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Abstract

Background: While traditional models of Alzheimer's disease focused on large fibrillar deposits
of the AP, amyloid peptide in the brain, recent work suggests that the major pathogenic effects
may be attributed to SDS-stable oligomers of AB,,. These AB,, oligomers represent a rational
target for therapeutic intervention, yet factors governing their assembly are poorly understood.

Results: We describe a new yeast model system focused on the initial stages of AR,
oligomerization. We show that the activity of a fusion of AP, to a reporter protein is compromised
in yeast by the formation of SDS-stable low-n oligomers. These oligomers are reminiscent of the
low-n oligomers formed by the AP, peptide in vitro, in mammalian cell culture, and in the human
brain. Point mutations previously shown to inhibit AB,, aggregation in vitro, were made in the AP,
portion of the fusion protein. These mutations both inhibited oligomerization and restored activity
to the fusion protein. Using this model system, we found that oligomerization of the fusion protein
is stimulated by millimolar concentrations of the yeast prion curing agent guanidine. Surprisingly,
deletion of the chaperone Hsp104 (a known target for guanidine) inhibited oligomerization of the
fusion protein. Furthermore, we demonstrate that Hsp 104 interacts with the AB,-fusion protein
and appears to protect it from disaggregation and degradation.

Conclusion: Previous models of Alzheimer's disease focused on unravelling compounds that
inhibit fibrillization of AP,,, i.e. the last step of AB,, assembly. However, inhibition of fibrillization
may lead to the accumulation of toxic oligomers of AB,,. The model described here can be used
to search for and test proteinacious or chemical compounds for their ability to interfere with the
initial steps of AP,, oligomerization. Our findings suggest that yeast contain guanidine-sensitive
factor(s) that reduce the amount of low-n oligomers of AB,,. As many yeast proteins have human
homologs, identification of these factors may help to uncover homologous proteins that affect Af,,
oligomerization in mammals.

Background A 42 amino acid long AB,, peptide generated by proteo-
Alzheimer's disease (AD) is a severe neurodegenerative  lytic processing of the APP protein is a major component
disorder characterized by an extracellular deposition of  of the amyloid plaques, in which it is mainly represented
amyloid plaques, and an intraneuronal accumulation of  in the form of detergent-insoluble amyloid fibers
neurofibrillary tangles in the brain of affected individuals.  (reviewed in [1]). Historically, the AB,, fibers have been
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considered to be the major pathogenic agents of AD.
Recently, this hypothesis has been challenged by findings
suggesting that fibrillar aggregates may represent inert
dead-end products of the AB,, aggregation pathway. Con-
siderable evidence now suggests that the primary neuro-
toxic effects are associated with soluble SDS-stable
assemblies of AB,,, such as 56 kDa AB,, dodecamers [2],
or even smaller, low-n (dimers, trimers, and tetramers)
oligomers of AB,,, which seem to appear during the early
stages of AP,, assembly (reviewed in [1,3-5]), and could
give rise to larger oligomers. Thus, the focus of putative
therapeutic interventions have shifted towards unraveling
compounds that inhibit the earliest stages of AB,, oli-
gomerization. A number of chemical screens have uncov-
ered molecules that inhibit fibrillization of the AB,,
peptide (reviewed in [6,7]). An interesting Escherichia coli
model of protein solubility control was recently suggested
by M. Delisa and colleagues [8], which the authors used to
isolate solubility-enhanced variants of AB,,. These stud-
ies, however, did not directly address the issue of inhibit-
ing the earliest stages of AB,, assembly, i.e. formation of
the SDS-stable soluble low-n oligomers. This aspect is
important, as inhibition of the wrong step may lead to
accumulation of toxic AB,, intermediates.

Yeast Saccharomyces cerevisiae is a simple and readily
manipulable organism that has been successfully used as
a model for various medicinal studies (reviewed in
[9,10]), including neurodegenerative disorders, associ-
ated with the deposition of amyloid aggregates [11-18].
One of the most valuable contributions of yeast biology to
the investigation of neurodegenerative disorders in ani-
mals was made by studying yeast prions (reviewed in [19-
21]). The yeast translational termination factor Sup35p
can form self-propagating infectious amyloid aggregates
that arise spontaneously in the cell and manifest a prion
phenotype referred to as [PSI*]. The essential Sup35p pro-
tein is composed of three domains. The 124 amino acid
long N-terminal domain (N) is glutamine and aparagine
rich, dispensable for viability, and required and sufficient
for the prion properties of Sup35p. While the function of
the highly charged middle (M) domain remains unclear,
the C-terminal RF (release factor) domain of Sup35p per-
forms termination of protein translation and is essential
for viability.

