Research. J Investig Dermatol. 2013;133(6):1655–65. https://doi.org/10.1038/jid.2013.16.
Article
CAS
PubMed
Google Scholar
Bereiter-Hahn J, Zylberberg L. Regeneration of teleost fish scale. Comp Biochem Physiol Part A: Physiology. 1993;105(4):625–41. https://doi.org/10.1016/0300-9629(93)90262-3.
Article
Google Scholar
de Vrieze E, van Kessel MA, Peters HM, Spanings FA, Flik G, Metz JR. Prednisolone induces osteoporosis-like phenotype in regenerating zebrafish scales. Osteoporos Int. 2014;25(2):567–78. https://doi.org/10.1007/s00198-013-2441-3.
Article
CAS
PubMed
Google Scholar
Guellec DL, Zylberberg L. Expression of Type I and Type V Collagen mRNAs in the Elasmoid Scales of a Teleost Fish as Revealed by In Situ Hybridization. Connect Tissue Res. 1998;39(4):257–67. https://doi.org/10.3109/03008209809021501.
Article
PubMed
Google Scholar
de Vrieze E, Sharif F, Metz JR, Flik G, Richardson MK. Matrix metalloproteinases in osteoclasts of ontogenetic and regenerating zebrafish scales. Bone. 2011;48(4):704–12. https://doi.org/10.1016/j.bone.2010.12.017.
Article
CAS
PubMed
Google Scholar
Carnovali M, Luzi L, Banfi G, Mariotti M. Chronic hyperglycemia affects bone metabolism in adult zebrafish scale model. Endocrine. 2016;54(3):808–17. https://doi.org/10.1007/s12020-016-1106-3.
Article
CAS
PubMed
Google Scholar
Carnovali M, Ottria R, Pasqualetti S, Banfi G, Ciuffreda P, Mariotti M. Effects of bioactive fatty acid amide derivatives in zebrafish scale model of bone metabolism and disease. Pharmacol Res. 2016;104:1–8. https://doi.org/10.1016/j.phrs.2015.12.009.
Article
CAS
PubMed
Google Scholar
Pasqualetti S, Congiu T, Banfi G, Mariotti M. Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-induced osteoporosis in adult zebrafish scale. Int J Exp Pathol. 2015;96(1):11–20. https://doi.org/10.1111/iep.12106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giraud-Guille MM. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int. 1988;42(3):167–80. https://doi.org/10.1007/BF02556330.
Article
CAS
PubMed
Google Scholar
Bigi A, Burghammer M, Falconi R, Koch MHJ, Panzavolta S, Riekel C. Twisted Plywood Pattern of Collagen Fibrils in Teleost Scales: An X-ray Diffraction Investigation. J Struct Biol. 2001;136(2):137–43. https://doi.org/10.1006/jsbi.2001.4426.
Article
CAS
PubMed
Google Scholar
Bergen DJM, Kague E, Hammond CL. Zebrafish as an Emerging Model for Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds. Front Endocrinol (Lausanne). 2019;10:6.
Article
Google Scholar
Kobayashi-Sun J, Yamamori S, Kondo M, Kuroda J, Ikegame M, Suzuki N, et al. Uptake of osteoblast-derived extracellular vesicles promotes the differentiation of osteoclasts in the zebrafish scale. Commun Biol. 2020;3(1):190. https://doi.org/10.1038/s42003-020-0925-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Padhi BK, Joly L, Tellis P, Smith A, Nanjappa P, Chevrette M, et al. Screen for genes differentially expressed during regeneration of the zebrafish caudal fin. Dev Dyn. 2004;231(3):527–41. https://doi.org/10.1002/dvdy.20153.
Article
CAS
PubMed
Google Scholar
Schmidt JR, Geurtzen K, von Bergen M, Schubert K, Knopf F. Glucocorticoid Treatment Leads to Aberrant Ion and Macromolecular Transport in Regenerating Zebrafish Fins. Front Endocrinol. 2019;10:674.
Article
Google Scholar
Wu XM, Chen WQ, Hu YW, Cao L, Nie P, Chang MX. RIP2 Is a Critical Regulator for NLRs Signaling and MHC Antigen Presentation but Not for MAPK and PI3K/Akt Pathways. Front Immunol. 2018;9:726.
