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Abstract

Background: In pathogens, certain genes encoding proteins that directly interact with host defences
coevolve with their host and are subject to positive selection. In the lepidopteran host-wasp parasitoid
system, one of the most original strategies developed by the wasps to defeat host defences is the injection
of a symbiotic polydnavirus at the same time as the wasp eggs. The virus is essential for wasp parasitism
success since viral gene expression alters the immune system and development of the host. As a wasp
mutualist symbiont, the virus is expected to exhibit a reduction in genome complexity and evolve under
wasp phyletic constraints. However, as a lepidopteran host pathogenic symbiont, the virus is likely
undergoing strong selective pressures for the acquisition of new functions by gene acquisition or
duplication. To understand the constraints imposed by this particular system on virus evolution, we
studied a polydnavirus gene family encoding cyteine protease inhibitors of the cystatin superfamily.

Results: We show that cystatins are the first bracovirus genes proven to be subject to strong positive
selection within a host-parasitoid system. A generated three-dimensional model of Cotesia congregata
bracovirus cystatin | provides a powerful framework to position positively selected residues and reveal
that they are concentrated in the vicinity of actives sites which interact with cysteine proteases directly.
In addition, phylogenetic analyses reveal two different cystatin forms which evolved under different
selective constraints and are characterized by independent adaptive duplication events.

Conclusion: Positive selection acts to maintain cystatin gene duplications and induces directional
divergence presumably to ensure the presence of efficient and adapted cystatin forms. Directional
selection has acted on key cystatin active sites, suggesting that cystatins coevolve with their host target.
We can strongly suggest that cystatins constitute major virulence factors, as was already proposed in
previous functional studies.
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Background

In a host-parasite interaction the associated partners can
have an influence on each other's evolution [1]. Molecular
signatures of these complex evolutionary processes can be
detected in the genomes of both organisms involved in
such associations. Indeed, genes encoding pathogenicity
factors directly involved in counteracting host defences or
vice versa are expected to be subject to positive selection,
driven by an arms race between the two partners. Such
coevolutionary processes have been well described in cer-
tain plant-pathogen interactions, where the host resist-
ance genes and corresponding avirulence genes in the
pathogen show evidence of positive selection [2]. In the
Xanthomonas-pepper interaction, the Hrp pilus, a filamen-
tous structure allowing bacteria to directly inject toxins
into plant cells, also evolves under positive selection,
thereby avoiding the plant defence surveillance system
[3]. Positive selection has also been detected in insect-
pathogen interactions. For example, in Drosophila, RNA
interference (RNAi) molecules involved in anti-viral
defence are among the fastest evolving genes in this insect.
This rapid evolution is due to strong positive selection,
illustrating that the host pathogen arms race between RNA
viruses and host antiviral RNAi genes is very active and
significant in shaping RNAi function [4].

We are interested in characterizing the evolutionary proc-
esses underlying the insect host-parasite interactions
between lepidopteran hosts and parasitoid wasps. In these
systems, the endoparasitoid wasp larvae develop inside
the lepidopteran host despite the hostile environment this
habitat represents. One of the most original strategies
developed by these wasps to defeat these defences is the
injection of a symbiotic polydnavirus (PDV) at the same
time as the wasp eggs [5-7]. PDVs are divided in two gen-
era, ichnoviruses and bracoviruses, which are associated
with tens of thousands of endoparasitoid wasps belong-
ing to two different families, Ichneumonidae and Braco-
nidae [8]. PDVs are found in these wasps as proviruses
which are transmitted vertically from one wasp generation
to the next [9-13]. Proviruses are excised from the wasp
genome in the female ovaries and, after replication, are
injected into the host caterpillar as multiple double-
stranded DNA circles packaged in capsids. The virus does
not replicate in the host caterpillar, but viral gene expres-
sion and protein production are essential for alterations to
the immune system and development of the host leading
to successful development of the wasp larvae.

In this biological system, the virus plays key roles both in
the mutualistic association with the wasp and in the para-
sitic association between the wasp and the caterpillar.
PDVs are therefore likely to display molecular signatures
which reflect constraints imposed both by the wasp and
the host caterpillar. So far, however, reports have princi-
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pally concentrated on the influence of wasp evolution on
viral genomes. Braconid wasps carrying PDV form a
monophyletic lineage, suggesting a unique event of asso-
ciation between the wasp ancestor and the virus ancestor
and a vertical transmission of the virus along wasp line-
ages [14]. Accordingly, a phylogenetic study of Cotesia
spp. and their associated viruses has shown a codiver-
gence between the two mutualists [15]. Finally, recent
data on the genome sequence of several PDVs has revealed
that these viruses harbour a large number of eukaryotic
genes likely picked up from the wasp genomes. These
genes form multigene families that are good candidates to
be involved in alteration of host caterpillar physiology
[16-20]. Surprisingly, very few studies have focused on the
potential influence of the host caterpillar on viral gene
evolution despite the strong selective pressure this habitat
represents. In this paper, we report on the molecular evo-
lution of a viral gene family considering both wasp evolu-
tion and the selective pressure imposed by the caterpillar
hosts.