Prion aggregates of Sup35p are transmitted to daughter
cells along with the cytoplasm from the mother cell dur-
ing cell division [22]. The yeast chaperone Hsp104, a
member of the AAA+ protein family [23,24] is required
for the successful maintenance of the [PSI*] prion [25].
Hsp104 shears the SDS-stable Sup35p prion amyloid
aggregates into smaller structures in an ATP-dependent
manner [26,27] and therefore maintains them in num-
bers sufficient for the successful transmission to the
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daughter cell [28,29]. The ATPase activity of Hsp104 is
inhibited by millimolar concentrations of guanidine [30],
which is therefore employed as a yeast prion-curing agent
[31].

In this study, we describe a yeast model of the initial steps
of AB,, oligomerization. We show that the easily scored
activity of Sup35p's MRF domain is impaired in ABMRF
fusions because the AB,, causes the fusion to form SDS-
stable low-n oligomers. Furthermore, we found that gua-
nidine treatment increases, while gene disruption of
Hsp104 decreases, oligomerization of the fusion protein,
and that these changes are reflected by the yeast pheno-
type. This model system represents a convenient tool to
perform chemical and genetic screens for agents that inter-
fere with the earliest steps of AB,, oligomerization.

Results and discussion

The activity of the essential translational termination fac-
tor Sup35p (NMRF) is conveniently assayed in vivo by
examining the efficiency with which protein synthesis ter-
minates at a premature stop codon (a nonsense-suppres-
sion assay, for review see [2,33]; Fig. 1). The assay uses the
adel-14 nonsense allele. Strains carrying this mutation
and bearing fully active NMRF produce only a truncated
(inactive) version of Adelp, and as a result cannot grow
on synthetic medium lacking adenine (-Ade), while they
grow normally on synthetic medium supplemented with
adenine (+Ade). In addition, these cells accumulate a red
intermediate of the adenine synthesis pathway when
grown on complex medium. However, if the efficiency of
translational termination at the premature stop codon of
the adel-14 allele is compromised, the cells gain the abil-
ity to grow on -Ade (i.e. they become Ade*) and do not
accumulate red pigment. For example, cells expressing the
complete Sup35p containing the N (prion), M (middle),
and RF (release factor) domain, are white and Ade* when
NMREF is in the aggregated [PSI*] prion form (Fig. 1a).
Cells expressing an aggregation-deficient and therefore
fully functional form of Sup35p lacking the non-essential
N-terminal domain (MRF) are red and Ade- (Fig, 1b).
Thus, this well established system reliably distinguishes
between fully active monomer, and malfunctioning aggre-
gated forms of NMRF [19,25,34].

To establish a model of AB,, oligomerization in S. cerevi-
siae, we fused the AB,, peptide with MRF (Sup35p lacking
the N-terminal domain), and containing an HA tag
between the M and RF domains. The resulting protein,
ABMREF (see upper panel of Fig. 1 for constructs used in
this study) was mutagenized in its AB,, portion according
to arecent model of AB,, oligomerization [35]. The model
suggests that binding of one AB,, molecule to another
occurs through four regions: amino acids 15-21, 24-32,
35-37, and 40-42 of one molecule bind to the corre-
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ABMRF causes nonsense suppression in yeast. (Upper panel) Schematic illustration of the constructs used in this study:
(a) full length Sup35p (NMRF) (b) Sup35p without the N-terminal prion domain (MRF) (c) AB,, fused to the N terminus of
MRF (ABMRF) (d) ABMRF carrying a double mutation of Phe19,20Thr in its AP, portion (ABmIMRF) (e) ABMRF carrying a
triple mutation of Phe19,20Thr and lle3 Pro in its AR, portion (ABm2MRF). All these constructs carry an HA tag between the
M and RF domains. Images shown are not to scale. (Lower panel) Equal numbers of adel-/4 cells containing a genomic deletion
of SUP35 (sup35A), and carrying the indicated constructs (a-e) on a plasmid were grown on complex medium, or synthetic
medium supplemented (+Ade) or not (-Ade) with adenine. (a) Cells with inactivated NMRF ([PSI+]) had an impaired transla-
tional termination activity, were white and grew on -Ade. (b) Cells with fully active MRF (lacking the aggregation-prone prion,
N, domain), were red and failed to grow on -Ade. (c) Cells expressing ABMRF have an impaired translational termination activ-
ity, as they were white and grew on -Ade. (d, e) The translational termination activity was restored by F19,20T (Am|MRF)
and F19,20T/I3IP (APm2MRF) mutations in the AB42 region of the fusion protein, making the cells dark pink and preventing
their growth on -Ade.
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sponding regions in another molecule. Substitutions of
Phe19, Phe20, and Ile31 were previously shown to inhibit
aggregation of AP,, in vitro and prevent its neurotoxic
effects [35-37]. To obtain an oligomerization-deficient
control for the ABMRF fusion protein, we disrupted the
first and the second aggregation-important regions of
AB,, by making double ABF19.20TMRF (ABm1MRF) or tri-
ple APF19.20T/31IPMRF (ABm2MRF) substitutions in the
AB,, portion of ABMRF. These constructs were expressed
in a 74D-694 (adel-14) sup35A strain, and therefore were
the only sources of the essential Sup35p's RF domain.

