
In November 2002, in what was only the second research 
article to be published by the Journal of Biology, Jeff 
Porter and colleagues described their use of a cell-based 
assay to identify and characterize small molecules that 
modulate the activity of the Hedgehog signaling pathway 
[1]. In the preceding decade there had been an explosion 
of interest in this pathway, stimulated by the discovery of 
the vertebrate homologues of the hedgehog (hh) gene that 
had originally been studied in Drosophila. A burgeoning 
body of evidence supported the conviction that manipu
lation of Hh signaling could have applications in both 
regenerative medicine and cancer therapy. The Frank-
Kamenetsky et al. paper [1], along with a contempora
neous publication from the Beachy group [2], provided a 
breakthrough in highlighting Smoothened (Smo), the G-
protein coupled receptor (GPCR)-like protein that sits at 
the heart of the pathway (Figure 1), as a highly ‘druggable’ 
target. Since this seminal publication, the screening 
approach as well as the molecules it identified have been 
extensively exploited: chemical modulators of the Hedge
hog pathway, and in particular of Smo, have provided 
versatile tools in elucidating the mechanism of action and 

roles of Hh signaling as well as in the development of 
novel cell replacement and anti-cancer therapies. Here 
we reflect on the significance of the Frank-Kamenetsky 
paper at the time of its publication and the impact that 
chemical modulators of Hh pathway activity have had 
over the succeeding decade.

The cloning of Sonic Hedgehog (Shh), one of three 
vertebrate Hh orthologues, in 1993 [3-5] led quickly to 
the discovery of its roles both in patterning the digits of 
the developing limb and in specifying cell identity in the 
neural tube. The identification of Shh as the mediator of 
the so-called ‘zone of polarizing activity’, the region of the 
developing limb bud that specifies digit type and number, 
had the most immediate impact, but it was its function in 
the developing central nervous system that attracted the 
attention of those with an eye for clinical application. For 
here was a protein that potentially could be used to direct 
the differentiation of neural progenitors into specific cell 
types, a Holy Grail of the newly defined field of Regenera
tive Medicine [6]. In a succession of papers, principally 
from the Jessell laboratory [7], Shh was shown to act in a 
concentration-dependent manner to induce the 
specification of distinct types of neurons, opening up the 
prospect of generating pure populations of differentiated 
cells for engraftment into patients with neurodegenera
tive disease.

Such a use of Shh had in fact been anticipated with its 
original discovery and a patent application relating to its 
exploitation ‘to generate and/or maintain an array of 
different vertebrate tissue both in vitro and in vivo’ had 
been filed at the end of 1993 [8]. This patent provided 
part of the intellectual property upon which the small 
biotech startup company Ontogeny was founded, with 
the Hh pathway a central focus of its activities. In a 
matter of months Hh signaling had moved from being 
the esoteric preserve of a handful of Drosophila geneti
cists to a potential target for pharmaceutical manipula
tion. And since pharmaceutical companies prefer the 
lower production costs and longer shelf life of small 
molecules compared to biologics, the search began for 
chemical modulators of its activity.
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The early studies of Hh signaling in Drosophila had 
identified the multipass-transmembrane protein Patched 
as being the receptor for Hh [9] and the GPCR-like 
protein Smoothened as an obligate transducer of its 
activity into the cell [10,11]. GPCRs are much favored by 
the pharmaceutical industry, being recognized as highly 
‘druggable’ targets by virtue of their cell surface location 
and many examples exist of small molecule GPCR 
agonists and antagonists [12]. So the prospects for 
identifying chemical modulators of the Hh pathway 
seemed good. In fact, a precedent for such a modulator 
had been established in 1998, with the demonstration 

that the naturally occurring alkaloid, cyclopamine, acts as 
a specific inhibitor of the Hh pathway [13].

Encouraged by this finding, Porter and colleagues at 
Ontogeny (which in 2000 merged with two other 
companies to become Curis Inc.) set out to discover 
novel chemical modulators of Hh. Up to this point, in 
vitro assays of Hh pathway activation had been based 
either on the differentiation of explanted embryonic 
tissues or on alkaline phosphatase activity in 10T1/2 
cells, an assay that took over 5 days to complete [14]. The 
key to the success of the Curis screen was the develop
ment and optimization of a rapid, high-throughput 

