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Abstract
Background: Given the costs of signalling, why do males often advertise their fighting ability to
rivals using several signals rather than just one? Multiple signalling theories have developed largely
in studies of sexual signals, and less is known about their applicability to intra-sexual
communication. We here investigate the evolutionary basis for the intricate agonistic signalling
system in eland antelopes, paying particular attention to the evolutionary phenomenon of loud
knee-clicking.

Results: A principal components analysis separated seven male traits into three groups. The
dominant frequency of the knee-clicking sound honestly indicated body size, a main determinant of
fighting ability. In contrast, the dewlap size increased with estimated age rather than body size,
suggesting that, by magnifying the silhouette of older bulls disproportionately, the dewlap acts as
an indicator of age-related traits such as fighting experience. Facemask darkness, frontal hairbrush
size and body greyness aligned with a third underlying variable, presumed to be androgen-related
aggression. A longitudinal study provided independent support of these findings.

Conclusion: The results show that the multiple agonistic signals in eland reflect three separate
components of fighting ability: (1) body size, (2) age and (3) presumably androgen-related
aggression, which is reflected in three backup signals. The study highlights how complex agonistic
signalling systems can evolve through the simultaneous action of several selective forces, each of
which favours multiple signals. Specifically, loud knee-clicking is discovered to be an honest signal
of body size, providing an exceptional example of the potential for non-vocal acoustic
communication in mammals.

Background
Rivals often use agonistic signals to broadcast their fight-
ing ability and thereby settle conflicts without incurring
the high costs associated with actual fighting [1]. How-
ever, why males within many species have evolved several
signals for this purpose calls for an explanation: given the

costs of producing and receiving signals, why use more
than one? Compared with the substantial research efforts
aimed at clarifying the evolution of multiple sexual sig-
nals [2-4], the cause of multiple signalling in agonistic
communication has remained neglected. We here test the
applicability of the hypotheses on multiple sexual signal-
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ling in the intra-sexual context by deciphering the elabo-
rate agonistic signalling system in the world's largest
antelope, the eland (Tragelaphus oryx).

A key distinction between multiple signalling systems
relies on whether the separate signals provide redundant
information or not [5]. So far the best supported explana-
tion for inter-sexual multiple signalling is probably the
'multiple messages hypothesis', which maintains that
each signal trait conveys non-redundant information
about a distinct aspect of quality [3,6,7]. Still, there is also
considerable evidence to suggest that multiple sexual sig-
nals in some cases provide redundant information about
the same underlying quality. In this situation, signals may
coexist because they allow more accurate assessment by
the receiver ('backup-signals hypothesis') [8] or because a
variable sensory environment selects for multiple signals
with different transmission properties ('multiple sensory
environments hypothesis') [9].

When multiple signals are used in agonistic encounters,
which components of fighting ability may interest the
opponent? Key factors associated with fighting success are
large body size, fighting experience and aggressiveness
[10,11]. There is a strong relationship between male fight-
ing success and body size in many taxa, including ungu-
lates [12,13]. Body size can be reflected in acoustic signals,
with reliability assured by the fact that body size deter-
mines the dimensions of the sound-producing organ and
hence the acoustic structure of the sound produced (for
example, in ungulates [14], monkeys [15], birds [16] and
amphibians [17]). Although body size often has an over-
riding effect on fighting ability, fighting success may also
increase with age independently of body size, either due
to enhanced fighting experience or greater willingness to
escalate fights as reproductive value decreases [18,19]. In
this case, signalling of age can be a selective advantage.
Fighting ability may furthermore depend on aggressive-
ness, which is often linked to fluctuating physiological
states [20,21]. Thus, high androgen levels are a main
determinant of aggressiveness and have been related to
dark melanin-based colour signals in several vertebrates
[22].