Yeast cells expressing the ABMRF fusion protein were
white on complex medium and grew on -Ade, suggesting
that the translation termination activity of the fusion pro-
tein was impaired (Fig. 1). In contrast, yeast expressing
ABmIMRF or ABm2MRF were dark pink on complex
medium and Ade, suggesting that the efficiency of trans-
lation termination was almost completely restored by the
mutations in the AB,, portion of the fusion protein. No
growth difference was detected in the control experiment
on +Ade medium. These results are consistent with the
hypothesis that the presence of AB,, in the fusion protein
caused it to aggregate into SDS-stable oligomers, thereby
affecting its translation termination activity.

To test whether ABMRF formed SDS-stable oligomers, we
analyzed yeast lysates treated with 1% SDS at room tem-
perature by immunoblotting. As shown elsewhere [26],
prionized NMRF ([PSI*]) migrates in the form of SDS-sta-
ble aggregates, while MRF, which is unable to prionize, is
monomeric (Fig. 2). The pool of ABMRF contained both
monomers and SDS-stable complexes migrating at the
predicted positions for ABMRF low-n oligomers (dimers,
trimers, and tetramers) (Fig. 2). In agarose gels, the
ABMRF monomers (calculated molecular weight ~73.7
kDa) migrated at ~65 kDa (Fig. 2A), rather than at ~77
kDa as they did in the acrylamide gels (Fig. 2C). Neverthe-
less, the positions of the SDS-stable complexes increased
with monomer size increments in both gel systems. The
SDS-stable oligomers of ABMRF were able to withstand
treatment with 2% SDS at room temperature and disag-
gregated into monomers only after boiling (not shown).
We hypothesize that the presence of AB,, confers ABMRF
with the ability to form low-n oligomers (dimers, trimers,
and tetramers) similar to the oligomerization of the AB,,
peptide in vitro and in the human brain [38-41].

Unlike antibodies against the RF domain, the efficacy with
which anti-Af antibodies recognized oligomers of ABMRF
decreased as the size of the oligomers increased (Fig. 2A,C,
compare left and right panels). Nevertheless, oligomers of
ABMREF were stably detected by these antibodies (Fig. 3,
left panel). We observed a similar phenomenon when we
detected SDS-stable amyloid oligomers of NMRF, which
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Figure 2

ABMRF forms SDS-stable oligomers in yeast. (A)
Immunoblot analysis of lysates from sup35A cells containing
prionized NMRF ([PSI+]) or other indicated constructs.
Lysates were treated with % SDS for 7 mins at room tem-
perature and resolved by electrophoresis in agarose. Immu-
noblot analysis was performed using anti-RF antibodies,
followed by stripping and staining with anti-Af} antibodies.
The positions of molecular weight standards, treated identi-
cally to the experimental samples, are shown (calc., calcu-
lated position). ABMRF formed SDS-stable low-n oligomers
that largely disappeared after the introduction of the F19,20T
(ABmIMRF) and F19,20T/I3IP (ABm2MRF) mutations into
the AP, portion of the fusion protein. The decreased effi-
cacy with which anti-Af antibodies recognized oligomers of
APBMRF suggests that oligomerization occurred through the
AB,, portion of the fusion protein. (B) 5 mg of amyloid fibers
of AP, peptide were treated with 1% SDS, resolved in agar-
ose and analyzed by immunoblotting with anti-Af antibodies.
Only a fraction of AB42 fibres can enter the 1.5% agarose gel.
(C) Same as in (A) but the samples were resolved in an acr-
ylamide gel. Asterisk denotes non-specific antibody interac-
tion.

represent structures interacting through the ~14 kDa N-
terminal domains, while the ~70 kDa MRF domains on
their C termini are exposed to the solvent. The efficiency
with which these oligomers are detected with anti-N ter-
minal antibodies is lower that with antibodies against the
C-terminal RF domain [42,43]. Apparently, even after SDS
electrophoresis the physical access of the antibodies to the
target epitopes remains impeded due to the assembly state
of the target protein. These observations further corrobo-
rate our hypothesis that ABMRF molecules are oligomer-
ized through their AB,, portions.
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Guanidine stimulates oligomerization of ABMRF. sup35A cells expressing the indicated constructs were grown in the
absence (-) or presence (+) of 6.3 mM guanidine (Gu). Equal amounts of lysate proteins were treated with 1% SDS and ana-
lyzed by immunoblotting with anti-RF or anti-AP antibodies following electrophoresis in agarose. Equal protein loading on each
panel was confirmed by coomassie staining of the membrane (not shown).

