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Abstract

Background: In red blood cells, protein 4.1 (4.1R) is an 80 kDa protein that stabilizes the spectrin-actin
network and anchors it to the plasma membrane through its FERM domain. While the expression pattern
of 4.1R in mature red cells is relatively simple, a rather complex array of 4.IR protein isoforms varying in
N-terminal extensions, internal sequences and subcellular locations has been identified in nucleated cells.
Among these, 135 kDa and 80 kDa isoforms have different N-terminal extensions and are expressed either
from AUGI- or AUG2-containing mRNAs, respectively. These two types of mRNAs, varying solely by
presence/absence of |7 nucleotides (nt) which contain the AUGI codon, are produced by alternative
splicing of the 4.1R pre-mRNA. It is unknown whether the 699 nt region comprised between AUGI and
AUG2, kept as a 5' untranslated region in AUG2-containing mRNAs, plays a role on 4.IR mRNA
translation.

Results: By analyzing the in vitro expression of a panel of naturally occurring 4.IR cDNAs, we observed
that all AUG I/AUG2-containing cDNAs gave rise to both long, 135 kDa, and short, 80 kDa, 4.1R isoforms.
More importantly, similar results were also observed in cells transfected with this set of 4.IR cDNAs.
Mutational studies indicated that the short isoforms were not proteolytic products of the long isoforms
but products synthesized from AUG2. The presence of a cryptic promoter in the 4.1R cDNA sequence
was also discounted. When a 583 nt sequence comprised between AUGI| and AUG2 was introduced into
bicistronic vectors it directed protein expression from the second cistron. This was also the case when
ribosome scanning was abolished by introduction of a stable hairpin at the 5' region of the first cistron.
Deletion analysis of the 583 nt sequence indicated that nucleotides 170 to 368 are essential for expression
of the second cistron. The polypyrimidine tract-binding protein bound to the 583 nt active sequence but
not to an inactive 3'-fragment of 149 nucleotides.

Conclusion: Our study is the first demonstration of an internal ribosome entry site as a mechanism
ensuring the production of 80 kDa isoforms of protein 4.IR. This mechanism might also account for the
generation of 60 kDa isoforms of 4.IR from a downstream AUG3. Our results reveal an additional level
of control to 4.IR gene expression pathways and will contribute to the understanding of the biology of
proteins 4.1R and their homologues, comprising an ample family of proteins involved in cytoskeletal
organization.
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Background

The mammalian proteome has been estimated to be at
least an order of magnitude larger than its gene number.
This highlights the importance of determining which
genes give rise to protein diversity and the mechanisms
involved in the generation of protein diversity from single
genes.

The protein 4.1R gene, EPB41, is an example of a gene
generating protein diversity. It is best known for encoding
protein 4.1R, originally identified as an 80 kDa compo-
nent of the membrane skeleton of human red blood cells.
In these cells, protein 4.1R stabilizes the spectrin-actin
network and mediates its attachment to the overlying
lipid bilayer through interactions with integral membrane
proteins [1]. While the expression pattern of 4.1R in
mature red cells is relatively simple, a rather complex array
of 4.1R protein isoforms of varying sizes [2,3] and differ-
ent subcellular locations [4-6] has been reported in nucle-
ated cells, indicating that protein 4.1R plays roles at
multiple sites in the cell. The roles and partners of 4.1R in
non-erythroid cells are beginning to be elucidated. It turns
out that they play structural roles, organizing membrane
protein domains and/or linking membranes to internal
cytoskeletal and nucleoskeletal networks [6-15]. Protein
4.1R is the founding member of a large family of proteins,
the band 4.1 superfamily, containing a highly conserved
region designated 'the FERM domain'. The domain takes
its name from the 4.1 (four point one) and ERM (ezrin,
radixin moesin) proteins where it was discovered. Protein
4.1R and three homologues of 4.1R, namely 4.1B (abun-
dant in brain), 4.1G (general distribution) and 4.1N
(abundant in neurons), constitute the protein 4.1 family.
FERM-containing proteins comprise a diverse group of
eukaryotic proteins that bind membrane proteins and lip-
ids and some of the members (for instance, ERMs, talin,
focal adhesion kinase, proteins 4.1) are also involved in
the organization of the actin cytoskeleton [1].

The complex EPB41 gene is approximately 240 kb long
and is subject to extensive regulation at the level of alter-
native pre-mRNA splicing [16-18]. The regulated combi-
natorial use of at least 10 internal coding exons of the 4.1R
gene is responsible for the extensive range of 4.1R iso-
forms, which differ with respect to their internal amino
acid sequences. Additionally, two types of 4.1R isoforms
varying in their N-terminal extensions can be generated if
exon 2' is maintained or spliced out. It is well known that
inclusion of exon 2' retains the upstream AUG (AUG1)
translation-initiation codon responsible for the synthesis
of the long isoforms of 4.1R protein, (~135 kDa or
4.1R135). Short isoforms (~80 kDa or 4.1R80) are gener-
ated from mRNAs from which exon 2' has been spliced
out and translation is initiated at a downstream start site
(AUG2) present in exon 4 [19-21]. Recent studies have
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revealed great complexity in the 5' region of the 4.1R gene
and have shown evidence of coupling between transcrip-
tion and alternative splicing that directly affects alterna-
tive splicing of exon 2', thus regulating the synthesis of
structurally different 4.1R isoforms in various cell types
[22,23]. A major challenge in the field is to explore the
mechanisms by which a single 4.1R gene can express such
a variety of isoforms with diverse structures and functions.

