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Abstract
Background: In recent years, the maturation of microarray technology has allowed the genome-
wide analysis of gene expression patterns to identify tissue-specific and ubiquitously expressed
('housekeeping') genes. We have performed a functional and topological analysis of housekeeping
and tissue-specific networks to identify universally necessary biological processes, and those unique
to or characteristic of particular tissues.

Results: We measured whole genome expression in 31 human tissues, identifying 2374
housekeeping genes expressed in all tissues, and genes uniquely expressed in each tissue.
Comprehensive functional analysis showed that the housekeeping set is substantially larger than
previously thought, and is enriched with vital processes such as oxidative phosphorylation,
ubiquitin-dependent proteolysis, translation and energy metabolism. Network topology of the
housekeeping network was characterized by higher connectivity and shorter paths between the
proteins than the global network. Ontology enrichment scoring and network topology of tissue-
specific genes were consistent with each tissue's function and expression patterns clustered
together in accordance with tissue origin. Tissue-specific genes were twice as likely as
housekeeping genes to be drug targets, allowing the identification of tissue 'signature networks' that
will facilitate the discovery of new therapeutic targets and biomarkers of tissue-targeted diseases.

Conclusion: A comprehensive functional analysis of housekeeping and tissue-specific genes
showed that the biological function of housekeeping and tissue-specific genes was consistent with
tissue origin. Network analysis revealed that tissue-specific networks have distinct network
properties related to each tissue's function. Tissue 'signature networks' promise to be a rich source
of targets and biomarkers for disease treatment and diagnosis.
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Background
The issue of tissue and cell-type specificity of gene expres-
sion is central to human biology and biomedicine. It
impacts such fundamental problems as tissue ontogene-
sis, evolution and carcinogenesis. It is generally believed
that the most relevant disease biomarkers and drug targets
predominantly are found among proteins specific for the
tissue the disease affects. In 1965 Watson et al. described
genes universally expressed to maintain cellular functions
as 'housekeeping' (HK) genes [1]. Comprehensive experi-
mentation in this area was, however, limited until, in the
1990s, microarrays enabled 'genome-wide' snapshots of
gene expression. Numerous studies on tissue-specific
expression have since been published [2-8], identifying
between 451 and 1789 genes [4] as a HK core on different
microarray platforms. There is no standard method for
assigning a gene as HK, and no comprehensive functional
analysis of HK and tissue-specific genes has previously
been done.

Here we report the identification of 2374 HK genes, based
on a novel study of gene expression in 31 human tissues
on a whole-genome ABI array. We set up a definitive 'HK
baseline' for gene expression across tissues, and compared
previously published HK data sets with ours. We also
identified gene sets uniquely expressed in individual tis-
sues and groups of tissues, and generated tissue-specific
merged metabolic/signaling 'signature networks'. Both
HK and tissue-specific genes were subjected to a compre-
hensive, three-phase functional analysis, including gene
set enrichment across four ontologies, network topology
analysis and tissue-specific network analysis. We clustered
tissues into groups according to expression patterns and
network parameters, and revealed associations between
HK and tissue-specific genes with human diseases and
drug targets.

Results
Definition of housekeeping and tissue-specific genes
Whole-genome gene expression was analyzed in 31
human tissues using an ABI human genome array with
probe sets for 27,868 individual human genes. A relatively
conservative ten-fold 'signal-to-noise' ratio (SN10) across
all three replicate arrays for each tissue was applied to
identify the transcripts present in all tissues (HK set, see
Methods). The SN10 HK set comprised 2374 genes (Addi-
tional file 1). We compared this set with four sets of HK
genes published previously: a set of 535 genes from 11 tis-
sues on a Affymetrix HuGeneFL array [3]; 1789 genes
from 79 tissues on custom 33,698 gene array [4]; 574
genes from 47 tissues on a 7500 gene Affymtrix U95A
array [2] and 451 genes from 19 tissues on Affymetrix
HuGeneFL arrays [5]. Our HK set overlapped with
between 42 and 82% of these sets, although only 97 genes
were common between the four larger sets. Furthermore,

there was 80% overlap between our set and the intersec-
tion of the previous studies (Figure 1). Our set contained
1419 additional HK genes not previously identified.

Genes uniquely expressed in only one of the 31 tissues (at
the SN10 cut-off) were defined as tissue specific. Tissue-
specific sets varied in size from four genes for thymus to
484 genes for testis, with an average size of 43.8 genes, or
30.9 genes for somatic tissues only (excluding testis)
(Table 1, Additional file 2). The gene set uniquely
expressed in testis was substantially larger than those for
somatic tissues, and highly enriched in meiosis-specific
genes, confirming recent findings [9,10]. Around 40% of
a recently published human testis specific gene set [11]
overlapped with our SN10 set.

An alternative method, using the Student's t-test, was also
applied to identify tissue-specific genes. Functional analy-
sis showed striking similarities in the biological processes
encompassed in the genes specific to each tissue between
the t-test and the threshold-based methods (description of
method and results in Additional file 3).