Our model system is the interaction between the braconid
wasp Cotesia congregata and its lepidopteran host, the
tobacco hornworm, Manduca sexta. The PDV associated
with C. congregata (CcBracovirus, CcBV) has been
sequenced, revealing the presence of numerous genes pos-
sibly involved in host deregulation [20]. Among these
viral genes, one gene family encoding cystatins constitutes
an interesting candidate system to study the influence of
the host-parasitoid association at the viral molecular level.
Cystatins are tightly binding reversible inhibitors of
papain-like cysteine proteases, and are widespread in
plants and animals [21]. They are characterized by three
conserved domains forming the site of interaction with
Cl1 cysteine proteases: an N-terminal glycine, a glutamine-
X-valine-X-glycine motif and a C-terminal proline-tryp-
tophane amino acid pair [22,23]. Cystatins and their tar-
get proteases have often been shown to be involved in
host-parasite interactions with cystatins either playing the
role of defence molecules or virulence factors. For exam-
ple, in parasitic nematodes, cystatins are thought to play a
key role in controlling the host immune response [24-26].
Remarkably, plant cystatins acting as defence proteins
have been shown to evolve under strong positive selection
in response to cysteine proteases released by phytopha-
gous insects. In this system, it has been suggested that
plant cystatins and insect cysteine proteases are involved
in a coevolutionary process [27].

CcBV cystatins constitute the first description of cystatin
genes in a virus and are organized in a multigene family,
composed of three genes present on the same circle
[17,20]. To date, there is no evidence of cystatin genes in
Microplitis demolitor bracovirus (MdBV) which has been
fully sequenced [19] and they have only been identified in
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one other PDV (GiBV) from the braconid wasp Glyptapan-
teles indiensis [13]. Both genomic and physiological fea-
tures of cystatins suggest that these viral proteins could
play an important role in the host-parasite association.
First, the genomic organization in a multigene family
could be indicative of selective pressures acting on these
genes. Indeed, Francino [28] suggested that gene duplica-
tions that can lead to an increase in protein dosage are
favoured by selective pressures. Second, cystatin genes are
expressed rapidly and at an extremely high level during
parasitism. This early and prolonged expression could be
indicative of a role of cystatins in the early steps of host
physiological disruption, as well as in the maintenance of
this perturbed state. Finally a recombinant viral cystatin
(Cystatin 1) was shown to be a functional and specific
cysteine protease inhibitor [17].

In this study we checked for molecular signatures associ-
ated with positive selection that may act on the viral cysta-
tin gene family. We demonstrate strong and lineage-
specific adaptive evolution acting on these genes. Using
homology modelling and molecular dynamics (MD) sim-
ulation techniques we obtained the three-dimensional
(3D) structure of CcBV cystatin 1. The predicted model of
the 3D structure of CcBV cystatin provides a framework to
position the positively selected residues, and reveals that
these are situated in key sites which are important for the
interaction with target proteases. This particular selection,
which is probably imposed by host defences, emphasizes
the potential role of cystatins as pathogenic factors and
suggests that cystatins coevolve with host cysteine pro-
teases.

Results

Cystatin genes from PDVs associated with Cotesia species
exhibit weak genetic divergence

To study the molecular evolution of viral cystatin genes,
we isolated 48 sequences from PDVs associated with nine
Cotesia species, revealing that several cystatin forms exist in
the same species. Accession numbers are provided in
Additional file 1. The divergence of the third domain pre-
vented amplification of this region, therefore the cystatin
sequences isolated contain only the first two interactive
sites. It is extremely unlikely that endogenous wasp cystat-
ins could be amplified by this approach given that PDV
cystatins show a low level of relatedness to insect cystat-
ins, and are no more related to insect cystatins than to
mammalian inhibitors [17].

Four alleles isolated from C. glomerata correspond to a
pseudogene with a stop codon situated in the same posi-
tion for all sequences obtained. Genetic divergence esti-
mated by pairwise distance, which gives the mean number
of substitutions per site, ranges from 0.007 to 0.31; these
weak values suggest that cystatin genes are very similar.

http://www.biomedcentral.com/1741-7007/6/38

Finally, genetic algorithm recombination detection
(GARD) detected no evidence of recombination, allowing
us to estimate phylogenies and test for positive selection
on cystatin genes.

Cystatin phylogeny shows two main cystatin forms
Cystatin phylogeny was studied using Bayesian inference
and maximum likelihood analysis. Both methods gave
the same tree topology. The best tree obtained by maxi-
mum likelihood is presented in Figure 1 with bootstrap
scores and posterior probabilities. The tree presented was
unrooted because there is no suitable outgroup for this
study. Phylogenetic analysis revealed the presence of two
major cystatin forms supported by high bootstraps and
posterior probabilities. The form A cystatins are consti-
tuted by CkBV, CmBV, CgBV, CuBV sequences and CfBVD
and F, CsBV1, 2 and 3. The form B cystatins are constituted
by CcBV, CchBV, CrBV sequences and CfBV 5, 7, 8 and 9,
CsBV4 and 6. The form A, in which each clade is sup-
ported by high scores, matches the wasp phylogeny [29].
Indeed, in this case, cystatin sequences from a same species
group together in the same way as in the wasp phylogeny
[29]. There is one exception for the CvBV6 sequence
which is not grouped with other C. wvestalis virus
sequences. In form B the organization is different and
does not match wasp phylogeny [29]. Indeed, we do not
find a preferential association between sequences from
the same wasp species, and the internal branches of this
clade are not well supported. The second important differ-
ence concerns the branch length: form A cystatins exhibit
higher overall branch lengths than form B, suggesting dif-
ferent rates of evolution for these two cystatin forms. This
phylogeny suggests the existence of two main ancestral
cystatin gene forms which have evolved under different
constraints to give form A and B. Indeed in form A cystat-
ins, long branch lengths are exhibited and follow wasp
speciation, as opposed to the form B cpstatins, which
exhibit shorter branch lengths and seem to evolve inde-
pendently of the wasp speciation process.