Article
PubMed
PubMed Central
Google Scholar
Kawasaki K, Buchanan AV, Weiss KM. Gene Duplication and the Evolution of Vertebrate Skeletal Mineralization. Cells Tissues Organs. 2007;186(1):7–24. https://doi.org/10.1159/000102678.
Article
PubMed
Google Scholar
Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. 2011;3(1):a004978. https://doi.org/10.1101/cshperspect.a004978.
Article
PubMed
PubMed Central
Google Scholar
Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol. 2013;5(1):a008334. https://doi.org/10.1101/cshperspect.a008334.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeltz C, Gullberg D. The integrin–collagen connection – a glue for tissue repair? J Cell Sci. 2016;129(4):653–64. https://doi.org/10.1242/jcs.180992.
Article
CAS
PubMed
Google Scholar
Bhattacharya S, Hyland C, Falk MM, Iovine MK. Connexin 43 gap junctional intercellular communication inhibits <em>evx1</em> expression and joint formation in regenerating fins. Development. 2020;147(13):dev190512.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mortier GR, Cohn DH, Cormier-Daire V, Hall C, Krakow D, Mundlos S, et al. Nosology and classification of genetic skeletal disorders: 2019 revision. Am J Med Genet Part A. 2019;179(12):2393–419. https://doi.org/10.1002/ajmg.a.61366.
Article
PubMed
Google Scholar
Couchouron T, Masson C. Early-onset progressive osteoarthritis with hereditary progressive ophtalmopathy or Stickler syndrome. Joint Bone Spine. 2011;78(1):45–9. https://doi.org/10.1016/j.jbspin.2010.03.012.
Article
PubMed
Google Scholar
Iwasaki M, Kuroda J, Kawakami K, Wada H. Epidermal regulation of bone morphogenesis through the development and regeneration of osteoblasts in the zebrafish scale. Dev Biol. 2018;437(2):105–19. https://doi.org/10.1016/j.ydbio.2018.03.005.
Article
CAS
PubMed
Google Scholar
Li S-W, Takanosu M, Arita M, Bao Y, Ren Z-X, Maier A, et al. Targeted disruption of Col11a2 produces a mild cartilage phenotype in transgenic mice: Comparison with the human disorder otospondylomegaepiphyseal dysplasia (OSMED). Dev Dyn. 2001;222(2):141–52. https://doi.org/10.1002/dvdy.1178.
Article
CAS
PubMed
Google Scholar
Yadav MC, Huesa C, Narisawa S, Hoylaerts MF, Moreau A, Farquharson C, et al. Ablation of osteopontin improves the skeletal phenotype of phospho1(-/-) mice. J Bone Miner Res. 2014;29(11):2369–81. https://doi.org/10.1002/jbmr.2281.
Article
CAS
PubMed
Google Scholar
Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD. Osteopontin Deficiency Increases Mineral Content and Mineral Crystallinity in Mouse Bone. Calcif Tissue Int. 2002;71(2):145–54. https://doi.org/10.1007/s00223-001-1121-z.
Article
CAS
PubMed
Google Scholar
Steitz SA, Speer MY, McKee MD, Liaw L, Almeida M, Yang H, et al. Osteopontin Inhibits Mineral Deposition and Promotes Regression of Ectopic Calcification. Am J Pathol. 2002;161(6):2035–46. https://doi.org/10.1016/S0002-9440(10)64482-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lawrence EA, Kague E, Aggleton JA, Harniman RL, Roddy KA, Hammond CL. The mechanical impact of col11a2 loss on joints; col11a2 mutant zebrafish show changes to joint development and function, which leads to early-onset osteoarthritis. Philos Trans R Soc B: Biol Sci. 2018;373(1759):20170335. https://doi.org/10.1098/rstb.2017.0335.
Article
CAS
Google Scholar
Hammond CL, Schulte-Merker S. Two populations of endochondral osteoblasts with differential sensitivity to Hedgehog signalling. Development. 2009;136(23):3991–4000. https://doi.org/10.1242/dev.042150.
Article
CAS
PubMed
Google Scholar
Debiais-Thibaud M, Simion P, Ventéo S, Muñoz D, Marcellini S, Mazan S, et al. Skeletal Mineralization in Association with Type X Collagen Expression Is an Ancestral Feature for Jawed Vertebrates. Mol Biol Evol. 2019;36(10):2265–76. https://doi.org/10.1093/molbev/msz145.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eames BF, Amores A, Yan Y-L, Postlethwait JH. Evolution of the osteoblast: skeletogenesis in gar and zebrafish. BMC Evol Biol. 2012;12(1):27. https://doi.org/10.1186/1471-2148-12-27.