Ontological analysis of housekeeping and tissue-specific 
genes
We conducted enrichment analysis of HK and tissue-spe-
cific sets across four functional ontologies: canonical
pathway maps, gene ontology (GO) processes, GeneGo
(GG) process networks, and diseases, using the hypergeo-

Comparison between housekeeping gene setsFigure 1
Comparison between housekeeping gene sets. The 
intersections between Tu et al. [4], Warrington et al. [3], 
Eisenberg and Levanon [2] and our set are shown. The small-
est of the four previously published sets [5] was not included 
in the figure for clarity. The numbers in parentheses are the 
number of unique genes that overlap between the sets 
located at the opposite sides.
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metric distribution [12] and Gene Set Enrichment Analy-
sis (GSEA) algorithms [13] to determine enrichment. The
hypergeometric p-values for the ten top-scored entities in
each ontology for the HK set are shown in Table 2 and
Additional file 4. 'Oxidative phosphorylation' was the
highest scored canonical pathway map (p < 10–77). This
vital, ATP-yielding pathway is the terminal part of cellular
respiration, in which electrons are transferred through the
electron transport chain (ETC). Almost all subunits of the
ETC protein complexes were expressed in the HK set (Fig-
ure 2(I)). The second-highest scored map depicts another
essential process in the mitochondrial respiratory chain,
ubiquinone metbolism (p < 10–40). Ubiquitin-proteaso-
mal proteolysis was among the highest scored GG process
networks (p < 10–26), with virtually all essential proteins
included in the HK gene set (Figure 2(II)). GG process
ontology is a set of 120 networks covering most critical
cellular processes. Each GG process comprises 100 to 350
functionally related proteins. Unlike GO terms, where
proteins are not necessarily connected, the proteins in GG

processes are linked via physical interactions, and can be
visualized as networks. They therefore represent the signal
flow and metabolic flux within each process. Translation
initiation was another high-scored GG process (Figure
2(III)), with many translation initiation factors repre-
sented in the HK set. In GO biological processes, cellular
metabolism, translation and RNA processing were among
the top ten scoring categories. Neoplasm by site (p < 10–
16) and breast neoplasm (p < 10–14) were the top-scored
diseases (Table 2). Additionally, enrichment analysis of
canonical pathway maps showed that nine out of the top
ten maps are directly connected to 'growth' and 'viability'
(Additional file 5).

Using the GSEA procedure [13] across the same ontolo-
gies produced similar distributions (data not shown).
Importantly, HK sets from the previously published stud-
ies were generally enriched in similar categories to our
own HK set across all four ontologies. For example, oxida-
tive phosphorylation, cytoskeleton remodeling, transla-
tion and macromolecule biosynthetic process were
among the top-scoring maps and processes for all HK sets
(Additional file 4). Functional analysis of the unique parts
of HK sets showed differences among top-scoring proc-
esses and maps. Our unique (not yet identified) HK genes
showed enrichment with metabolic, translation and cell-
cycle processes, validating the part of the HK set which
was not identified by previous studies. Unique parts of
some of the other sets, however, showed enrichment of
more specific processes such as immune, inflammatory
and cardiac-specific processes (Additional file 6).

All 31 tissue-specific gene lists were subjected to the same
enrichment procedures as the HK set (Additional file 7).
In most cases, p-value distributions of top-scored path-
ways, processes and diseases were strikingly consistent
with the tissue of origin. For instance, 190 retina-specific
genes were enriched for eye-specific categories in all four
ontologies (Table 2). Visual perception (Figure 3(I)) and
retinoid metabolism, both highly specific for retina tissue,
were among the top ten scored pathways maps. The top-
scored GG process network was Signal
transduction_Visual perception (Table 2). All ten top-
scored GO processes were related to vision, including sen-
sory perception of light stimuli, visual perception and
detection of visible light. All ten top-scored diseases were
eye diseases, including retinal degradation, night blind-
ness and retinitis pigmentosa. Adrenal gland genes were
enriched in disease categories including diabetes insip-
idus, adrenal gland diseases and adrenal cortex diseases
(Table 2). The testis-specific set was highly enriched in cell
cycle (meiosis), DNA exchange and cell division in all
three process ontologies (canonical pathways, GO proc-
esses and GG processes). The top-scored diseases included
male infertility, dyskeratosis congenita and familial dys-

Table 1: Number of housekeeping and tissue-specific genes

Tissues SN10

Housekeeping 2374
Liver 22
Skeletal muscle 37
Fetal liver 16
Testis 484
Placenta 38
Bone marrow 63
Skin 75
Adrenal gland 13
Prostate 14
Trachea 16
Small intestine 35
Peripheral blood lymphocytes 49
Mammary gland 16
Tonsil 24
Thymus 4
Spleen 14
Fetal kidney 5
Thyroid 7
Brain 34
Heart 26
Lung 16
Salivary gland 17
Ovary 15
Pancreas 20
Fetal thymus 8
Colon 9
Spinal cord 24
Retina 190
Kidney 17
Uterus 12
Fetal brain 61
Average 43.8
Average, somatic tissues 30.9
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Table 2: Enrichment analysis of housekeeping and three selected tissue-specific gene sets. 