Among cystatin sequences isolated from a same species
some are likely to correspond to allelic forms such as
CgBV cystatin sequences whereas others seem to be differ-
ent cystatin copies such as CsBV1, CsBV2 and CsBV3 (form
A). Cystatin copies obtained from the CcBV genome
sequencing project (CcBVcystl, CcBVcyst2 —and
CcBVcyst3) are found in form B and therefore do not seem
to have any orthologous sequences in Cotesia melanoscela,
Cotesia glomerata and Cotesia kariyai bracoviruses. In form
B cystatins, these three cystatin copies are not grouped
together, indicating that duplications occurred before or
at the same time as wasp speciation. In contrast, cystatin
copies or cystatin alleles in form A are grouped by wasp
species, suggesting that duplications occurred after wasp
speciation.

Page 3 of 16

(page number not for citation purposes)



BMC Biology 2008, 6:38

http://www.biomedcentral.com/1741-7007/6/38

— CcBVCyst2
- CrBV5

- CcBV1
CrBvz2
CchBV10
CeBVv21!

CchBV4
547
1.00 crevi
CeBVv2
CfBV5

CrBv3
CsBV6
CrBv4
CrBVé
CeBV3
CeBVCyst1
CeBV21L
CfBV7?

- CchBV3
ciBv9
oo F T ceave
CchBV2
978 CehBVF
700 ciBvs
CcBVCyst3
L csBv4
CvBV6
1000 CgBV12
% i CgBV11
100 CgBV1
CgBV7

Form B

537
057

943

CsBV3
612 CsBV1
970 1.00 CsBV2
1.00 CfBVF
CfBVD

CkBV11
CkBVS
CkBV9

CkBV10

CkBV12

0.05 substitutions per site

Figure |

1o 1000 CvBV2 Form A
100 ' CvBVS
cmBV10
I_— cmBV9
CmBV2
CmBV1
CmBV3

Cystatin gene tree obtained by maximum likelihood. Node supports are shown by bootstraps and by posterior proba-
bilities from Bayesian inferences above and below each branch, respectively. Bootstrap scores or posterior probabilities lower
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(CsBV), Cotesia karyai (CkBV)and Cotesia glomerata (CgBV). Cystatin sequences from CcBY genome are noted CcBVceystl,

CcBVcyst2 and CcBVcyst3.

Cystatin genes evolve under positive selection

In order to analyse protein evolution and test for positive
selection in cystatins, the maximum likelihoods of differ-
ent substitution models were determined and compared
using chi-squared statistics. Model MO assumes that all
sites have the same « value whereas M3 distributes amino
acids into three classes allowing sites to evolve under dif-
ferent evolutionary constraints. M8A model constrains
amino acids to have o values of at most 1 whereas the M8
model adds a supplementary class of ® allowing sites to
evolve under positive selection. Likelihood ratio tests
(LRTs) indicated that selected models M3 and M8 fit the
data better than MO and M8A, respectively, with P-values
of less than 0.001 (Table 1). These results suggest firstly
that all amino acids are not constrained by the same selec-
tive pressures and secondly that cystatin sequences, with

an average o value of 1.2 over all sites and branches,
evolve under positive selection. A class-specific site selec-
tion analysis was performed to determine the heterogene-
ity of selection regimes relative to the amino acid
position. This analysis indicated that more than 30% of
all amino acids are under strong diversifying selection
(Table 1).

Modelling by MD simulations reveals that the overall
folding of known cystatin structures are preserved in CcBV
cystatin |

We wanted to determine whether PDV cystatins adopt a
similar 3D structure to chicken cystatin and human cystat-
ins for which the 3D structures have been resolved by crys-
tallography [22,23,30,31]. This constitutes an important
prerequisite to be able to interpret the potential conse-
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Table I: Positive selection analysis among sites and lineages of viral cystatins from Cotesia spp. parasitoid wasps

Site analysis

Models x2value df  P-value for best model Global ® ® > |, parameters PSS
MO versus M3 125.00 6 <0.001 1.31 ® =2.65p=0310 26, 5%, | 1**
MB8A versus M8 19.57 | <0.001 1.21 ® =2.85,p=0.289 26, 7%, 5+F

Branch site analysis

Models x?value df  P-value for best model ® > |, parameters (foreground lineage)
Mla versus MA 12681 2 < 0.0l ®=1193,p=0232
M3 versus MB 73.20 3 < 0.0l ® =12.04,p=0233

Notes: df is degrees of freedom; PSS is the number of positive selected sites; * corresponds to a posterior probability greater than 95% of having ®
> | and ** corresponds to a posterior probability greater than 99% of having @ > |.

quences of the position of the positively selected siteswith ~ In a previous study, a multiple sequence alignment of
respect to the function and the evolution of function of  CcBV cystatin 1 was performed with insect, chicken,
PDV cystatins. mouse and human cystatins [17]. Although there is only a

(A) (B)

val 52

N-terminal Ala 53
Gly 7
N-terminal
His 9
Asp 14
' Leu 70
3 d_./ 13
Figure 2

Molecular model of CcBV cystatin | obtained from the average structure. (A) The superimposed molecular dynam-
ics (MD) average structure of CcBV cystatin | orange (1-5 ns), cyan (5-7 ns) and purple (8—10 ns) of 10 ns MD simulation tra-
jectory. (B) Positively selected residues (probability 95%) are represented as a red colour capped stick model on the secondary
structure (green) of the final model of CcBV cystatin | average structure (I-10 ns). Glycine in N-terminal and Valine and
Alanine in the LI are important for Cl protease binding. CcBV mature cystatin | amino acid numbering is used.
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modest level of sequence identity among CcBV cystatin 1,
human cystatin D and chicken egg white cystatin, a rea-
sonable alignment could be found that permitted a
homology model to be built. A 10 ns MD simulation was
carried out to check the stability of the modelled structure.
The energy of the system levelled off after about 800 ps,
indicating that an equilibrium state had been reached
(data not shown). The overall structure was stable during
the simulation. Visual inspection of the trajectory showed
that the global fold remained essentially intact. The PRO-
CHECK program [32] did not flag any conformational
problems with the structure. Figure 2A shows a superposi-
tion of three average structures during three different time
frames in the trajectory. We see that the structures of L1,
L2 and L4 are very stable during the simulation. L3 shows
somewhat greater structural variability.