Figure 1. Hedgehog pathway overview. In vertebrates, the response of cells to Hh ligands is coordinated at the primary cilium (PC), a finger-like 
projection on the cell surface. (a) In the absence of ligand, the Hh receptor Patched localizes to the PC, keeping membrane targeted Smoothened 
out and in an inactive state. In the absence of Smoothened activity, Protein Kinase A (PKA) localized at the base of the PC promotes the cleavage 
of the Gli transcription factor into a repressor form that enters the nucleus and represses target gene expression. (b) On binding to Hh, Patched is 
internalized and targeted to the lysosome. Released from its Patched-mediated inhibition, Smoothened moves into the primary cilium where its 
activity attenuates the PKA-dependent cleavage of the Gli transcription factors, allowing their full-length forms to enter the cilium. Here they are 
activated by Smoothened before moving to the nucleus to activate target gene transcription.
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cell-based assay using an easily quantifiable Hh-sensitive 
luciferase reporter. Studies in Drosophila of the crypti
cally named Cubitus Interruptus protein, a member of 
the Gli family of transcription factors, had revealed its 
role in mediating the transcriptional response to Hh 
through binding to enhancers upstream of ptc, itself a Hh 
target gene [15], a finding that provided the basis for the 
development of such a Hh-reporter. 10T1/2 cells stably 
transfected with a luciferase reporter gene driven by 
multimerized Gli binding sites responded strongly to 
addition of exogenous Shh, permitting screens both for 
inhibitors (in the presence of Shh) and activators (in the 
absence of Shh). Beginning in late 1999, the Curis group 
used this approach to screen a library of 140,000 
compounds and, as anticipated, identified both agonists 
and antagonists of the pathway. Amongst the latter was 
CUR-61414, a potent Smo inhibitor the characteristics of 
which would be explored in depth in subsequent studies. 
The principal focus of the Frank-Kamenetsky et al. paper, 
however, was the identification of Hh-Ag1.1, the first 
example of a Hh-pathway agonist.

By synthesizing hundreds of Hh-Ag1.1 derivatives, 
several related compounds (Hh-Ag 1.2, 1.3, 1.4 and 1.5) 
were identified with enhanced potency, reduced toxicity 
and/or improved stability. Not only was the strong 
transcriptional activation evoked by these agonists repro
ducible in vivo, they also mimicked the cellular responses 
elicited by Hh proteins, acting as potent mitogens on 
primary rat cerebellar neurons and inducing specific 
neuronal progenitor subtypes in neural plate cultures. 
This recapitulation of Hh neural patterning activity 
together with the ability to rescue Shh mutant embryos 
by oral gavage of pregnant mothers established the in 
vivo utility of the Hh-Ag molecules. A set of epistasis 
tests suggested that both agonists and antagonists 
(cyclopamine and CUR-61414) act at the same level 
downstream of the Hh receptor Patched, but upstream of 
the intracellular modulator of Gli activity, Protein Kinase 
A (PKA). Moreover, the inability of agonists to rescue the 
mouse Smo mutant phenotype pointed to the Smo protein 
itself being their target. Formal proof of this came through 
use of radiolabeled agonist in Smo protein binding and 
competition assays, which at the same time proved that 
the antagonists also act by binding Smo directly (see 
Figure 2). The analysis of Hh-Ag1.3 by the Beachy group, 
who coined the name SAG (Smoothened AGonist) for this 
particular molecule [2], confirmed these findings.

The first reported application of SAG in directing 
differentiation of embryonic stem (ES) cells actually pre-
empted publication of the Frank-Kamenetsky et al. paper. 
In the August 2002 edition of Cell, Jessell and colleagues 
[16] reported that treatment of mouse ES cells with SAG 
in combination with retinoic acid treatment could induce 
the formation of functional motor neurons. Since then, 

there have been many other reports of the directed differ
entiation of stem cells through the manipulation of the 
Hh pathway, using both SAG as well as other pathway 
agonists, notably purmorphamine. Interestingly, this 
compound, also first described in 2002, was originally 
identified through its capacity to induce mesenchymal 
progenitor cells to differentiate into osteoblasts and only 
subsequently shown to be an Hh pathway agonist that, 
like SAG, binds directly to Smo [17] (Figure 2).