To obtain additional evidence that it is the intact AB,, pep-
tide fused to the MRF that conferred the ABMRF fusion
protein with the ability to form low-n oligomers, we ana-
lyzed point mutants of ABMRF by SDS-electrophoresis
and immunoblotting. We expected that mutations in the
aggregation-important regions of AB,, would inhibit oli-
gomerization of the fusion protein. Consistent with our
expectations, disruption of a single aggregation-important
region of AB,, (ABm1MRF) reduced its ability to form
low-n oligomers (Fig. 2). Disruption of a second aggrega-
tion-important region (ABm2MRF) further inhibited oli-
gomerization of the protein. However, small amounts of
APm2MREF were found in the form of dimers. This is prob-
ably due to the fact that this construct still retained two
out of four aggregation-important regions intact. The pres-
ence of ABmM2MRF dimers explains our observation that
these cells were dark pink on complex medium, and were
not entirely as red as when a non-tagged MRF protein was
expressed (Fig. 2). In addition, the mere presence of AB,,
on the N-terminus of MRF might slightly inhibit the trans-
lation termination activity of the fusion protein. Never-
theless, the fact that point mutations in the aggregation-
important regions of AB,, impeded oligomerization of
ABMREF and restored its activity, illustrates the ability of

the system to clearly distinguish between different levels
of ABMRF oligomerization.

We did not detect ABMRF oligomers using the generic oli-
gomer-specific antibodies that recognize oligomers of dif-
ferent amyloidogenic proteins ([44], and data not
shown). These antibodies appear not to recognize oligom-
ers of AB,, smaller than octamers [44], and the oligomers
of ABMRF did not reach this size. Nor could we detect
ABMREF-containing structures that correspond to fibres of
ABMREF, although we successfully used SDS-electrophore-
sis in agarose previously to analyze different amyloid
fibres [43]. In Figure 2B we show that amyloid fibres made
of recombinant AB,, peptide are detected in the upper
part of the agarose gel, while ABMRF never formed struc-
tures of this size (Fig. 2A). It is possible that the absence
of large ABMRF assemblies can be attributed to disaggre-
gating activity of unknown cellular factors, or that the
presence of a large MRF domain impedes the ability of
ABMREF to assemble into structures larger than the low-n
oligomers.

As growth of [PSI*] yeast in the presence of the prion cur-

ing agent guanidine [31] increased the size of SDS-resist-
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ant Sup35p aggregates [26], we wondered if it would
affect ABMRF oligomers similarly. Thus we grew sup35A
cells expressing ABMRF, ABm1MRF, or ABm2MRF in the
presence of 6.3 mM guanidine. Strikingly, guanidine dra-
matically increased the amount of ABMRF and ABm 1MRF
oligomers, while depleting the monomeric pool of the
proteins (Fig. 3). No such effect was detected with the con-
trol ABm2MRF protein. As guanidine enhances the
Sup35p [PSI*] aggregate size by inhibiting the ATPase
activity of Hsp104, we wondered if guanidine's effect on
the accumulation of ABMRF oligomers was likewise due
to Hsp104 inhibition. Contrary to this hypothesis, dele-
tion of HSP104 decreased the proportion of ABMRF oli-
gomers in three independent hsp104A clones (Fig. 4). In
addition, hsp104A led to a decrease in the total amount of
ABMREF in the cells by ~40%, while having no effect on the
level of ABm2MREF protein (Fig. 4). As might be expected,
such a decrease in the total amount of ABMRF in hsp104A
cells resulted in more frequent readthrough of the prema-
ture stop codon of the adel-14 allele: hsp104A caused
ABMRF-expressing sup35A cells to grow slightly better on
-Ade, while having no effect on ABm2MRF-expressing
sup35A cells (Fig. 5).

&
A & N
N &
v a
HSP104: WT A WT A A WT WT A
kDa
~650
(calc.)
225> - - .
150 . - . - -
gl = SN
anti-RF
Figure 4
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These results suggest that Hsp104 is not the target of gua-
nidine that stimulated ABMRF oligomerization, and that
guanidine therefore may affect other cellular factors. Cor-
roboratively, guanidine stimulated oligomerization of
ABMREF even in the absence of HSP104 (Fig. 6).