The modelled structure preserves the overall fold of solved
cystatin structures: a five-stranded anti-parallel B-sheet
wrapped around a five-turn a-helix (Figure 2). However,
B1 maintains its beta strand conformation for only part of
the MD simulation. The protease binding site shows a
wedge-shaped area formed by N-terminal residues (Gly-
cine 6), the first hairpin loop L1 (QxVxG motif positions
50 to 54) and the second hairpin loop L2 (PW). The two
conserved type 2 cystatin disulfide bonds are also pre-
served in this 3D model of CcBV cystatin 1. Importantly,

® 3.5
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the 3D model shows that the three conserved domains in
CcBV cystatin 1 form the typical tripartite 'wedge' which
was shown in the crystal structure of human cystatin B in
complex with papain to slot into the protease's active site
[23]. These domains therefore display a correct conforma-
tion in CcBV cystatin 1, consistent with previous data
showing that cystatin 1 is a functional cysteine protease
inhibitor [17].

Most positively selected sites are situated in the vicinity of
the cystatin active sites

Sites showing a significant probability (greater than 95%)
of being positively selected in viral cystatins were mapped
onto the primary sequence (Figure 3) and on the struc-
tural model of CcBV cystatin 1 (Figure 2B). Out of the 12
positively selected sites identified in the mature protein,
four are situated in the N-terminal segment containing the
conserved Glycine 6 residue (residues Lysine 5, Glycine 7,
Histidine 9 and Aspartic acid 14) and two residues are
within the first hairpin loop L1 containing the QxVxG
motif (residues Valine 52, Alanine 53) (Figures 2B and 3).
Lysine 20 and Arginine 31 are located in the o-helix and
Phenylalanine 58 and Asparagine 60 at the 33 sheet. Leu-
cine 70 is located at loop 3 between 3 and P4 near the
first disulfide bond.

* %
] 50
%
1% %
%%

2.5]

1.5

0.54

I

|

1
e
% %

N

AFLLFLGLALQIAEASYSIKGGRHPISVDDSGVIKAAEIIMKKINREHHGKRALMLVEIEKAESQVVAGIKYFLNLKVGERHCLLOQNLNRKSK
i
6

Signal peptide 1

Figure 3

5%51 54 Protein sequence

Graphic representation of variable selective pressures (») along the protein sequence. The * indicates a posterior
probability greater than 95% of having @ > | and ** indicates a posterior probability greater than 99% of having ® > I. Con-
served amino acids implicated in the interaction with target proteases are indicated by arrows and are numbered according to

the mature protein.
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Analysis of the viral cystatin protein alignment among the
different wasp species revealed that out of the 12 posi-
tively selected sites, 8 (corresponding to Lysine 5, Glycine
7, Histidine 9, Aspartic Acid 14, Lysine 20, Arginine 31,
Asparagine 60 and Leucine 70) undergo radical changes in
biochemical properties which could induce changes in
protein conformation and specificity (see Additional file 2
and Additional file 3). For example, Lysine 5, which is a
polar and hydrophilic amino acid, can be replaced in
other viral cystatin lineages by a leucine which is a hydro-
phobic residue.

Two amino acids under strong positive selection are also
found in the signal peptide. These residues are located in
the central, commonly hydrophobic part of the signal
peptide, and they do not undergo changes in hydropho-
bicity. Although selection on signal peptides has rarely
been analysed it has already been described in virulence
proteins [33] and it is thought that variations in the signal
peptide could affect exportation of proteins [34,35]. In
our biological system, viral cystatins are secreted by the
host secretory system, therefore we could speculate that
the modification of the signal peptide composition could
ensure more efficient secretion.

Two main cystatin lineages show different evolutionary
histories

To test for evidence of positive selection among lineages
we performed a branch site analysis. In MA and MB mod-
els we assigned a value of ® < 1 (0,) for form A cystatins
(background branches) which is congruent with the wasp
tree and should evolve under purifying selection and a
value of ® > 1 (w,) for form B c¢pstatins (foreground
branches) which is not congruent with wasp phylogeny
and therefore should evolve under positive selection. LRTs
indicate that MA and MB fit the data better than models
M1a and M3, respectively, with P-values of less than 0.01.
Furthermore, these analyses suggest that in foreground
lineages about 23% of sites evolve under strong positive
selection with ® values of around 12 (Table 1). Branch-
site analysis results therefore suggest that form A cystatins
are mainly undergoing purifying selection, whereas form
B cystatins are mainly evolving under positive selection.

As this phylogenetic analysis by maximum likelihood
(PAML) analysis did not allow us to determine the nature
of selective pressures acting on each branch, we con-
structed trees in which branch length represents the
expected number of substitutions per codon. The tree in
Figure 4A is based on nonsynonymous substitutions,
whereas the tree in Figure 4B represents the expected
number of synonymous substitutions in cystatins. These
representations showed a difference in the type of substi-
tutions occurring in the two cystatin forms and suggested
that divergence in form B is principally explained by non-
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synonymous substitutions between cystatin sequences and
that divergence in form A CmBV, CvBV, CfBV, CkBV and
CsBV sequences are particularly due to synonymous sub-
stitutions which occur principally in the internal
branches. A similar analysis conducted with a nuclear
wasp gene (COI) did not reveal differences in synony-
mous and nonsynonymous substitutions between wasp
species (data not shown) suggesting that the different evo-
lutionary patterns observed above are specific to viral
cystatins.