Focusing on eland bulls, we investigated the basis for
coexistence of five signal traits, namely a pendant dewlap,
a dark facemask, a frontal hairbrush, body greyness and a
loud knee-clicking sound (Figure 1). During agonistic
encounters, the four visual traits are presented in lateral
display, which facilitates assessment by rivals [23,24], and
here the dewlap can dramatically increase the silhouette
of an opponent. With regards to dark facemasks in artio-
dactyls, as well as the often urine-soaked frontal hairbrush
which is peculiar to eland bulls, support for signal func-
tions has been found by [25] and [26] respectively. A com-

municative role has also been suggested for body colour,
which ranges from reddish-brown to dark grey due to hair
loss [24]. In addition to these visual traits, it has been
hypothesized based on behavioural observations that the
loud castanet-like click sound, which is emitted from the
front knees of walking eland bulls, signals body size
[26,27]. The sound, audible up to several hundred meters
away [24], is likely to be costly by facilitating detection by
predators, and the evolution of knee-clicking in the face of
such costs indeed suggests a selective advantage in com-
munication. For all these traits, however, their informa-
tion content remains to be clarified, including how they
interrelate and how they relate to age, body size and fluc-
tuating aspects of condition.

In this study, we first used principal components analysis
(PCA) to identify the independent factors underlying
inter-individual variation in the signal traits. We predicted
that if signal traits reflected the same quality, as proposed
by the backup-signals and multiple sensory environments
hypotheses, they would align with the same principal
component. If, however, the signal traits reflected multi-
ple messages, we predicted that they would align with dif-
ferent principal components, each reflecting a distinct
aspect of fighting ability. In the analysis we also included
proxy measures for age and body size, both of which are
likely to affect fighting ability.

Moreover, we investigated the relationship between intra-
and inter-individual trait variation in a longitudinal
study, where we tested (a) whether traits were character-

A lateral photo of a mature eland bull indicating the measures taken: (1) body depth, (2) horn length, (3) dewlap droop, (4) frontal brush size, (5) darkness of the facemask, (6) greyness of the body, and (7) knee-click frequencyFigure 1
A lateral photo of a mature eland bull indicating the 
measures taken: (1) body depth, (2) horn length, (3) 
dewlap droop, (4) frontal brush size, (5) darkness of 
the facemask, (6) greyness of the body, and (7) knee-
click frequency.
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ized by temporal fluctuations or directional change and
(b) which traits co-varied within individuals over time.
Correlated changes were predicted between signal traits
and the component of fighting ability they reflected, as
well as between traits signalling the same component of
fighting ability.

On this basis, we here present simultaneous support for
the multiple messages and backup signals hypotheses,
and we specifically reveal the knee-clicking sound of
mature eland bulls as an honest indicator of body size.

Methods
Study animal
Elands are nomadic browser-grazers forming unstable
groups, which may be either unisexual or mixed [24,28].
The groups number up to several hundred individuals,
although groups consisting exclusively of adults generally
count less than 20 [29]. Elands are non-territorial and
males are organized in a strong dominance hierarchy,
which is believed to determine access to receptive females
[30,31]. Dominance relations are settled mainly through
agonistic signalling, fights being remarkably rare, even in
the presence of oestrous females [24,26]. When they
occur, fights are intense and take place by neck-wrestling,
which renders body size, and in particular neck develop-
ment, a decisive factor for the outcome. Fighting ability is
also influenced by the fact that males in eland, in com-
mon with other tragelaphine antelopes, go through peri-
odic states of heightened aggressiveness, so-called 'ukali'
[27].

Study area
The data were collected between 2006 and 2008 (Febru-
ary-May) from a 400 km2 study area, partly situated
within the Masai Mara National Reserve and the Olare
Orok Conservancy, Kenya (1°20'S, 35°10'E). The land-
scape ranged from open grasslands to thickets of Acacia
drepanolobium and Croton dichogamus, and the eland used
both open and closed habitats. Individual eland were rec-
ognized from natural marks including the number and
shape of vertical white body stripes, horn morphology,
ear nicks and scars; in case of uncertainty, identity was
established using a digital photo archive. Only mature
bulls from the age of around four years old emit the knee-
click sound [26], and the sound was chosen as the crite-
rion for inclusion of individuals in the present study.