To test if Hsp104 interacts with ABMRF, we used HA-
tagged ABMRF and HA-tagged MRF to co-immunoprecip-
itate Hsp104. Indeed, Hsp104 co-immunoprecipitated
with ABMRF, but not with MRF (Fig. 7). This is consistent
with observations made elsewhere [45] suggesting that
Hsp104 interacts with AR, in vitro. We hypothesize that in
our system oligomers of ABMRF undergo continuous dis-
aggregation, and at the same time oligomers and mono-
mers of ABMRF undergo degradation, as a result of
interaction between an unknown cellular factor(s) and
the AB,, portion of ABMRF. We show that Hsp104 binds
to the AB,, portion of ABMRF and may therefore physi-
cally impede interaction between AB,, and the factors that
trigger degradation and disaggregation of the fusion pro-
tein. Consistent with this, deletion of HSP104 led to a
~40% decrease in the total amount of the ABMRF protein
(Fig. 4), possibly as a result of increased susceptibility of

O - oligomers

5 1= - monomers
©
E:"" 66 +1.0%
- .-
= 53 +1.5%
g 34+1.0% 47 £1.5%
o0
HSP104: WT A

Deletion of HSP104 decreases the total amount of ABMRF and reduces the proportion of oligomers. (A) ABMRF
or ABm2MRF were expressed in a sup35A strain in the presence (WT) or absence (A) of HSP/04. Equal amounts of lysate pro-
teins were treated with 1% SDS and analyzed by immunoblotting with anti-RF antibodies following electrophoresis in agarose.
Equal protein loading was confirmed by coomassie staining of the membrane (not shown). (B) The effects of HSP/04 deletion
on the total amount of ABMRF and the ratio between oligomers and monomers from panel A were evaluated by densitometry.
The height of the bars reflects total amount of ABMRF relative to that in HSP104 WT cells (error bars: s.e., n = 3). Each bar is
subdivided according to the content of oligomers (open) and monomers (shaded) of ABMRF (£ s.e., n = 3). The deletion of
HSP104 decreased the total amount of ABMRF and decreased the ratio of oligomers to monomers.
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Deletion of HSP104 exacerbates the translation ter-
mination defect of ABMRF. Equal numbers of sup35A
yeast containing (WT) or lacking (A) HSP104 and expressing
ABMRF or ABm2MRF were grown on complex medium, or
synthetic medium supplemented (+Ade) or not (-Ade) with
adenine. Deletion of HSP/04 stimulated growth of ABMRF-
expressing cells on -Ade, while having no effect on yeast
grown on +Ade medium.

ABszRF

-Ade

ABMRF to degradation-triggering factors. At the same
time, deletion of HSP104 shifted the equilibrium between
oligomers and monomers such that the monomer's share
in the overall pool of ABMRF increased from 34 to 47%,
possibly as a result of ABMRF disaggregation. As disaggre-
gation of protein aggregates in yeast usually requires
energy from ATP [46-48], it is tempting to speculate that
guanidine may specifically inhibit the ATPase activity of
the unknown disaggregating factors, as guanidine is able
to inhibit the ATPase activity of Hsp104 [30].

Recent evidence suggests that chaperones play critical
roles in protecting neuronal cells from the deleterious
effects of amyloid aggregates and their precursors
(reviewed in[49]). Such a protective mechanism may
involve degradation and/or disaggregation of toxic inter-
mediates. In yeast, disaggregation of aggregated protein is
carried out by the chaperone machinery, which includes
Hsp104, Hsp70/Hsp40, and small heat shock proteins
(sHsp) Hsp42, and Hsp26 [23,46,50,51]. All of these
chaperones except for Hsp104 have homologs in mam-
mals. It was shown that Hsp26 facilitates disaggregation
and refolding of thermally denatured firefly luciferase
[47] and citrate synthase [48] by Hsp104 and Hsp70/
Hsp40. The disaggregating activity of the yeast chaperone
machinery is not limited to amorphous protein aggre-
gates. Overexpression of Hsp104 together with Hsp26
and Hsp42 [47], or Hsp70 together with Hsp40 [52], or
Hsp70 alone [18] increased the solubility of poly-
glutamine aggregates in yeast models of Huntington's dis-
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Guanidine stimulates oligomerization of ABMRF in
the absence of HSP104. ABMRF-expressing sup35A
hsp 1 04A cells were grown in the absence (-) or presence (+)
of 6.3 mM guanidine (Gu). Equal amounts of lysate proteins
were treated with 1% SDS and analyzed by immunoblotting
with anti-RF antibodies following electrophoresis in agarose.
Equal protein loading was confirmed by coomassie staining of
the membrane (not shown).
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Co-immunoprecipitation of Hsp 104 with ABMRF.
Lysates of sup35A cells with (WT) or without (A) HSP104,
expressing non-tagged NMRF, HA-tagged MRF, or HA-
tagged ABMRF, were incubated with anti-HA antibodies
immobilized on agarose beads. Co-precipitated proteins
were eluted and analyzed by immunoblotting with anti-RF
and anti-Hsp 104 antibodies. Hsp 104 co-immunoprecipitated
with ABMRF, but not with MRF. Non-HA-tagged NMRF was
used as a control for non-specific binding to anti-HA antibod-
ies.