To gain further insight into the nature of selective pres-
sures acting on each branch we performed a genetic algo-
rithm (Ga)-branch analysis that confirmed that all
lineages are not constrained by the same evolutionary
forces. Ga-branch analysis selected a model with two
classes of w. In total, 49% of branches are assigned to a ®
of 0.6 and 51% to a w class of 5.7 (Figure 5). Both types of
branches are present in form A and B, however their posi-
tion in the tree differs. In form A, positive selection occurs
in terminal branches between intraspecies cystatin copies.
This analysis emphasizes that divergence between cystatin
copies from the same wasp species occurred by positive
selection. Internal branches in form A cystatins are charac-
terized by purifying selection, indicating that cystatin
genes evolved under conservative selection during wasp
speciation. A different pattern is observed in form B cystat-
ins, where positive selection occurred preferentially in
internal branches of the tree. Indeed positive selection
occurred in the original branch and in almost all internal
branches of this clade, thereby diluting the effect of wasp
speciation on cystatin divergence. In conclusion, PDV
cystatin divergence has been driven by positive selection,
which has acted at different levels, before, during or after
the wasp speciation process.

Discussion

Cystatin genes constitute a young multigene family
compared with the other Cotesia bracovirus genes
Cystatin genes appear to be unique compared with the
other gene families found in the viruses associated with
Cotesia genus. First cystatin divergence, which gives the
mean number of substitutions per site, is very weak rang-
ing from 0.007 to 0.31, whereas divergence between CcBV
copies of other viral genes like protein tyrosine phos-
phatases (PTP) or IkB-like proteins range from 0.56 to
0.832 (see [36]). In contrast to PTP or IkB-like proteins,
which are both widely distributed in the Bracoviruses car-
rying PDV [19], cystatin genes are so far restricted to Glyp-
tapanteles and Cotesia [13,20]. Furthermore G. indiensis
cystatin is found in a single copy, whereas three copies are
found in C. congregata [13,20], suggesting that the C. con-
gregata cystatin gene family resulted from a recent duplica-
tion event. The weak divergence between cystatin lineages
as well as their narrow phylogenetic distribution consti-
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tute evidence of the recent acquisition of cystatin genes by
the bracovirus.

As a consequence, studying cystatin gene evolution might
allow us to understand the preliminary evolutionary proc-
esses involved in the diversification of a young multigene
family. The recent events of acquisition and duplication of
cystatin genes might explain the lack of divergence
between cystatin copies and our inability to distinguish
between orthologous and paralogous relationships
between copies. For this reason, in our analysis all cystatin
copies that might include orthologues and paralogues
were analysed together.

Are cystatin genes codivergent with wasp species?

PDVs are integrated into wasp chromosomal DNA as a
provirus which is inherited exclusively in a Mendelian
fashion [37]. There is no evidence that PDVs can be trans-
ferred horizontally between parasitoids and PDVs do not
replicate in the host caterpillar. In view of this particular
virus life-cycle we can hypothesize that PDV gene evolu-
tion is in part determined by evolutionary constraints act-
ing on wasps, such as a phyletic constraints. Nevertheless,
viral genes, which are likely to be involved in parasitism
success, also have to adapt to caterpillar defences.

A study comparing wasp phylogeny of seven Cotesia spe-
cies based on mitochondrial DNA and viral evolution
using the CrV1 gene, has shown a perfect congruence
between wasp and viral phylogenies [15]. In our study the
cystatin gene tree also shows perfect codivergence between
wasp and viral genes for some cystatin gene lineages. The
evolution of these cystatin forms appears therefore to be
constrained by wasp phylogeny and the molecular con-
straints acting on the wasp genome. However, in contrast
to the results obtained using CrV1, not all cystatin lineages
follow wasp evolution; instead, some cystatin genes are
submitted to other constraints since their phylogeny does
not match wasp phylogeny.

Cystatins are under strong selective pressure acting on key
sites

The study of selective pressures acting on cystatin genes
confirms that cystatin genes are not simply constrained by
wasp evolutionary history. Indeed, we showed that cysta-
tin gene evolution is driven by a strong positive selection.
The global o value of 1.2 obtained through analysis of the
viral cystatins is similar to the value obtained with plant
cystatins [27]. Plant cystatins are involved in a plant-phy-
tophagous interaction, but in that case cystatins play a
role in defence against digestive cysteine proteases of her-
bivorous insects. Plant cystatins and their targets are
thought to be involved in a coevolutionary process. Other
examples of positive selection are also available with
pathogen molecules. A previous study performed on an
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Ichnovirus protein involved in host immune inhibition
has shown that positive selection was only detected at par-
ticular protein sites [38]. Our study constitutes the first
example of a major impact of positive selection in the evo-
lution of a bracovirus protein.