Housekeeping Retina Testis Adrenal Gland

Canonical pathways 
maps

Oxidative phosphorylation Visual perception CREM signaling in testis Tyrosine metabolism 
(dopamine)

Ubiquinone metabolism CREB pathway Glycolysis and 
gluconeogenesis

Catecholamine metabolism

Cytoskeleton remodeling TGF, WNT and 
cytoskeletal remodeling

ATM/ATR regulation of 
G2/M checkpoint

Estrogen biosynthesis

Formation of Sin3A and 
NuRD complexes and their 
role in transcription 
regulation

Regulation of CDK5 in 
CNS

Role of APC in cell cycle 
regulation

Cortisone biosynthesis and 
metabolism

TGF, WNT and 
cytoskeleton remodeling

Role of Nek in cell cycle 
regulation

Rap1A regulation pathway Androstenedione and 
testosterone biosynthesis 
and metabolism

Regulation activity of EIF4F Plasmin signaling Androgen receptor nuclear 
signaling

Non-genomic (rapid) 
action of androgen 
receptor

WNT signaling pathway Receptor-mediated HIF 
regulation

Insulin regulation of fatty 
acid metabolism

Androgen receptor nuclear 
signaling

Role of tetraspanins in the 
integrin-mediated cell 
adhesion

Sphingolipid metabolism Rap1B regulation pathway WNT signaling pathway

BAD phosphorylation Retinol metabolism Nucleocytoplasmic 
transport of CDK/Cyclins

TGF, WNT and 
cytoskeletal remodeling

TCA Regulation activity of EIF2 Estrogen biosynthesis
GeneGo processes Translation_Translation 

initiation
Signal transduction_Visual 
perception

Reproduction_Spermatoge
nesis

Transport_Potassium 
transport

Translation_Elongation-
Termination

Transmission of nerve 
impulse

Cell cycle_Meiosis Cell adhesion cadherins

Transcription_mRNA 
processing

Reproduction_GnRH 
signaling pathways

Signal transduction_CREM 
pathway

Development neurogenesis 
in general

Proteolysis_Ubiquitin-
proteasomal proteolysis

Development_Neurogenes
is in general

Reproduction_Male sex 
differentiation

Signal transduction 
NOTCH signaling

Translation_Regulation of 
initiation

Transport_Calcium 
transport

Signal 
transduction_Androgen 
receptor nuclear signaling

Signal 
transduction_Androgen 
receptor signaling cross 
talk

Protein folding_Folding in 
normal condition

Development_Neurogenes
is- synaptogenesis

Cell cycle_Mitosis Signal transduction_CREM 
pathway

Immune_Phagosome in 
antigen presentation

Reproduction_Progesteron
e signaling

Proteolysis_Ubiquitin-
proteasomal proteolysis

Signal 
transduction_Neuropeptid
es signaling pathway

Protein folding_Protein 
folding nucleus

Cell adhesion_Integrin 
priming

Cell cycle_Core Development ossification 
and bone remodeling

Protein folding_Response 
to unfolded protein

Translation_Regulation of 
initiation

Signal transduction_Visual 
perception

Muscle contraction

Protein folding_ER and 
cytoplasm

Reproduction_Male sex 
differentiation

Cell cycle_G2-M Cell adhesion amyloid 
proteins

GO processes Metabolic process Sensory perception of light 
stimulus

Sexual reproduction Feeding behavior

Cellular metabolic process Visual perception Reproduction Smooth muscle 
differentiation

Translation Sensory perception Spermatogenesis Oocyte development
Macromolecule metabolic 
process

Neurological process Male gamete generation Oogenesis

Primary metabolic process Detection of visible light Gametogenesis Male gonad development
Macromolecule 
biosynthetic process

Detection of light stimulus Fertilization Embryonic epithelial tube 
formation

Cellular protein metabolic 
process

Detection of abiotic 
stimulus

Sperm motility Development of primary 
male sexual characteristic

Cellular macromolecule 
metabolic process

Phototransduction Spermatid development Germ cell development

Protein metabolic process Detection of light stimulus 
during visual perception

Spermatid differentiation Cell-cell signaling
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autonomia (Table 2). Brain-specific genes yielded GO
processes such as transmission of nerve impulse and syn-
aptic transmission. Disease enrichment for the brain set
included epilepsy, seizures and mental disorders (Addi-
tional file 7). Using the GSEA procedure [13] across the
same ontologies produced similar distributions (Addi-
tional file 8).