ease, while deletion of HSP104 led to solubulization of
polyglutamine aggregates [53]. The direct implication of
chaperone machinery to the pathology of Alzheimer's dis-
ease is still obscure. The yeast system described in this
study provides an opportunity to examine the ability of
different compounds (proteinacious or chemical) to
interfere with the process of ABMRF oligomerization.
Abrogation of oligomerization of the ABMRF will lead in
our system to the accumulation of ABMRF monomers,
causing inhibition of growth in the absence of adenine,
and a redder color on complex medium, thus providing a
simple functional readout.

Conclusion

In this study, we present a yeast model system focused on
the initial steps of AB,, oligomerization. We fused the
AB,, peptide to the MRF domain of the yeast translation
termination factor, Sup35p, and monitored its activity by
the growth of yeast on different media. The presence of
the AB,, caused the ABMREF fusion protein to form SDS-
stable low-n oligomers, which appear to mimic the ability
of the natural AB,, peptide to form low-n oligomers. The
oligomerization of ABMRF compromised its translational
termination activity causing a more frequent readthrough
of the adel-14's premature stop codon, which was easily
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scored by yeast growth (Fig. 1). Point mutations previ-
ously shown to inhibit AB,, aggregation in vitro, were
made in the AB,, portion of the fusion protein. These
mutations both inhibited oligomerization and restored
activity to the fusion protein. Thus, using this reporter sys-
tem it is possible to assay the degree of ABMRF oligomer-
ization by examining the growth of yeast on complex and
adenine-deficient media. We also demonstrate that the
yeast prion curing agent guanidine enhances the level of
SDS-stable ABMRF oligomers, presumably by inactivating
factors that degrade and/or disaggregate them. This effect
is not caused by inactivation of the yeast chaperone
Hsp104, which appears to protect ABMRF from the effects
of such factors. This model system represents a convenient
tool to test or perform chemical and genetic screens for
agents that interfere with the earliest steps of AB,, oli-
gomerization.

Methods

Yeast strains and media

Derivatives of yeast strain 74D-694 (MATa adel-14 ura3-
52 leu2-3,112 trp1-289 his3-200 [54]) containing a
genomic deletion of SUP35 (sup35A::LEU2), or a double
deletion of SUP35 and HSP104 (hspl04A::URA3) [55]
(kind gifts from Drs. C. G. Crist and Y. Nakamura) were
used in this study. Since the RF domain of Sup35p is
essential, viability of the sup35A 74D-694 (L2723) and
hsp104Asup35A 74D-694 (1.2725) strains was maintained
by a pRS313-based (CEN, HIS3) plasmid encoding full
length Sup35p [56]. A [PSI*] derivative of the sup35A 74D-
694 strain was described earlier [56]. For this study, plas-
mids encoding full length Sup35p in L2725 and 12723
and were replaced with pRS313 or pRS316-based (CEN,
URA3) plasmids encoding MRF, ABMRF, or aggregation-
deficient derivatives of ABMRF (see below). The absence
of the original full length Sup35p was confirmed by
immunoblotting with polyclonal antibodies against
Sup35p's N domain (Ab0332, a kind gift from Dr. S.
Lindquist).

Standard yeast media, cultivation and transformation
procedures were used [57]. Yeast was cultivated either in
complex medium (YPD: 2% dextrose, 2% bacto peptone,
1% yeast extract), or in complete synthetic medium (an
artificial mix of 2% dextrose and all necessary aminoacids
and nucleobases) lacking adenine (-Ade), uracil (-Ura), or
histidine (-His), as required. Complete synthetic medium
was referred in the text as '+Ade' medium. As the RF
domain within the fusion proteins is essential, no plas-
mid selection was required after the strains acquired the
desired RF-containing constructs. Expression of the
ABMREF constructs driven by the copper-inducible CUP1
promoter was stimulated by the addition of 50 uM CuSO,
to all media. Where indicated, the media were supple-
mented with 6.3 mM guanidine hydrochloride.
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Plasmid construction

The pRS316-based CEN URA3 plasmid (p1071) encoding
full length Sup35p under its native promoter with an HA
tag between the M and RF domains, and with the NM
domains surrounded by BamHI sites was kindly supplied
by Dr. J. Weissman [58]. To construct MRF (HA-tagged
Sup35p without the 123 N-terminal amino acids which
constitute the prion, N, domain of Sup35p) under its
native promoter, a fragment containing the HA-tagged M
domain (MH"A) and a new BamHI site (introduced on
primer 1) was PCR amplified from p1071 using primers 1
and 2. The PCR product was cut with BamHI and inserted
into p1071 cut with the same enzyme, resulting in p1366,
where M replaced NM.