Article
PubMed
PubMed Central
Google Scholar
Gregory KE, Oxford JT, Chen Y, Gambee JE, Gygi SP, Aebersold R, et al. Structural Organization of Distinct Domains within the Non-collagenous N-terminal Region of Collagen Type XI. J Biol Chem. 2000;275(15):11498–506. https://doi.org/10.1074/jbc.275.15.11498.
Article
CAS
PubMed
Google Scholar
Li Y, Lacerda DA, Warman ML, Beier DR, Yoshioka H, Ninomiya Y, et al. A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell. 1995;80(3):423–30. https://doi.org/10.1016/0092-8674(95)90492-1.
Article
CAS
PubMed
Google Scholar
Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8(3):221–33. https://doi.org/10.1038/nrm2125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Douglas T, Heinemann S, Bierbaum S, Scharnweber D, Worch H. Fibrillogenesis of collagen types I, II, and III with small leucine-rich proteoglycans decorin and biglycan. Biomacromolecules. 2006;7(8):2388–93. https://doi.org/10.1021/bm0603746.
Article
CAS
PubMed
Google Scholar
Chen X-D, Fisher LW, Robey PG, Young MF. The small leucine-rich proteoglycan biglycan modulates BMP-4-induced osteoblast differentiation. FASEB J. 2004;18(9):948–58. https://doi.org/10.1096/fj.03-0899com.
Article
CAS
PubMed
Google Scholar
Xu T, Bianco P, Fisher LW, Longenecker G, Smith E, Goldstein S, et al. Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet. 1998;20(1):78–82. https://doi.org/10.1038/1746.
Article
CAS
PubMed
Google Scholar
Mosaffa P, Tetley RJ, Rodríguez-Ferran A, Mao Y, Muñoz JJ. Junctional and cytoplasmic contributions in wound healing. J R Soc Interface. 2020;17(169):20200264. https://doi.org/10.1098/rsif.2020.0264.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawasaki K. The SCPP gene repertoire in bony vertebrates and graded differences in mineralized tissues. Dev Genes Evol. 2009;219(3):147–57. https://doi.org/10.1007/s00427-009-0276-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morris JA, Kemp JP, Youlten SE, Laurent L, Logan JG, Chai RC, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. 2019;51(2):258–66. https://doi.org/10.1038/s41588-018-0302-x.
Article
CAS
PubMed
Google Scholar
Tachmazidou I, Hatzikotoulas K, Southam L, Esparza-Gordillo J, Haberland V, Zheng J, et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat Genet. 2019;51(2):230–6. https://doi.org/10.1038/s41588-018-0327-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vogiatzi MG, Li D, Tian L, Garifallou JP, Kim CE, Hakonarson H, et al. A novel dominant COL11A1 mutation in a child with Stickler syndrome type II is associated with recurrent fractures. Osteoporosis Int. 2018;29(1):247–51. https://doi.org/10.1007/s00198-017-4229-3.
Article
CAS
Google Scholar
Lee HJ, Hou Y, Chen Y, Dailey ZZ, Riddihough A, Jang HS, et al. Regenerating zebrafish fin epigenome is characterized by stable lineage-specific DNA methylation and dynamic chromatin accessibility. Genome Biol. 2020;21(1):52. https://doi.org/10.1186/s13059-020-1948-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sousa S, Valerio F, Jacinto A. A new zebrafish bone crush injury model. Biol Open. 2012;1(9):915–21. https://doi.org/10.1242/bio.2012877.
Article
PubMed
PubMed Central
Google Scholar
Morinobu M, Ishijima M, Rittling SR, Tsuji K, Yamamoto H, Nifuji A, et al. Osteopontin Expression in Osteoblasts and Osteocytes During Bone Formation Under Mechanical Stress in the Calvarial Suture In Vivo. J Bone Miner Res. 2003;18(9):1706–15. https://doi.org/10.1359/jbmr.2003.18.9.1706.
Article
CAS
PubMed
Google Scholar
Terai K, Takano-Yamamoto T, Ohba Y, Hiura K, Sugimoto M, Sato M, et al. Role of Osteopontin in Bone Remodeling Caused by Mechanical Stress. J Bone Miner Res. 1999;14(6):839–49. https://doi.org/10.1359/jbmr.1999.14.6.839.