Network properties and interactome analysis of HK and 
tissue-specific genes
We analyzed the 'interaction space' of the protein prod-
ucts of HK and tissue-specific genes in three steps. First, we
calculated topological properties of the 'interactomes',
such as degree of connectivity, average shortest path and
clustering coefficient [14]. Second, we evaluated the inter-
actome structure by parsing the interactions into three
components (IN, OUT and giant strong component, GSC)
using the 'bow-tie' classification of Broder et al. [15].
Third, we divided HK and tissue proteins into protein
classes and calculated relative enrichment across particu-
lar classes. For topological analysis, we used the direc-
tional protein-protein interaction content in MetaCore™
(GeneGo Inc.). We also analyzed, for reference, four pre-
viously published HK gene sets.

All five HK sets shared similar network topology features:
higher connectivity, a somewhat lower clustering coeffi-
cient, and shorter paths than the global human interac-
tome (Figure 4A, Additional file 9). The tissue-specific
networks varied substantially in their degree of connectiv-
ity, with colon and ovary-specific proteins the most inter-
connected, and prostate and salivary gland the least
(Figure 4A, Additional file 10).

Network topology parameters were also used for tissue
clustering. The topological distances between all possible
tissue pairs were calculated as the ratio of the average
shortest paths between proteins belonging to different tis-
sues to the average shortest paths between proteins from
the same tissue. Standard hierarchical clustering [16] was

applied to generate the tissue tree. Interestingly, some of
the functionally related tissues such as brain, fetal brain,
retina and spinal cord were grouped together and charac-
terized by very similar average shortest paths (Additional
file 10).

An interactome can be divided into three structural parts,
or 'components' [15]. The GSC is the most densely con-
nected part of the network, characterized by the property
that any two nodes can be connected through directed
paths in both directions. Directed paths from the GSC
lead out to the OUT component and paths from the IN
component go in to the GSC (Figure 4C, upper panel). In
order to facilitate interpretation, the interactions were
divided by 16 mechanisms (Additional file 11). The IN
component is enriched with 'outgoing' interactions such
as ligand-receptor binding interactions, which occur five
times more frequently in IN than in GSC, and ten times
more frequently than in the OUT component. Interac-
tions between IN and GSC components also have five
times more ligand-receptor interactions than between
GSC and OUT. The GSC component predominantly fea-
tures 'transcriptional regulation' interactions, which
appear ten times more often in the GSC than the OUT,
and six times more often than the IN components. The
OUT component is enriched with 'incoming' interactions
such as transcription factor target. Indeed, 48% of interac-
tions between the GSC and OUT are transcription regula-
tion compared with 4% of interaction between IN and
GSC being transcription regulation. The GSC encom-
passed around 50% of the HK network. Overall, the frac-
tion of HK genes was larger in the GSC (p < 10-5) and
slightly lower in the IN and OUT component than a ran-
dom gene set of the same size (Figure 4C). This suggests
that HK proteins comprise a significant proportion of sig-
nal transduction interactions. Mammary gland and tonsil
were enriched in GSC (p < 0.08 and p < 0.14); intestine
and adult kidney in OUT component (p < 0.03 and p <
0.07), and skin (p < 0.1) in IN component (Figure 4C,
Additional file 12).

Intracellular transport Detection of light stimulus 
during sensory perception

Development of primary 
sexual characteristics

Dopamine biosynthetic 
process from tyrosine

Diseases Neoplasm by site Vision disorder Infertility Diabetes insipidus
Breast neoplasms Eye diseases Infertility, male Hypopituitarism
Breast disease Retinal degeneration Dyskeratosis congenita Adrenal gland disease
Genetic disease, inborn Sensation disorders Dysautonomia, familial Adrenal cortex disease
Digestive systems 
neoplasm

Night blindness Ciliary motility disorders Adrenal cortex neoplasm

Poxviridae infections Retinitis pigmentosa Kartagener Syndrome Adrenal gland neoplasm
Lysosomal storage disease Eye diseases, hereditary Dextrocardia Carcinoma, basal cell
Mental retardation Retinal diseases Herpes zoster Neoplasm, basal cell
Aneuploidy Blindness Bronchiectasis Myokymia
Vaccinia Retinitis Autonomic nervous system 

diseases
Pathologic processes

Gene set enrichment with canonical maps, GeneGo processes, gene ontology processes and diseases was performed.