Measurements of phenotypic traits
Visual traits
Using a method similar to [32], lateral photos of eland
bulls standing relaxed were taken with a single-lens reflex
digital camera (Konica Minolta Dynax 7D with a 400 mm
lens) while the distance to the animal was measured
simultaneously with a digital laser rangefinder (Bushnell

Yardage Pro 800). A calibration curve for converting mor-
phological measurements from pixels in photographic
images to real-life metric measurements was obtained by
taking photos of a 1 m pole at 1 m intervals and measur-
ing its length in pixels. The measurements taken, which
are indicated on Figure 1, were as follows: (1) body depth:
the vertical distance from the highest point of the shoul-
ders to the lowest point of the pectoral muscle, excluding
any dewlap appended underneath; (2) horn length: the
distance from the horn tip to the frontal insertion of the
horn; (3) dewlap droop: the dewlap's maximum vertical
droop from the neck; (4) frontal brush size: the two-
dimensional area covered by the hairbrush on the fore-
head in profile; (5) facemask darkness: scored by an
observer naïve to the study on a sliding scale from 1 (uni-
formly light) to 7 (black mask extending from the frontal
brush to the chin); and (6) body greyness: scored by an
observer naïve to the study on a sliding scale from 1 (red-
dish-brown) to 5 (dark grey). Body depth was included as
a measure of body size, and horn length was used as a
proxy for age, based on the fact that horn length of mature
bulls decreases through life due to wear [26]. Body depth,
horn length and dewlap droop were measured in DiM-
AGE Viewer version 2.37, while frontal brush size was
measured in ImageJ version 1.38×. The morphometric
measurements were based on an average of 4.6 ± 0.3
(mean ± SE) lateral photographs of each bull at each
assessment, taken at varying distances, and repeatability,
which was calculated following [33], was highly signifi-
cant (F61,172 = 20.6, P < 0.001, repeatability 0.84, using
body depth as an indicator).

Auditory trait
Knee-clicks were recorded at approximately 75 m distance
using a solid state recorder (Marantz PMD670) with a
directional microphone (Sennheiser ME67). Narrow-
band spectrograms were generated in Praat version 4.3.20
(P Boersma and D Weenink, University of Amsterdam,
The Netherlands) using the fast Fourier transform (FFT)
method (window length = 0.03 s, time step = 1000, fre-
quency step = 250, band width = 43 Hz, Gaussian window
shape, dynamic range = 35 dB). The click sound is
believed to be produced by standing waves in a knee-ten-
don, and supporting periodicity of the sound, the domi-
nant frequency was generally clearly defined in the
spectrograms. The dominant frequency, termed the knee-
click frequency in the following, was measured in a power
spectrum.

Statistical analyses
In a cross-sectional study, we included data on the seven
phenotypic traits from 48 adult males. Bartlett's test of
sphericity showed the data set to be suitable for structure
detection using PCA as variables were highly interrelated
(2 = 69.5, df 21, P < 0.001). Hence to identify the latent
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factors determining the relationships between the varia-
bles, we extracted the independent principal axes with
eigen-values above unity using varimax rotation with Kai-
ser normalization.

In a longitudinal study, we included data on 14 adult
males who were sampled at approximately one year's
interval; we adjusted the changes in trait values to reflect
365 days exactly by dividing by the sampling interval. We
then used t-tests to clarify whether there were (a) consist-
ent directional changes in variables over time and/or (b)
correlated changes in variables over time.

Assuming that the signal value of the metric signal traits is
likely to reside in their size relative to body size (that is,
change in proportions) rather than in their absolute size,
the metric signal traits were controlled for body size by
dividing with body depth for unidimensional traits or its
quadrate for two-dimensional traits. However, all analy-
ses were also done using absolute trait values, which
yielded similar results in general; these results are there-
fore only shown where they differed from those obtained
using relative values in whether they were significant or
not ( = 0.05, two-sided). All statistical analyses were
done in SPSS version 15.0.0 (SPSS, Chicago, IL).

Results
Inter-individual analysis
The mean ± SE (range) of the seven phenotypic traits were
as follows: body depth 84.7 ± 0.34 (79.8–89.9) cm, horn
length 53.8 ± 0.86 (44.1–66.6) cm, dewlap droop 24.9 ±

0.54 (17.2–32.4) cm, frontal brush size 56.6 ± 4.33 (2.5–
116.0) cm2, knee-click frequency 3060 ± 26.8 (2776–
3580) Hz, facemask darkness score 3.7 ± 0.25 (1–7), and
body greyness score 1.6 ± 0.14 (1–5).