The identification of the position of positively selected
sites in PDV cystatins in the primary sequence and in the
3D model revealed that 70% of sites are situated within or
proximal to the N-terminal segment harbouring the con-
served Glycine and the first hairpin loop containing the
QxVxG motif. These two domains, together with the C-ter-
minal PW sequence, make up the 'wedge' in the cystatin 1
model, shown by crystallography in cystatin B and
chicken cystatin to interact directly with the active-site
cleft of target C1 proteases [22,23]. These results suggest
that diversifying selection could be acting on viral cystat-
ins to modify the inhibitor's sites of interaction with host
target proteases, which could translate into an increased
or reduced affinity towards these enzymes. Interestingly,
modifications in inhibitor affinity have been reported in
engineered cystatin proteins carrying deletions or muta-
tions in the N-terminal segment or the first hairpin loop
[27,39-41]. In chicken cystatin, the removal of the resi-
dues preceding the conserved Glycine leads to a 5000-fold
decrease in affinity towards papain [39]. Furthermore, a
site-directed mutagenesis approach used to pin-point
which residues contribute the most to target enzyme affin-
ity in human cystatin C revealed that the -1 residue (with
respect to Glycine) is responsible for the major part of this
affinity [40]. In PDV cystatins it is noteworthy to stress
that the equivalent site (corresponding to Lysine 5 preced-
ing the conserved Glycine 6 in CcBV cystatin 1) is under
positive selection. This suggests that PDV cystatins have
evolved under diversifying selection possibly to produce
inhibitors of varying affinity for caterpillar proteases, just
as cystatin C laboratory-engineered mutants have been
developed that have discriminating affinities for mamma-
lian cysteine proteases [42]. We can predict that the other
sites under positive selection in the N-terminal region of
viral cystatins are also likely to have an influence on the
interaction with proteases. Indeed, a comparison of the
positions of positively selected sites of PDV cystatins and
plant cystatins revealed that two of these sites are in equiv-
alent positions with respect to the conserved Glycine resi-
due in both sets of inhibitors (positions -1, +3).
Furthermore, in plant cystatins, independent mutations
in these sites lead to variations in inhibitory activity
towards papain and cathepsin B [27,43].

Two positively selected sites have also been identified in
the first hairpin loop of PDV cystatins including the cen-
tral valine of the QxVxG motif. These sites, corresponding
to Valine 52 and Alanine 53 in cystatin 1, are inside this
region with one affecting the central Valine. However, this
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central site is not absolutely conserved in all cystatins. In
the chicken egg white cystatin the hairpin loop motif is
QLVSG and an increase in binding affinity to cysteine pro-
teinases was obtained when this motif was mutagenized
to QVVAG [44] indicating that variation in central resi-
dues of this loop affects binding with target proteases.

In summary, the majority of positively selected sites iden-
tified in PDV cystatins are located in the vicinity of the two
inhibitory sites analysed in this study. Furthermore, these
sites affected by positive selection have been shown exper-
imentally in other cystatins to be important for affinity
with target proteases. Taken together these results suggest
that positive selection is acting presumably to modulate
viral cystatin affinity for caterpillar protease targets.

It will now be interesting to determine what could be the
role of the positively selected sites which are more distant
from the cystatin inhibitor sites (Lysine 20, Arginine 31,
Phenylalanine 58, Asparagine 60 and Leucine 70 in cysta-
tin 1). Phenylalanine 58 and Asparagine 60 may still be
influencing the L1 loop at position 50-54. Leucine 70 is
located near the disulphide bond and variations in this
position may affect the structure of the protein. These sites
could also be unmasking new sites of interactions with
proteases, indeed in chicken cystatin it was suggested that
other regions or sites of the protein could be important for
the strong interaction with the cysteine protease cathepsin
L [44).

Scenario for cystatin gene evolution

The strong selective pressure observed emphasizes the
important role of cystatins in the host-parasitoid interac-
tion. These results suggest that cystatins have to continu-
ously evolve in order to adapt to their target in the host
caterpillar. Given the potential pathogenic role of viral
cystatins and also the probable involvement of cysteine
proteases in insect immunity [45], these results can be
interpreted by integrating cystatins in a coevolutionary
context. Nevertheless, this diversifying evolutionary pat-
tern could also be explained by wasp host switches and
the subsequent necessity for cystatins to evolve rapidly to
respond to new biochemical targets.

Our analysis reveals the existence of two viral cystatin
forms which display different evolutionary patterns with
regards to wasp evolution. In more classical non-obligate
mutualist associations, horizontal gene transfer can
explain incongruences between host and symbiont phyl-
ogenies. However, in this case, virus and wasp have been
in a long and stable relationship for more than 100 mil-
lion years [46] and artificial infection of wasps by PDV is
not possible. Therefore, we propose, as our analyses
strongly suggest, that adaptive constraints have contrib-
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uted to the different evolutionary patterns observed in the
two cystatin forms.

Moreover, for both of these two forms duplication events
occurred independently in the different Cotesia bracovi-
ruses studied and are fixed by positive selection which is
also responsible of the ensuing divergence of cystatin cop-
ies.

Interestingly, Francino [28] proposed in the 'radiation
adaptive model' that duplications are fixed to their selec-
tive advantage and that gene copies evolve under natural
selection before new functions appear. This mode of evo-
lution, particularly for functional genes, could be a
response to specific environmental pressures such as new
biochemical niches. Therefore, the particular evolution of
the cystatin gene family could be a response to particular
cystatin targets in a specific host-parasitoid system.

Conclusion

Unravelling the molecular evolution of proteins can lead
to a better understanding of their function. For the first
time in a host-parasite interaction system, we have shown
that viral cystatins are subject to strong positive selection.
Three-dimensional modelling of a viral cystatin revealed
that most of the positively selected residues are in the
vicinity of the inhibitory active sites, suggesting that adap-
tive selection acted to improve the inhibitory activity of
viral cystatins. Furthermore two different cystatin forms
have been identified, each of them evolving under differ-
ent selective constraints probably imposed by different
host cysteine proteases.

In order to better explain cystatin gene family evolution,
we have to consider the host range of each wasp species
studied. For this purpose, studying the Melitaeini-Cotesia
system appears clearly adapted since their ecology in
terms of host range is well characterized [47]. Such a study
would provide a precise definition of the potential coevo-
lutionary processes involved between viral cystatins and
host cysteine proteases.