Table 2: Enrichment analysis of housekeeping and three selected tissue-specific gene sets.  (Continued)
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Figure 2
Top-scored pathways maps and process networks for housekeeping proteins. (I) Oxidative phosphorylation map.
The subunits of the complexes are grouped in blue boxes; the red 'thermometer' histograms mark housekeeping (HK) genes.
(II) Network for ubiquitin-mediated protein degradation in proteosome. HK genes are marked with solid red circles. The most
important network components functionally, identified as HK genes, are marked with circles: ubiquitins and small ubiquitin-like
modifiers (Ubiquitin, Ubiquitin C, Sumo-1, Sumo-2 are encircled in red); the ubiquitin-activating enzyme (UBE1 is encircled in
black); ubiquitin-conjugating enzymes (UBCH8, UBE2D2, UBE2D3, UBC13, UBCH7 are encircled in blue); proteins that may
act as ubiquitin protein ligases E3 (DTX2, DTX3, Rnf14, Rnf103 are encircled in green); the chaperons (HSP70 and HSP90
encircled in orange) and proteasomal subunits (26S proteasome, 26S proteasome, immunoproteasome (11S regulator) are
encircled in brown). (III) Network for the GeneGo process translation initiation. HK genes are marked with solid red circles
and translation initiation factors are encircled in red.
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Next, all HK and tissue-specific sets were divided into pro-
tein classes according to the MetaCore protein classifica-
tion schema (Additional file 13). Enrichment in proteins
of a certain class was then calculated from the hypergeo-
metric distribution. The distribution of protein classes in
the global interactome was used as a reference (Methods).
HK proteins were enriched in enzymes (p < 10-8). Intes-
tine, liver and adrenal gland featured the highest fraction
of enzymes. Fetal tissues were highly enriched in tran-
scription factors, and retina and brain in membrane
receptors (Figure 4B). Such distributions make intuitive
biological sense, and both network structure and protein
class enrichment were consistent with each other.

Tissue-specific networks
We generated tissue-specific networks for nine tissues
using the Analyze Networks (AN) network algorithm in
MetaCore. AN is a version of the 'shortest path' algorithm,
optimized for larger data sets. AN generates overlapping
sub-networks of up to 50 nodes and calculates enrich-
ment of the networks with input data and canonical path-
ways [17,18]. Unlike pre-built GG process networks, AN
networks are built from input lists of network objects
using the manually curated interaction database in Meta-
Core. The networks comprise metabolic reactions, signal-
ing interactions and canonical pathways. The tissue-
specific networks for liver and adrenal gland are shown in
Figure 5. The liver network is enriched with cholesterol
metabolism, as well as with enzymes involved in aldoster-
one, estradiol and heme metabolism. The adrenal net-
work reflects the hormonal function of that organ. It is
comprised of reactions and enzymes taking part in adren-
aline, noradrenaline and corticosteroid synthesis.

Clustering tissues based on gene expression patterns
Tissue gene expression patterns were clustered by Eucli-
dean distance across the average normalized probe inten-
sities of the replicate hybridizations for each tissue [18]
(Figure 6A). Most tissue clusters display evolutionary and
functional relatedness. Fetal tissues clustered closest to
their adult counterparts (brain-fetal brain, liver-fetal liver,
thymus-fetal thymus, Figure 6A). Tissues of the same
developmental origin (ectodermal, mesodermal or endo-
dermal) tended to cluster together; for instance, heart and
skeletal muscle are both derived from mesoderm, pan-
creas and salivary gland are part of the gastrointestinal sys-
tem. Almost all of the most closely correlated tissue pairs
were evolutionary or functionally related. Some genes
were uniquely expressed in pairs of tissue (Figure 6B),
rather than individual tissues (for instance, in brain and
fetal brain) or in triplets and quadruplets of tissues (brain,
fetal brain and spinal cord) (Additional file 14). Often,
these proteins were specific for a group of diseases. For
instance, proteins uniquely present in spinal cord, retina

and brain are involved in central nervous system and neu-
rodegenerative diseases (Figure 6C).

Drug target distribution between housekeeping and tissue-
specific genes
We compared the distribution of drug targets between HK
and tissue-specific protein sets. Two sets of drug targets
were compiled: 'therapeutic targets' – a set of 104 direct
protein targets of commercially available drugs, and
'xenobiotic targets' – 518 proteins known to interact with
xenobiotics. Therapeutic drugs are defined as key proteins
or genes directly affected by a marketed or withdrawn
drug from the market. Xenobiotic targets are proteins and
genes known for physical interactions with a large set of
bioactive compounds including drugs, drug candidates
and lead compounds.

On average, therapeutic targets were twice as prevalent
among tissue-specific proteins than HK proteins (3.3%
and 1.5% of all proteins, correspondingly) (Additional
file 15). Therapeutic targets comprised as much as 25% of
mammary gland and thymus-specific proteins. The distri-
bution of xenobiotic targets was not essentially different
between HK and the sum of tissue-specific proteins, with
some 1.7% of HK proteins and 2.3% of tissue-specific pro-
teins being xenobiotic targets. Some tissues, however,
were highly enriched with xenobiotic targets. For instance,
over 10% of proteins specific for mammary gland, ovary,
retina, small intestine and spinal cord were identified as
xenobiotic targets (Additional file 15).