The PCA identified three underlying principal compo-
nents, which divided the traits analyzed into three distinct
groups (Table 1; Figure 2). Frontal brush size, facemask
darkness and body greyness all showed a significant posi-
tive correlation with the first principal component (PC1),
as well as with each other, in bivariate analyses. Body
depth and knee-click frequency correlated with the second
principal component (PC2), positively and negatively
respectively, and they also correlated negatively with each
other (Figure 3; Additional files 1 and 2). Finally, horn
length, the proxy measure of age, and dewlap droop cor-
related with the third principal component (PC3), nega-
tively and positively respectively, and they also correlated
negatively with each other. Body depth, which was nega-
tively correlated with horn length, only correlated with
dewlap droop when using absolute measures, the rela-
tionship in this case being positive (Pearson correlation: r
= 0.353, N = 48, P = 0.014).

Intra-individual analysis
In the longitudinal study, no significant directional trend
could be demonstrated for any of the traits related to PC1
(frontal brush size: t = 0.765, df 13, P = 0.458; facemask
darkness: t = 0.186, df 13, P = 0.856; body greyness: t = -
1.203, df 13, P = 0.250). In contrast, all the traits related
to PC2 and PC3 showed significant temporal trends,
either increasing (estimated annual changes: body depth

The traits plotted against the three principal components using their numeric Pearson correlation coefficientsFigure 2
The traits plotted against the three principal compo-
nents using their numeric Pearson correlation coeffi-
cients.

The dominant frequency of knee-clicks in relation to body depthFigure 3
The dominant frequency of knee-clicks in relation to 
body depth. Linear regression line shown (P < 0.001).
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1.92 ± 0.58 cm (mean ± SE), t = 3.33, df 13, P = 0.005,
dewlap droop 1.98 ± 0.55 cm, t = 2.33, df 13, P = 0.037)
or decreasing (estimated annual changes: horn length -
1.35 ± 0.31 cm, t = -4.37, df 13, P = 0.001, knee-click fre-
quency -160 ± 46 Hz, t = -3.45, df 13, P = 0.004; Figure 4).

Bivariate comparisons revealed significantly correlated
changes between all the PC1-related variables (Pearson
correlation: body greyness/facemask darkness r = 0.608, N
= 14, P = 0.021; body greyness/frontal brush size r =
0.592, N = 14, P = 0.026; facemask darkness/frontal brush
size r = 0.671, N = 14, P = 0.009) as well as between body
depth, knee-click frequency and facemask darkness (Pear-
son correlation: body depth/knee-click frequency r = -

0.899, N = 14, P < 0.001, Figure 5; body depth/facemask
darkness r = 0.583, N = 14, P = 0.029; knee-click fre-
quency/facemask darkness: r = -0.598, N = 14, P = 0.024).

Discussion
We here show that the dominant frequency of the knee-
clicks in eland is an honest signal of body size, reflecting
both inter-individual variation and intra-individual
changes over time. The dewlap droop increased with age
(as estimated from horn length) rather than with body
size, and thus appears as an indicator of age-related traits,
such as fighting experience. Finally, facemask darkness,
frontal brush size and body greyness reflected yet another
underlying variable, presumed to be androgen-related

Table 1: Pearson correlations between principal components and phenotypic traits

PC1 
(eigen-value 2.04)

PC2 
(eigen-value 1.55)

PC3 
(eigen-value 1.45)

Facemask 
darkness

Frontal 
brush size

Body 
depth

Knee-click 
frequency

Horn 
length

Dewlap droop

Body greyness 0.816*** -0.044 0.148 0.514*** 0.503*** 0.162 0.017 -0.199 0.053
Facemask darkness 0.835*** 0.146 -0.139 0.543*** 0.127 -0.196 0.026 0.027
Frontal brush size 0.809*** 0.109 0.140 0.140 -0.181 -0.175 0.145
Body depth 0.091 0.805*** 0.260 -0.515*** -0.304* 0.183
Knee-click frequency -0.070 -0.902*** 0.042 -0.186 -0.012
Horn length -0.075 -0.233 -0.792*** -0.387**
Dewlap droop 0.043 -0.028 0.833***

The analysis explained 72% of the variance in the variables. * P < 0.05, ** P < 0.01, *** P < 0.001.