Methods

Wasp specimens

Cystatin genes were isolated from nine viruses associated
with the following Cotesia species: C. congregata, C. fla-
vipes, C. chilonis, C. melanoscela, C. vestalis, C. rubecula, C.
sesamiae, C. kariyai and C. glomerata (Table 2). These spe-
cies provide a good representation of Cotesia species diver-
sity based on the Cotesia phylogeny [29].

DNA extraction, amplification, cloning and sequencing
DNA extractions were performed using the Chelex
method from a whole individual wasp. Wasp tissues were
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Table 2: Wasp samples and primers used for cystatin gene amplification

Wasp species Location Collections Primers Species abbreviations
C. congregata Lab reared Drezen, J.M (Fr) Cyst|5/Cyst93 CcBY

C. chilonis Lab reared Wiedenmann,. R (USA) Cyst15/Cyst93 CchBY

C. flavipes Kenya Dupas, S (Fr) Cystl5/Cyst93 CfBV

C. glomerata Lab reared Vet, L (NL) Cystl5/Cyst93 CgBvV

C. kariyai Japan Tanaka, T (J) Cyst|5/Cyst103 CkBV

C. melanoscela France Villemant, C (Fr) Cyst|5/Cyst93 CmBV

C. vestalis Benin Guilloux, T (Fr) Cystl5/Cyst93 CvBVY

C. rubecula Lab reared Smid, H (NL) Cystl5/Cyst103 CrBY

C. sesamiae Kenya Dupas, S (Fr) Cyst|5/Cyst103 CsBV

disrupted in a 5% Chelex solution including proteinase K
(0.12 mg/ml). Three primers for cystatin gene amplifica-
tion were designed based on an alignment of the three
cystatin genes from C. congregata bracovirus [EMBL:
Al632321] and one cystatin gene from Glyptapanteles indi-
ensis bracovirus [GenBank: AC191960]; one forward
primer Cystl5 5'-ATGGGCAAGGAATATCGAGTG-3' and
two reverse primers Cyst93 5'-GTAAGGACAGTTTT-
TATCTAG-3', Cyst103 5'-GTAAGGACGACTTITATCTAG-
3'. The amplified product is composed of 279 nucleotides
and encodes a 93 amino acid sequence containing the first
two conserved domains of cystatins. Polymerase chain
reaction (PCR) amplification was performed in a 50 pl
volume containing 1x Taq buffer, 3 mM of MgCl,, 2.5
mM of dNTP, 0.3 pl Taq polymerase (Goldstar, Eurogen-
tec) and 50 pmol of each primer. Goldstar polymerase dis-
plays a very good fidelity of one error every 5 x 10->bases.
PCR conditions consisted of an initial denaturation step
at 94°C for 2 minutes followed by 30 cycles of a denatur-
ation step at 94°C for 45 seconds, an annealing step at
45°C for 1 minute, a polymerization step at 72°C for 45
seconds and final elongation at 72 °C for 10 minutes. PCR
products were cloned into the pDrive-cloning vector (Qia-
gen cloning kit). For each species, 12 positive clones were
sequenced in order to isolate all the cystatin gene copies
and to obtain a minimum of two identical clones per
sequence. Only CcBV21L and CcBV21I correspond to
unique sequences. However, excluding these sequences
from the data set does not change the results of the analy-
sis on positively selected sites. Cloned inserts were
sequenced in both directions using the Big DyeR Termina-
tor v3.1 cycle sequencing kit and the sequenced products
were analysed using a capillary DNA sequencer (ABI
PRISM 3100).

Sequence analysis and phylogeny

Cystatin sequences obtained and sequences already avail-
able from viral genome sequencing (CcBVcystl,
CcBVcyst2 and CcBVcyst3) were aligned using ClustalW
implemented in Bioedit version 5.06 [48]. We estimated
the intraspecies and interspecies cystatin gene divergence

using MEGA ver3.1 [49]. Divergence was calculated by a
pairwise distance under the Kimura two-parameter substi-
tution model.

Recombination can mislead phylogenetic estimation and
positive selection analysis. In order to avoid this bias we
tested the cystatin gene family for recombination using a
genetic algorithm recombination detection (GARD)
implemented in Hyphy [50].

The program MrModeltest ver2.2 [51] was used to deter-
mine the appropriate model of DNA substitution by the
hierarchical likelihood ratio test (hLRTs). Phylogenetic
trees were obtained by maximum likelihood using
PHYML program [52] and by Bayesian inference in Mr
Bayes 3.12 [53]. Modeltest chose the Kimura 80 model
with a gamma distribution of parameter shape o =
0.7875, a transition/transversion ratio of 1.12 and a pro-
portion of invariables sites equal to zero. These parameter
estimations were used as initial parameter values for max-
imum likelihood and Bayesian inference. The topology
and branch length estimation by maximum likelihood
was repeated 1000 times and for Bayesian analysis we per-
formed 1000000 generations until the standard deviation
was below 0.01.

Positive selection among sites

All of the analyses on the rate of protein evolution among
taxa and tests of positive selection were conducted using
the codeml program in the PAML package v3.14 [54].
Pairwise estimates of the number of nonsynonymous sub-
stitutions per synonymous site (dy) and the number of
synonymous sites (dg) were calculated using maximum
likelihood [55].