Discussion
The definition of a 'housekeeping' or 'universally-
expressed' gene is not settled. Suggested approaches vary
from an estimated 10% of all genes [4] to transcript copy
number [3] to using 'present' calls [5]. Elisenberg and
Levanon [2] assumed that HK genes are highly expressed
'by nature' and, therefore, must be selected for shorter
introns. We followed the original 'common-sense' pro-
posal of Watson et al. [1] to define 2374 genes as HK
because their transcripts were detected in all 31 human
tissues tested, at a signal-to-noise ratio ≥ 10, which we
believe to be a relatively stringent cut-off (technical anal-
ysis of platform sensitivity at ABI has indicated that a sig-
nal-to-noise ratio of ≥ 3 is sufficient to determine
'presence' of a transcript with a confidence of 99.9%. This
set constitutes 8.2% of human genes based on the latest
National Center for Biotechnology Information genome
release http://www.ncbi.nlm.nih.gov/mapview/stats/
BuildStats.cgi?taxid=9606&build=36&ver=2.

Tissue-specific gene sets, comprising genes uniquely
expressed in individual tissues by the SN10 criterion, aver-
aged 43 genes for somatic tissues, and 485 mostly meio-
sis-specific genes in testis. The tissue specificity
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Top-scored canonical maps for tissue-specific genesetsFigure 3
Top-scored canonical maps for tissue-specific genesets. (I) Retina, visual perception canonical map. The genes identified 
as expressed in retina are marked with red 'thermometer' icons. (II) Cortisone biosynthesis and metabolism canonical map. 
The genes identified as present in adrenal gland are marked with red 'thermometer' icons.
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Network analysis and protein class enrichment of housekeeping and tissue-specific genesFigure 4
Network analysis and protein class enrichment of housekeeping and tissue-specific genes. A. Average connectivity 
of global protein interaction, housekeeping (HK) and several tissue-specific gene sets. B. Protein class enrichment analysis. The 
actual (black or blue bars) and expected (open red box) number of transcription factors (first bar), receptors (second bar) and 
enzymes (third bar) for each tissue. The blue bars correspond to HK proteins. The circles identify several tissues enriched in 
transcriptional factors (blue), receptors (green) and enzymes (red). C. Network component enrichment analysis. The upper 
part of the figure shows the schematic illustration of IN, OUT and GSC (figure adopted from Brodel et al. [15]). The lower 
panel shows the actual (black and blue bars) and expected (open red boxes) number of genes in the GSC (first), IN (second) 
and OUT (third) components. The blue bars correspond to housekeeping proteins. The circles identify several tissues enriched 
in GSC proteins (red), IN proteins (green) and OUT (blue).
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Tissue-specific networksFigure 5
Tissue-specific networks. (I) Liver; (II) Adrenal gland. Genes identified as tissue-specific are marked with solid red circles.
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distribution is represented by a bimodal distribution with
two peaks at 1 and 31 corresponding to tissue-specific and
HK genes (Additional file 16). Interestingly, the female
reproductive organ, ovary, expressed many fewer unique
genes, probably due to the fact that ovary consists mainly
of diploid tissue compared with the haploid-rich testis, as
ovary produces far fewer eggs than testis does sperm.

There is continuing debate in gene expression analysis
over how to best identify genes differentially expressed
between treatment conditions, disease states and so on.
Arbitrarily applied cut-offs in relative magnitude of
expression (fold-change) and statistical measures such as
ANOVA and t-test are commonly used [19,20]. Renewed
debate was sparked recently [21,22] following publication
of the results of the Microarray Quality Control Consor-
tium research efforts [23]. It was shown that a combina-
tion of non-stringent statistical cut-offs and fold-change
ranking of gene lists resulted in improved concordance
between measurements made using different expression
analysis technologies, an approach likely therefore to give
the most accurate biological 'answer'.

We applied both signal level (signal-to-noise) and statisti-
cal (t-test) methods to determine tissue specificity of gene
expression. Although the resulting datasets did not over-
lap well in gene content (6% on average), they were
highly similar by functional analysis. Importantly, the
intersections between distributions of entities within
functional ontologies for SN10 and t-test sets were sub-
stantially larger than between genes (Additional file 3),
suggesting that the two methods both select biologically
relevant genes, which can be interconnected on pathways

and networks. Further, despite incomplete overlap
between our HK set and four other previously published
HK sets, all gave very similar results in ontological enrich-
ment analyses. These observations support the use of
functional descriptors (pathways, networks, ontological
categories and so on) as tools for quantitative characteri-
zation of conditional gene expression [24].

HK and tissue-specific gene sets were subjected to compre-
hensive functional analysis in three steps: enrichment
analysis across functional ontologies using hypergeomet-
ric distribution [12] and GSEA methods [13]; local inter-
actome analysis; generation of signaling/metabolic
networks using HK and tissue-specific gene content as
input nodes. We used multiple functional ontologies for
enrichment analysis: GO processes, GG processes, disease
categories and canonical pathway maps. Each ontology is
established using different criteria and reveals a different
aspect of cellular functionality. Canonical pathways are
experimentally confirmed multi-step chains of reactions.
GO and GG processes differ, as connectivity is established
at the level of functional association (GO processes) or
binary interactions (GG processes). Diseases and disease
network ontologies represent pathways involved in path-
ological processes, largely derived from literature data
linking network objects (genes, proteins, metabolites) to
disease.