Narrow-band spectrograms (window length = 0.03 s, band width = 43 Hz, Gaussian window shape) of knee-clicks from the same bull recorded in two consecutive years. Note the drop in knee-click frequency between years compared with the con-stancy over the short termFigure 4
Narrow-band spectrograms (window length = 0.03 s, band width = 43 Hz, Gaussian window shape) of knee-
clicks from the same bull recorded in two consecutive years. Note the drop in knee-click frequency between years 
compared with the constancy over the short term.
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aggressiveness due to its association with hair darkness.
These results support the multiple messages hypothesis,
with three distinct components of fighting ability reflected
in the signal traits (see also [34]). However, in simultane-
ous support of the backup-signals hypothesis, the compo-
nent presumed to be androgen-related aggressiveness was
represented by three signal traits.

The discovery that knee-clicks in eland honestly indicate
body size reveals an unusual potential for non-vocal
acoustic communication in mammals. It is believed that
the click is produced when a tendon slips over a carpal
bone [24], and such a mechanism would explain why the
dominant frequency correlates negatively with body size.
The tendon in this case behaves like a string being
plucked, and the frequency of a standing wave in a string
correlates negatively with both its length and diameter.
Thus, most importantly, the length of the tendon is pre-
dicted to increase with skeletal measures, which generally
increase with age. In addition, the diameter of the string is
predicted to increase with muscle mass, and tellingly, the
one case in the present study where click frequency clearly
increased, rather than decreased, over time coincided with
a considerable decrease in body depth due to visible loss
of body condition and atrophy of the pectoral muscle.
Hence, in common with ungulate vocal communication
[14], physical constraints appear to assure that eland

knee-clicking honestly reflects body size, in this case
incorporating both skeletal measures and muscle mass.
Eland bulls are mute compared with their relatives
[24,26], and knee-clicking is possibly favoured over vocal
signals as a cheaper option for sustained acoustic status
signalling in the unstable multi-male herds. Similar click
sounds are produced by another gregarious ungulate, the
reindeer (Rangifer tarandus) [35]; however, the function of
the clicks in this species remains to be investigated.

From its association with PC3, which reflected estimated
age, the dewlap appears as a reliable indicator of age-
related traits such as fighting experience. Bulls may also
benefit from signalling advanced age if older individuals,
having lower reproductive value, incur lower costs from
injury and therefore are more risk-prone and dangerous
adversaries [19]. Finally, it could be significant that the
dewlap enhances the silhouette presented in lateral dis-
plays, particularly exaggerating the size of the neck which
is crucial in the neck-wrestling combats [24]: older males
may in this way bluff their opponents, even masking mus-
cle loss once they are past their prime.

With regards to PC1, the component's association with
facemask darkness suggests that in this case androgen-
related aggressiveness may be the underlying aspect of
fighting ability being signalled. Androgens have been

The shift after one year in the dominant frequency of the knee-click sound of individual bulls in relation to their change in body depthFigure 5
The shift after one year in the dominant frequency of the knee-click sound of individual bulls in relation to 
their change in body depth. Linear regression line shown (P < 0.001).
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linked to dark melanin pigmentation of hair in several
mammalian species, for example, white-tailed deer pelage
(Odocoileus virginianus) [36], lion manes (Panthera leo)
[37], and coat colour in mice (Mus musculus) [38]. The
PC1-related traits contrasted with the PC2- and PC3-
related traits in that we did not detect any strong direc-
tional trend within individuals over time, a finding which
is indeed consistent with PC1 reflecting a fluctuating
endocrine state such as androgen levels. These results
highlight the possibility that the PC1-related traits signal
the aforementioned 'ukali' state of periodic aggressiveness
[27], which is likely to be caused by temporary endocrine
changes. Finally, the positive effect of androgens on
growth of somatic tissue [39] can explain why the intra-
individual changes in facemask darkness and body depth
were positively correlated.

Conclusion
Three determinants of fighting ability are broadcasted in
the agonistic communication of eland bulls, that is, body
size, age and presumably androgen-related aggression, the
latter reflected in three redundant signals. These findings
provide simultaneous support for the multiple messages
and backup signals-hypotheses of multiple signalling, and
the study thus not only identifies commonalities between
intra- and inter-sexual multiple signalling, but also points
to the possibility that complex multiple signalling systems
often originate from the concerted action of several selec-
tive forces, each of which favours multiple signals. In
addition, the signal value of the peculiar knee-clicking
sound, which reliably indicates body size, provides an
intriguing example of how information may be trans-
ferred through non-vocal acoustic communication in
mammals.
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