To test for evidence of positively selected sites, we per-
formed different models allowing evolutionary rates (o =
dy/dg) to vary across codon sites (models M0, M3, M8A
and M8) [56]. Model MO (one ratio model) assumes that
all branches in the phylogeny and all sites have the same
®. Model M3 classifies sites in the sequence into three dis-
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crete classes with ® estimated from the data [56]. M8A
assumes a B-distribution of the dyj/dg ratio constrained to
lie between 0 and 1.0 and adds to the B-distribution a
point mass at ® = 1 (see [57]) whereas the selection model
M8 permits one additional d,/dg ratio to be above 1.
Nested models (that is, MO versus M3 and M8A versus
MS8; nonpositively selected versus positively selected mod-
els) were compared using the LRT: 2X the log-likelihood
difference between the two models can be compared to a
x2 distribution, with the number of degrees of freedom
equal to the difference between the two models. Codon
sites under positive selection were identified using the
Bayes empirical Bayes (BEB) calculation of posterior prob-
ability for site classes [58] that analyses the sites under
positive selection identified by the selective models. The
numbers of substitutions between cystatin genes were
counted using the 'codeml' program in the PAML package
[59], with the F1X4 model of codon frequencies. Four
sequences containing a stop codon were eliminated from
the analysis. Each analysis was repeated 10 times with dif-
ferent initial ® values to avoid problems of multiple local
optima.

Positive selection among lineages

To test for evidence of positive selection among sites but
also among lineages we performed a branch-site analysis
using the codeml program in the PAML package v3.14. In
this analysis, the branches under positive selection are
called 'foreground' branches and all other branches are
called 'background' branches. Sites changing in the fore-
ground lineage are permitted to have o > 1. Yang and
Nielsen [60] implemented two versions of branch-site
models called MA and MB. In MA, ®, is estimated from
the data under the constraint 0 < o, < 1; hence, positive
selection is permitted only in the foreground branch. This
model is compared with model M1a. In MB, ®,and o, are
free parameters. Thus, some sites evolve by positive selec-
tion across the entire phylogeny, whereas other sites
evolve by positive selection in the foreground branch
only. MB is compared with M3. The parameters used to
perform this analysis are the same as those used in the site
analysis.

The branch-site analysis was used to gain information on
the possibility of different evolutionary constraints in dif-
ferent lineages. A problem with this method is that it
assumes an a priori hypothesis. Indeed we have to specify
foreground and background lineages with no knowledge
of lineage history or of the type of substitutions that occur.

To determine the precise lineage analysis we used a local
codon model implemented in HyPhy [50] able to esti-
mate nonsynonymous and synonymous substitutions per
site for each branch. This analysis informs us about the
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kind of substitutions that occurred during cystatin lineages
divergence.

In addition we used a naive approach to detect branches
specifically under positive selection in the tree. The basic
principle of this method is to assign each branch of a phy-
logenetic tree to a particular » class. Different models
assigning branches into different o classes were tested and
compared using the Akaike information criterion (AIC,).
To search the space of possible models HyPhy employs a
Ga that measures the fitness of each model by its AIC,
score. Ga-branch analysis enables the assignment of line-
ages in a phylogeny to a fixed number of different classes
of ®, thus allowing variable selection pressure without a
priori specification of particular lineages. Ga-branch anal-
ysis as most molecular evolution programs is computa-
tionally challenging and imposed that the number of
sample sequences be reduced to 25. We therefore
removed from our sample all nearly identical sequences
and pseudogenes. The evolutionary codon model used for
this analysis was determined from the AnalyzecodonData
implemented in the Hyphy package.

Structure prediction and model building

The available structure of chicken egg white cystatin (pdb
code 1cew) and human cystatin D (pdb code 1roa) were
used as templates [22,30]. The sequence of mature CcBV
cystatin1 shares 28% and 24% identity with chicken egg
white cystatin [Swissprot: P81061] and human cystatin D
[Swissprot: P28325], respectively. Despite the relatively
modest level of sequence identity, a reasonable alignment
could be made. In particular, the 'wedge' region contain-
ing the conserved QxVxG motif could be readily aligned.
CcBV cystatin 1 corresponds to a type 2 cystatin, which
has two conserved disulfide bridges. For the inter-beta-
strand disulfide bond, the sequence alignment and tem-
plate structure place the Cys residues within disulfide
bonding distance. The second pair of Cys residues in the
initial model were too distant to form a disulfide bond,
and had to be brought closer together through energy
refinement. The homology modelling was carried out
using the program COMPOSER in SYBYL 7.3 (Tripos Inc,
St Louis, MO) on residues 6 to 108 of the mature protein.
Three structurally conserved regions (SCRs) were used to
build an initial model of CcBV cystatin 1, with three dele-
tions and no insertion relative to the template.

Molecular model refinement and MD simulations

Structural refinement of the complex was performed by
stepwise energy minimization in Sybyl using the AMBER
all atom force field [61] to a gradient of 0.05 kcal/mol/A.
First, only the side chains of the SCRs were energy-mini-
mized, followed by energy minimization of the entire
structure. The energy-minimized model was then used as
the starting point for MD simulations using the AMBER
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ff03 force field in the AMBER 9 suite of programs [62]. The
protein was solvated in a truncated octahedron TIP3P
water box [63]. The distance between the wall of the box
and the closest atom of the solute was 12.0 A, and the
closest distance between the solute and solvent atoms was
0.8 A. Counterions (Cl) were added to maintain elec-
troneutrality of the system. The solvated system was
energy-minimized with harmonic restraints of 10 kcal
mol! A2 on all solute atoms, followed by heating from
100 to 300 K over 25 ps in the canonical ensemble (NVT).
Then, the solvent density was adjusted by running a 25 ps
isothermal isobaric ensemble (NPT) simulation under 1
atm pressure. The harmonic restraints were then gradually
reduced to zero with four rounds of 25 ps NPT simula-
tions. After an additional 25 ps simulation, a 10 ns pro-
duction NPT run was carried out with snapshots collected
every 1 ps. For all simulations, a 2 fs time-step and 9 A
nonbonded cutoff were used. The particle mesh Ewald
(PME) method was used to treat long-range electrostatic
interactions [64], and bond lengths involving bonds to
hydrogen atoms were constrained by SHAKE [65].
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