Article
CAS
PubMed
Google Scholar
Bouleftour W, Juignet L, Verdière L, Machuca-Gayet I, Thomas M, Laroche N, et al. Deletion of OPN in BSP knockout mice does not correct bone hypomineralization but results in high bone turnover. Bone. 2019;120:411–22. https://doi.org/10.1016/j.bone.2018.12.001.
Article
CAS
PubMed
Google Scholar
Holm E, Gleberzon Jared S, Liao Y, Sørensen Esben S, Beier F, Hunter Graeme K, et al. Osteopontin mediates mineralization and not osteogenic cell development in vitro. Biochem J. 2014;464(3):355–64. https://doi.org/10.1042/BJ20140702.
Article
CAS
PubMed
Google Scholar
Kim H-J, Lee M-H, Park H-S, Park M-H, Lee S-W, Kim S-Y, et al. Erk pathway and activator protein 1 play crucial roles in FGF2-stimulated premature cranial suture closure. Dev Dyn. 2003;227(3):335–46. https://doi.org/10.1002/dvdy.10319.
Article
CAS
PubMed
Google Scholar
Topczewska JM, Shoela RA, Tomaszewski JP, Mirmira RB, Gosain AK. The Morphogenesis of Cranial Sutures in Zebrafish. PLoS One. 2016;11(11):e0165775-e.
Article
Google Scholar
Dai J, Peng L, Fan K, Wang H, Wei R, Ji G, et al. Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene. 2009;28(38):3412–22. https://doi.org/10.1038/onc.2009.189.
Article
CAS
PubMed
Google Scholar
Mori R, Shaw TJ, Martin P. Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring. J Exp Med. 2008;205(1):43–51. https://doi.org/10.1084/jem.20071412.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamort A-S, Giopanou I, Psallidas I, Stathopoulos GT. Osteopontin as a Link between Inflammation and Cancer: The Thorax in the Spotlight. Cells. 2019;8(8):815. https://doi.org/10.3390/cells8080815.
Article
CAS
PubMed Central
Google Scholar
Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10(5):537–44. https://doi.org/10.1093/hmg/10.5.537.
Article
CAS
PubMed
Google Scholar
Li X, Ominsky MS, Niu Q-T, Sun N, Daugherty B, D'Agostin D, et al. Targeted Deletion of the Sclerostin Gene in Mice Results in Increased Bone Formation and Bone Strength. J Bone Miner Res. 2008;23(6):860–9. https://doi.org/10.1359/jbmr.080216.
Article
PubMed
Google Scholar
Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S, et al. Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N Engl J Med. 2016;375(16):1532–43. https://doi.org/10.1056/NEJMoa1607948.
Article
CAS
PubMed
Google Scholar
Wainwright DK, Ingersoll S, Lauder GV. Scale diversity in bigeye tuna (Thunnus obesus): Fat-filled trabecular scales made of cellular bone. J Morphol. 2018;279(6):828–40. https://doi.org/10.1002/jmor.20814.
Article
PubMed
Google Scholar
de Vrieze E, Zethof J, Schulte-Merker S, Flik G, Metz JR. Identification of novel osteogenic compounds by an ex-vivo sp7:luciferase zebrafish scale assay. Bone. 2015;74(Supplement C):106–13.
Article
PubMed
Google Scholar
Alestrom P, D'Angelo L, Midtlyng PJ, Schorderet DF, Schulte-Merker S, Sohm F, et al. Zebrafish: Housing and husbandry recommendations. Lab Anim. 2020;54(3):213–24. https://doi.org/10.1177/0023677219869037.
Article
CAS
PubMed
Google Scholar
Bevan L, Lim ZW, Venkatesh B, Riley PR, Martin P, Richardson RJ. Specific macrophage populations promote both cardiac scar deposition and subsequent resolution in adult zebrafish. Cardiovasc Res. 2020;116(7):1357–71. https://doi.org/10.1093/cvr/cvz221.