The use of purmorphamine to generate oligodendro
cytes from ES cells provided the first demonstration that 
Hh agonists can induce glial as well as neuronal 
differentiation in vitro [18]. Excitingly, Goldman and 
colleagues have now described the successful ameliora
tion of symptoms in a murine model of congenital 
hypomyelination through engraftment of oligodendro
cyte progenitor cells derived in this way from human 
induced pluripotent stem cells [19]. Both purmorphamine 
and SAG have also been used to promote the induction 
of dopaminergic neurons (DA), the loss of which is the 
principal cause of Parkinson’s disease. In a striking 
example of this application, Studer and colleagues 
showed that human ES cell-derived DA neurons were 
sufficiently stable to support long-term engraftment in 
several different lesioned animal models, resulting in 
significant recovery of motor function in each case [20]. 
In another ground-breaking study, Sasai and colleagues 
used SAG to induce formation of three-dimensional, 
functional pituitaries from ES cell-derived ectodermal 
co-cultures [21]. Together, these remarkable studies 
underline the efficacy of Hh pathway agonists in pro
gramming human stem cells and hold out great promise 
for development of effective cell-based therapies in the 
not too distant future.

As well as its role in neural patterning and survival, the 
Hh pathway functions in a variety of other developmental 
processes. The ability of purmorphamine to direct 
mesenchymal cells to an osteogenic fate has been shown 
to occur via induction of the master regulator of bone 
formation, Runx2, and there has already been an attempt 
to load purmorphamine onto artificial bone adhesives to 
promote fracture repair [22]. In mouse skin, topical 
application of SAG has also been used to stimulate hair 
follicle entrance into anagen phase, potently enhancing 
hair regrowth [23]. Additionally, SAG has been shown to 
ameliorate cortisol-mediated neurotoxicity in cerebral 
granule neuron precursors by restoring Hh signaling 
levels, suggesting its potential as a neuroprotective agent 
for glucocorticoid-induced neonatal cerebellar injury 
[24]. Similarly, in an in vitro model of ALS, purmorpha
mine was shown to be cytoprotective against oxidative 
stress [25]. Together, these findings raise the possibility 
that Hh agonists could be exploited in the clinic as 
neuroprotective agents.
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Clinical application of Hh pathway antagonists 
(Figure 2), by contrast, is already a reality and represents 
an equally, if not more, significant impact of the Porter 
paper. The discovery of the link between loss of Patched 
function in individuals suffering from Gorlin’s syndrome 
[26,27] and their susceptibility to basal cell carcinomas 
(BCCs) set in train a rapid exploration of the role of Hh 
pathway dysfunction in tumorigenesis. By the beginning 
of the new millennium, Hh signaling had been implicated 
in a significant number of cancers, including lung, 
prostate and pancreatic [28] as well as BCC and medullo
blastoma, the most prevalent and recalcitrant form of 
brain tumor in children [29]. The identification of the 
small molecule Hh inhibitor CUR61414 reported in the 
Journal of Biology paper was followed up in early 2003 
with a report of the first evidence for therapeutic efficacy 
of such a molecule. Two in vitro BCC culture systems 
were established by the Curis team, in both of which 
CUR61414 was found to elicit complete regression of the 
lesions [30]. The following year Curran and colleagues 
reported the successful elimination of medulloblastomas 
in Ptc1/+; p53/p53 mice, following treatment with 
HhAntag-691, another antagonist from the Curis screen 
[31]. Within five years, the first reports of therapeutic 
efficacy in humans of a more potent derivative, 

GDC-0449, were published: in one case, transient 
regression of a metastatic medulloblastoma was observed 
in a patient who failed to respond to other therapies [32], 
whilst in the second case over 50% of a cohort of patients 
with metastatic BCC were reported to respond favorably 
to oral dosing with GDC-0449 [33]. These promising 
results prompted further phase 2 and 3 clinical trials [34] 
and in early 2012, GDC-0449, now known as vimodegib 
or erivedge, received Food and Drug Administration 
approval as a therapy for metastatic BCC.

While many challenges remain, not least emergence of 
mutant forms of Smo that are resistant to vismodegib, 
the prospects for the use of Hh antagonists as therapies 
for a range of cancers look promising. By any measure, 
the development of a novel anti-cancer drug as well as 
reagents promoting the directed differentiation of human 
stem cells represents an impressive output from a single 
screen!

This article is part of the BMC Biology tenth anniversary series. Other 
articles in this series can be found at http://www.biomedcentral.com/
bmcbiol/series/tenthanniversary.

Figure 2. Small molecule manipulation of the Hh pathway. Major small molecule agonists (left) and antagonists (right) of Smoothened (center), 
and their clinical uses. Antagonists such as vismodegib (GDC-0449) and erismodegib (LDE225) are currently being trialed against a number of Hh 
pathway-activated cancers, whilst the two main agonists, SAG (Hh-Ag1.3) and purmorphamine, are being used for directed differentiation of stem 
cells to a variety of cell types.
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