To construct ABMRF under the copper-inducible CUPI
promoter (p1364), we PCR amplified a DNA fragment
encoding AB,, flanked by restriction sites, using the over-
lapping primers 3, and 4, which we designed based on the
known aminoacid sequence of the peptide
(DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVG-
GVVIA). The resulting PCR product was cut with BamHI
and BgIll and inserted in the correct orientation into
pl071 cut with BamHI, yielding p1300, where AB,,
replaced NM. The native SUP35 promoter in p1300 was
replaced with the CUP1 promoter from p984 [59] using
Xhol and BamHI sites, yielding p1301. A fragment con-
taining MM and a new Eco521 site (introduced on primer
5) was PCR amplified from p1071 using primers 5 and 6,
cut with Eco521 and inserted into p1301 cut with the
same enzyme in the linker region between AB,, and RF,
resulting in the following construct: CUP1::met-Af,,-HA-
M-3xHA-RF (p1364) referred to herein as ABMRF.

A double substitution in the AB,, region of ABMRF (AB,,
F19,20TMRF, or ABm1MRF) was introduced into p1364 by
site-directed mutagenesis using a Quick-Change (Strata-
gene) kit, as suggested by the manufacturer, using primers
7 and 8, resulting in p1397. This plasmid was further
mutagenized using primers 9 and 10, to obtain AB,,
F19,201/131PMRF, or ABm2MRF (p1541).

To shuffle the ABMRF fusions into pRS313 (CEN, HIS3),
corresponding fragments encoding the fusion proteins
with their CUP1 promoters were cut from p1364, p1397,
and p1541 with Sacl and Xhol and inserted into pRS313
cut with the same enzymes, yielding p1547, p1549 and
p1551, respectively.

The expression level and the oligomeric pattern of all cor-
responding ABMRF fusions expressed from the sibling
shuffle vectors pRS313 (CEN, HIS3) and pRS316 (CEN,
URA3) were the same (not shown).

List of primers (5'-3'):

http://www.biomedcentral.com/1741-7007/4/32

1. GGTTTCCAAGGATCCTCTCAAGGTATGTC
2. CCACCAAACATCCATGGGAATTCTGC

3.

AGCTGGATCCATGGATGCAGAATTCCGACATGACT-
CAGGATATGAAGTTCATCATCAAAAATTGGTGTTCITT-
GCAGAAGATGTG

4.

ATTAAGATCTCGCTATGACAACACCGCCCACCAT-
GAGTCCAATGATTGCACCTTTGTITGAACCCACATCT-
TCTGCAAAGAACAC

5. TCTCACGGCCGGTCTTTGAACGACTTTC
6. CCACCAAACATCCATGGGAATTCTGC

7. CATCATCAAAAATTGGTGACCACTGCAGAAGAT-
GTGG

8. CCACATCTTCTGCAGTGGTCACCAATTTTTGATGATG

9. GGGITCAAACAAAGGTGCACCAATTGGACTCAT-
GGTGGGCGG

10. CCGCCCACCATGAGTCCAATTGGTGCACCTTT-
GTTTGAACCC

All plasmids used in this study were analyzed by restric-
tion analysis and sequencing, and their protein products
were tested by immunoblot analysis with antibodies
against AR (6E10), RF (BE4), and HA tag (not shown).

Yeast growth assay

To compare yeast growth on agar plates, equal numbers of
cells (5 pl of cellular suspension with ODgy, = 2) were
spotted on agar plates, and incubated at 30°C for 3 days
(complex medum), or 7 days (adenine deficient medium,
-Ade). The desirable color saturation on complex medium
was achieved by incubating the plates for 3 additional
days at 4°C.