Article
CAS
PubMed
Google Scholar
DeLaurier A, Eames BF, Blanco-Sánchez B, Peng G, He X, Swartz ME, et al. Zebrafish sp7:EGFP: A transgenic for studying otic vesicle formation, skeletogenesis, and bone regeneration. Genesis. 2010;48(8):505–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh Sumeet P, Holdway Jennifer E, Poss KD. Regeneration of Amputated Zebrafish Fin Rays from De Novo Osteoblasts. Dev Cell. 2012;22(4):879–86. https://doi.org/10.1016/j.devcel.2012.03.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kague E, Gallagher M, Burke S, Parsons M, Franz-Odendaal T, Fisher S. Skeletogenic fate of zebrafish cranial and trunk neural crest. PLoS One. 2012;7(11):e47394-e.
Article
Google Scholar
Mitchell RE, Huitema LF, Skinner RE, Brunt LH, Severn C, Schulte-Merker S, et al. New tools for studying osteoarthritis genetics in zebrafish. Osteoarthr Cartil. 2013;21(2):269–78. https://doi.org/10.1016/j.joca.2012.11.004.
Article
CAS
Google Scholar
Cunningham F, Achuthan P, Akanni W, Allen J, Amode MR, Armean IM, et al. Ensembl 2019. Nucleic Acids Res. 2018;47(D1):D745–D51. https://doi.org/10.1093/nar/gky1113.
Article
CAS
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009;10:48.
Article
PubMed
PubMed Central
Google Scholar
Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47(D1):D419–D26. https://doi.org/10.1093/nar/gky1038.
Article
CAS
PubMed
Google Scholar
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D13. https://doi.org/10.1093/nar/gky1131.
Article
CAS
PubMed
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.
Article
PubMed
PubMed Central
Google Scholar
The UPC. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2018;47(D1):D506–D15. https://doi.org/10.1093/nar/gky1049.
Article
CAS
Google Scholar
Mudunuri U, Che A, Yi M, Stephens RM. bioDBnet: the biological database network. Bioinformatics. 2009;25(4):555–6. https://doi.org/10.1093/bioinformatics/btn654.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498–503. https://doi.org/10.1038/nature12111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyer A, Schartl M. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol. 1999;11(6):699–704. https://doi.org/10.1016/S0955-0674(99)00039-3.
Article
CAS
PubMed
Google Scholar
de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. PLoS Comput Biol. 2015;11(4):e1004219. https://doi.org/10.1371/journal.pcbi.1004219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loh P-R, Tucker G, Bulik-Sullivan BK, Vilhjálmsson BJ, Finucane HK, Salem RM, et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet. 2015;47(3):284–90. https://doi.org/10.1038/ng.3190.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. https://doi.org/10.1371/journal.pmed.1001779.
Article
PubMed
PubMed Central
Google Scholar
Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. https://doi.org/10.1038/nature15393.
Article
CAS
PubMed
Google Scholar
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1):76–82. https://doi.org/10.1016/j.ajhg.2010.11.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, Peltonen L, et al. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467(7311):52–8. https://doi.org/10.1038/nature09298.
Article
CAS
PubMed
Google Scholar
Panoutsopoulou K, Southam L, Elliott KS, Wrayner N, Zhai G, Beazley C, et al. Insights into the genetic architecture of osteoarthritis from stage 1 of the arcOGEN study. Ann Rheumatic Dis. 2011;70(5):864–7. https://doi.org/10.1136/ard.2010.141473.
Article
CAS
Google Scholar
Kemp JP, Morris JA, Medina-Gomez C, Forgetta V, Warrington NM, Youlten SE, et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat Genet. 2017;49(10):1468–75. https://doi.org/10.1038/ng.3949.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kague E, Hughes SM, Lawrence EA, Cross S, Martin-Silverstone E, Hammond CL, et al. Scleraxis genes are required for normal musculoskeletal development and for rib growth and mineralization in zebrafish. FASEB J. 2019;33(8):9116–30. https://doi.org/10.1096/fj.201802654RR.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stevenson NL, DJM B, REH S, Kague E, Martin-Silverstone E, Robson Brown KA, et al. Giantin knockout models reveal a feedback loop between Golgi function and glycosyltransferase expression. J Cell Sci. 2017;130(24):4132–43.
CAS
PubMed
PubMed Central
Google Scholar
Bergen DJM, Metz JR. RNA-sequencing data of ontogenetic and 9-days post-harvest zebrafish scale regeneration. ENA https://identifiers.org/ena.embl:PRJEB39971. 2021.
Google Scholar
Bergen DJM, Hammond CL, Metz JR. https://data.bris.ac.uk/data/. University of Bristol Research Data Repository. 2021.