Ontology enrichment showed that HK genes, indeed,
were enriched in vital cellular functions such as oxidative
phosphorylation, ubiquitin-proteasomal proteolysis,
translation and major pathways of endogenous metabo-
lism. Importantly, many essential processes involve a

Clustering tissues into groups based on expression patternsFigure 6
Clustering tissues into groups based on expression patterns. (a) Hierarchical clustering of genes based on gene expres-
sion data. (b) Tissue pairs having a significantly large number of genes uniquely expressed in them. (c) Proteins uniquely 
expressed in spinal cord, retina and brain are involved in diseases of the nervous system.
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large number of interconnected proteins (typically several
hundred), and many of these genes belong to our HK set,
confirming the functional integrity and completeness of
the HK set.

Recently it was shown in line with our results that the
number of HK genes is larger than previously reported
[4,25]. Our findings are complementary to the high-reso-
lution study based on expressed sequence tag (EST) profil-
ing reported by Zhu et al. [25]. Indeed, both methods
have advantages and drawbacks, EST data although have
potentially higher resolution, suffers from poor annota-
tion and low sampling depth [25]. Our results are very
consistent throughout the 31 tissues and are well con-
firmed by enrichment analysis in multiple functional
ontologies. We expect that higher resolution data would
not alter the main conclusions of the enrichment and net-
work analysis.

Ontology enrichment in tissue-specific genes was strik-
ingly different from HK genes, and in most cases strikingly
consistent with the tissue's function. Retina genes were
enriched with such processes as visual perception, detec-
tion of visible light, detection of light stimulus and eye
disease-related genes, and testis genes scored highest for
reproductive processes, cell cycle, cell division and male
reproductive diseases, for example. Importantly, almost
all tissues featured a high level of consistency between the
highest-scored categories in different ontologies. Further,
consistency was observed whether hypergeometric p-val-
ues or GSEA analyses were employed. This important
observation adds confidence to the conclusions drawn
from the analysis of tissue-specific gene expression, and
can be applied similarly to other studies of differentially
expressed genes and proteins. It also will facilitate the
development of a comprehensive set of 'meta-ontologies'
derived from an understanding of the interplay and cross-
over between the different types of ontological categories
available, leading to improved understanding of biologi-
cal systems, and the identification of biologically mean-
ingful biomarkers and new therapeutic targets.

Network analysis [15] showed that a large part of HK
genes belonged to the most interconnected GSC core of
the global interactome, with equal representation of 'in'
and 'out' interactions. On the other hand, tissue-specific
genes varied greatly in network component composition.
Skin and fetal brain were enriched with 'IN' component,
consistent with a larger proportion of ligand-receptor
interactions in these tissues. Not surprisingly, these tissues
featured a large fraction of receptors in the protein class
enrichment test. In comparison, 'effector' organs such as
intestine, liver and kidney, were enriched with 'OUT'
interactions and enzymes. A transcription factor-enzyme
pair represents a typical directed 'out' interaction – a final

step in delivering a signal from stimulus to core 'effectors'
such as endogenous metabolic pathways. These findings
are in line with the 'bow-tie' structure of metabolic net-
works, which ensures robustness of major biological func-
tions [26], and is needed for coordinated response to
stimuli and perturbation [27].

'Multi-dimensional' functional analysis of gene expres-
sion data adds to the ongoing debate on proper statistical
procedures for gene set selection. A 'rule of thumb' opin-
ion is that only gene sets and distributions with low p-val-
ues (typically, p < 0.01) should be considered valid,
although such ad hoc cut-offs may eliminate many condi-
tion-relevant genes from analysis. Functional analysis
provides a different level of validation for such datasets by
consideration of functional biological units. For instance,
the retina-specific gene set is enriched in vision-related
pathways, GO and GG ontologies, and diseases. The same
set is enriched with OUT network component, and the
protein class 'receptors'. Self-assembling retina-specific
networks reconstruct rhodopsin-stimulated signal trans-
duction and key steps in the metabolism of rhodopsin
and its co-factors. Although the retina gene set is too small
to achieve p-values < 0.01 in most of these analyses, the
combination of independent functional evidence builds a
strong case for its relevance and importance as a highly
likely source of specific biomarkers for eye conditions and
ophthalmic drug response. The comprehensive biological
interaction data in MetaCore allows multiple 'high-con-
tent' data types to be mapped onto networks. Gene
expression data, proteomic, single nucleotide polymor-
phism and metabolomic data all can be addressed, visual-
ized and used in network construction and analysis,
independently or in concert [28], making it a universal
tool for studies on eye and other diseases.