Immunoblotting

To obtain cell lysates, cells grown in 50 ml of liquid
medium to late logarithmic stage were pelleted, washed
with water, resuspended in a 50 mM Tris pH 7.6 buffer
containing 50 mM KCl, 10 mM MgCl,, 5% glycerol, 10
mM PMSF, and an anti-protease cocktail for yeast (Sigma)
1:100, and lysed by vortexing with glass beads. Cell debris
was removed by centrifugation at 4°C for 5 min at 10,000
g. Protein concentration was measured by the Bradford
reagent from BioRad [60].
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To visualize SDS-stable oligomers of ABMRF by SDS elec-
trophoresis in polyacrylamide or agarose gels, equal
amounts of lysate proteins were treated with sample
buffer (50 mM Tris/HCI pH 6.8 for acrylamide, or 25 mM
Tris 200 mM glycine for agarose gels, respectively) con-
taining 1% SDS for 7 min at room temperature. Oligom-
ers of ABMRF were also able to withstand 2% SDS
treatment at room temperature (not shown). To disaggre-
gate ABMRF oligomers into monomers, lysates were
boiled for 5 min in sample buffer supplemented with 2%
SDS and 2% fB-mercaptoethanol (not shown).

SDS-treated lysates were resolved by SDS-electrophoresis
in 7.5% polyacrylamide gels as described [61], and trans-
ferred to an Immun-Blot PVDF membrane (Bio-Rad).
Immunodetection was performed using monoclonal anti-
bodies against Sup35p's RF domain (BE4, developed by
Dr. V. Prapapanich in our laboratory), monoclonal anti-
bodies against AB,_;, (6E10, from Signet Laboratories), or
anti-oligomer antibodies (a kind gift from Drs. R. Kayed
and C. Glabe; [44]). Signal was revealed using a Western-
Star chemiluminescence development kit (Applied Bio-
systems) as suggested by the manufacturer. Molecular
weight standards were treated in the same sample buffer
as the experimental samples, and were revealed after
immunodetection by staining the membrane with the
Coomassie Brilliant Blue R-250 reagent. The position of
the 650 kDa molecular weight marker was calculated
using AlphaEaseFC software.

For better resolution of the ABMRF oligomers, we used
SDS electrophoresis in agarose as described elsewhere
[62], with the following changes. The SDS-treated lysates
(see above) were electrophoretically separated in horizon-
tal 1.5% agarose gels in a 25 mM Tris buffer containing
200 mM glycine and 0.1% SDS. Proteins were transferred
onto a PVDF membrane in a 25 mM Tris buffer containing
200 mM glycine, 15% methanol, 0.1% SDS using a semi-
dry blotting unit FB-SDB-2020 (Fisher Scientific) at 1 mA
per cm? of the gel/membrane surface for 1 hr, and proc-
essed as described above. Densitometry was performed
using Alpha Imager 2200 (Alpha Innotech) and processed
on AlphaFaseFC imaging software.

To confirm equal protein loading, we first determined
protein concentrations in the lysates by Coomassie Bril-
liant Blue (Bradford reagent). We then brought the pro-
tein concentration in all samples to the same value, and in
the same volume, followed by an additional verification
by Bradford reagent. After the immunodetection, the
membrane was stained with Coomassie to confirm equal
protein loading.

http://www.biomedcentral.com/1741-7007/4/32

Apy, polymerization and immunoblotting

Recombinant AB,, peptide (powdered AB,,-acetate from
Rpeptide) was polymerized according to the manufac-
turer's suggestions. Briefly, a 1 mg/ml solution of AB,, was
made by resuspending 0.5 mg of AB,, powder in 100 pl of
2.5 mM NaOH and adding 400 pl of phosphate buffered
saline solution. Polymerization proceeded at room tem-
perature with constant rotation (60 rpm). Polymerization
was measured by Thioflavin T fluorescence (Ayx = 442 nm;
Agm = 483 nm). To perform immunoblotting, a sample
containing 5 ug of polymerized AB,, was treated with 1%
SDS and resolved by SDS electrophoresis in 1.5% agarose
and processed as described above.

Immunoprecipitation

Samples (500 pl) containing 800 ug of total lysate pro-
teins were incubated with 6 pul of anti-HA antibodies
immobilized on agarose beads using a Pro-Found HA-Tag
Co-IP kit (Pierce), for 1.5 hrs at 4°C. Following incuba-
tion, the beads were washed three times with 0.5 ml of
phosphate buffered saline containing 0.05% Tween 20 to
remove the non-specifically bound proteins. Immunopre-
cipitated protein complexes were eluted with hot (95°C)
0.3 M Tris buffer pH 6.8 containing 5% SDS, resolved by
electrophoresis in 10% polyacrylamide gels, and analyzed
by immunoblotting using monoclonal antibodies against
the RF domain or against Hsp104 (SPA-1040, from Stress-

gen).

Abbreviations

AD, Alzheimer's disease; AP, amyloid-f protein; RF,
release factor; SDS, sodium dodecylsulfate; Hsp, heat
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human influenza hemagglutinin; PCR, polymerase chain
reaction; PMSF, phenylmethylsulfonylfluoride; PVDF,
polyvinylidenfluoride; Gu, guanidine hydrochloride; WT,
wild type; sHsp, small heat shock protein.
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