Skip to main content
Fig. 1 | BMC Biology

Fig. 1

From: Combined pangenomics and transcriptomics reveals core and redundant virulence processes in a rapidly evolving fungal plant pathogen

Fig. 1

Virulence assessments of the European isolate collection against a range of hexaploid (bread) wheat cultivars. A Typical disease progression time course illustrating the parameters assessed in the screen, including the time taken to the appearance of first visible symptoms and for full leaf necrosis to appear in the inoculated area. The figure shows infection of wheat cultivar Riband by Z. tritici isolate IPO323. B Virulence profile of the isolates vs the cultivar panel based on levels of leaf necrosis and chlorosis. Measurements were taken by both visual assessments and by using the LemnaTec, LemnaGrid image analysis software with comparable final results. Isolates were ranked and clustered based on virulence data. Z. tritici isolates highlighted by # were genome sequenced to construct a pangenome. Isolates highlighted by + were also analysed by RNAseq transcriptomics. Wheat cultivar Panorama (highlighted by X) was determined to be equally and fully susceptible to most isolates and was selected as the host genotype for the leaf infection RNAseq. Note the low virulence data for the outgroup of seven isolates against all cultivars is likely to result from these isolates being adapted to causing disease on tetraploid wheat (Durum or Pasta). All data is representative of three infected leaves analysed/interaction from two biological replicate experiments (6 leaves in total). C SplitsTree analysis of the molecular phylogeny of isolates selected for genomic sequencing. The country of origin of isolates is shown in abbreviation (Pl = Poland; GB = Great Britain; Be = Belgium; Cz = Czech Republic; Ge = Germany; Sw = Sweden; Fr = France; Sl = Slovakia; Ir = Ireland). The reference isolate, IPO323 collected ~1984 from the Netherlands (Ne) is also represented

Back to article page