Tissue-specific gene sets (and, therefore, networks) were
twice as enriched in drug targets as the HK set. 'Therapeu-
tic' targets comprised up to 25% of mammary gland and
thymus-specific proteins. Most of the identified tissue-
specific drug target genes are targets to drugs whose mech-
anism are consistent with the tissues. For example, three
brain-specific proteins identified to have at least one drug
target are GABA-A receptor beta-2 subunit, Na (V) I alpha
and SCN10A. GABA-A receptor beta-2 subunit is a target
for clomethiazole (sedative and anticonvulsant), Na (V) I
alpha is a target for drugs such as levetiracetam (epilepsy),
tetrodotoxin (anesthetics), toprimate (anticonsulvant)
and SCN10A is target for bupivacaine racemic (anesthet-
ics) and lidocaine (anesthetics).

Tissue-specific proteins and their pathways and networks
are therefore a potentially rich source of targets and
biomarkers for disease treatment and diagnostics. The
addition of data on which network components are
Page 12 of 15
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detectable in blood and other readily accessible body liq-
uids makes tissue-specific networks exceptionally attrac-
tive for the identification of putative biomarkers of tissue-
specific disease, drug-response or toxicity.

Methods
Data description
RNA from 31 normal human tissue RNAs (Table 1) was
purchased from Clontech (Palo Alto, CA) while RNA from
UHR (Universal Human Reference) was purchased from
Strategene (San Diego, CA). All RNA samples were ana-
lyzed on the Agilent 2100 Bioanalyzer for RNA quality
control. Three technical replicates were included for each
of the tissue sample.

The Applied Biosystems Human Genome Survey Microar-
ray (P/N 4337467) contains 31,700 60-mer oligonucle-
otide probes representing 27,868 individual human
genes. Digoxigenin-UTP labeled cRNA was generated and
amplified from 1 μg of total RNA from each sample using
Applied Biosystems Chemiluminescent RT-IVT Labeling
Kit v 1. 0 (P/N 4340472) according to the manufacturer's
protocol (P/N 4339629). Fifteen micrograms of DIG-
labeled cRNA was hybridized for 16 hrs at 55°C and
chemiluminescence detection, image acquisition and
analysis were performed using Applied Biosystems
Chemiluminescence Detection Kit (P/N 4342142) and
Applied Biosystems 1700 Chemiluminescent Microarray
Analyzer (P/N 4338036) following the manufacturer's
protocol (P/N 4339629). Images were auto-gridded and
the chemiluminescent signals were quantified, back-
ground subtracted, and finally, spot- and spatially-nor-
malized using the Applied Biosystems 1700
Chemiluminescent Microarray Analyzer software v 1. 1
(P/N 4336391). Probe signals were normalized using the
Limma method [29]. The gene expression data is publicly
available at GEO public repository website. (GSE7905).

Identification of HK and tissue-specific genes
A 'stringent' set of HK genes expressed in each of the 31 tis-
sues was identified by applying cut-off to the ABI-calcu-
lated signal-to-noise (S/N) for each probe. The S/N is a
metric that captures the confidence of the measurement
'detectability' above all known sources of noise. S/N is
commonly used to bin genes or probes as 'Present' or
'Absent' at a desired level of confidence. Since the S/N
expresses the number of standard deviations, the associ-
ated confidence can be looked up from a probability table
for a normal distribution. For example, signals with S/N ≥
3 have > 99.9% confidence in the measurement. For our
purposes in determining whether a gene was expressed in
a given tissue, we additionally took into account the
inflection points where the slope of the S/N curve signifi-
cantly changes. We applied the threshold across all three
replicate hybridizations on a probe-by-probe basis to

identify the genes expressed in each tissue with a high
level of confidence. The overlap between all 31 sets, that
is, genes consistently expressed in all tissues, defines the
HK set (more details in Additional file 17). Tissue-specific
genes were defined as those uniquely expressed in a single
given tissue at a S/N ≥ 10. Genes expressed in highly
related tissue pairs were also defined as tissue specific for
some analyses.

Topological measures
Degree of nodes
The number of links connected to a node gives the node's
degree. Since many real networks are directed, nodes are
characterized by in and out-degree, giving the number of
incoming and outgoing interactions.

Average shortest path
The shortest distance between two nodes is the number of
links along the shortest path. The average shortest path is
the average over the shortest paths for all node pairs in the
network. When we calculate the shortest paths for a subset
of nodes in the network we consider also paths crossing
through nodes that are not part of the subset.

Average clustering coefficient
The clustering coefficient is a measure that captures to
what degree node's neighbors are connected. It is defined
as:

where ni is the number of links among the ki neighbors of
node i. As ki(ki-1)/2 is the maximum number of such
links, the clustering coefficient is a number between 0 and
1. The average clustering coefficient is obtained by averag-
ing over the clustering coefficient of individual nodes. A
network with high clustering coefficient is characterized
by highly connected sub-graphs.

P-value calculation
The enrichment levels of the HK genes and tissue-specific
genes in the different parts of the network (IN, OUT, GSC)
and in different protein classes were calculated using the
hyper-geometric distribution:

We calculated the p-value corresponding to the enrich-
ment-level according to
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which gives the probability of having k or more marked
elements in a sample of size n by random selection.
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