Regulation of translation plays a key role in gene expres-
sion control. Translation of eukaryotic mRNAs is mainly
initiated by a linear scanning mechanism [24]. Several less
commonly used alternatives have also been identified that
permit, in some cases, the production of isoforms differ-
ing in their N-terminal extensions [25-27]. Indeed, alter-
native translation initiation at different in-frame start
codons is a process by which a single mRNA gives rise to
proteins varying in their amino terminal extensions. Spe-
cific mRNAs bypass the linear ribosome scanning process
by directly recruiting the ribosome and positioning it at
the start codon through internal ribosome entry site
(IRES) sequences. IRES elements were first discovered in
1988 in RNA of poliovirus and encephalomyocarditis
virus [28,29], two members of the Picornaviridae family.
More recently, IRES activities have been detected in an
increasing number of cellular mRNAs from yeast, Dro-
sophila, birds and mammals, showing that the IRES proc-
ess is far more extensive than previously thought. IRES-
containing mRNAs encode a variety of proteins such as
translation initiation factors, transcription factors, onco-
genes, growth factors, homeotic genes and survival pro-
teins [30]. IRES and IRES trans-acting factors (ITAFs)
collaborate in the recruitment of the 40S ribosomal subu-
nit. It has been proposed that there are both specific
ITAFs, which control the activity of related groups of
IRESs, and general ITAFs (for example, polypyrimidine
tract-binding protein, PTB) [31].

In this study we show that 4.1R mRNAs containing the
AUGI1 responsible for the synthesis of the long isoforms
(~135 kDa) have an IRES element within the sequence
located between the AUGI and the AUG2 that allows the
use of this internal site and hence the synthesis of the
short (~80 kDa) 4.1R isoforms. The well-known ITAF,
PTB, binds to the IRES-containing sequence. Our data
reveal that: (i) AUG1/AUG2-containing mRNAs can give
rise to both long and short isoforms of protein 4.1R; (ii)
the mechanism involved in the synthesis of the short iso-
forms is an internal entry of the ribosome; (iii) the short
isoforms of the 4.1R protein can be generated from two
different transcripts, those containing the AUG1 (shown
here) and those lacking the AUG1 but containing the
AUG2 [19-21]. These data suggest that the short (~80
kDa) isoforms of protein 4.1R are essential to the cell and
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that diverse mechanisms have therefore evolved to ensure
their existence.

Results

Two proteins are synthesized in vitro from a specific set of
4.1R cDNAs

In this study we analyzed the in vitro expression of eleven
4.1R cDNAs, previously cloned by our group [32,33], by
coupled in vitro transcription and translation reactions
using a T7 reticulocyte lysate system. Of the eleven 4.1R
cDNAs, seven contained exon 2' (4.1R135 cDNAs) and,
therefore, the upstream translation initiation site ATG1,
which is used for the synthesis of long isoforms of protein
4.1R (Figure 1A and Figure 1B). The other four cDNAs
lacked exon 2' (4.1R8° cDNAs) and hence give rise to short
isoforms of protein 4.1R by using the downstream ATG2
present in exon 4 as a translation initiation site (Figure 1A
and Figure 1C). For simplicity, we will name 1' to 7' the
set of exon 2'-containing cDNAs and 1 to 4 the set lacking
exon 2'. It should be mentioned that the long isoforms of
protein 4.1R are generally referred to as 4.1R!35 or ~135
kDa, although their sizes range from ~97 kDa to 135 kDa.
Similarly, the short isoforms of protein 4.1R are generally
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referred to as 4.1R8% or ~80 kDa, although their sizes range
from ~62 kDa to 80 kDa.

Focusing on the results of the in vitro expression of cDNAs
1' to 7', we observed that all of them gave rise to the
expected ATG1-translated proteins (Figure 1D) and, in
addition, four of them produced a second product of
faster electrophoretic mobility (Figure 1D, lanes 1', 2, 3'
and 4'). By analyzing the exon composition of cDNAs 1'
to 7', we noticed that those giving rise to two products all
included exon 4 (Figure 1B). Notably, cDNAs 2' and 5'
generated two and one 4.1R product, respectively, and dif-
fered only by the presence (cDNA 2') or absence (cDNA
5') of exon 4 (Figure 1B). cDNAs 1 to 4 use the ATG2
present in exon 4 as a translation initiation site and their
exon composition is similar to that of cDNAs 1' to 4',
apart from lacking exon 2', so we compared the size of
their in vitro-expressed products. Figure 1D shows that the
size of the ATG2-translated products originating from
cDNAs 1 to 4 was identical to that of the faster-migrating
product synthesized from cDNAs 1' to 4'. These results
suggest that the ATG2 site is probably used in 4.1R!35
cDNAs to synthesize the short 4.1R products.

Analysis of the protein products synthesized in vitro from 4.1R cDNAs. A. Schematic representation of the exon map
for the 4.1R protein. Exons are coded as follows: striped, alternative; white, constitutive; black, non-coding. The number of each
exon is shown at the bottom. Two translation-initiation sites at exons 2' (ATGI) and exon 4 (ATG2) are indicated, as is the
stop codon (TGA) at exon 21. B and C, exon map of the 4.I1R!35 cDNAs (B) and the 4.1R8 cDNAs (C) used in the in vitro-cou-
pled transcription and translation assays. D. In vitro-coupled transcription and translation reactions of the indicated 4.1R
cDNA:s. Reaction products were labelled with [35S] methionine and autoradiographed. A control reaction containing all com-
ponents of the mixture except the cDNA template is also shown (-).
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The short protein synthesized in vitro from 4.1R!35 cDNAs
is generated from the ATG2 site

We next performed a directed mutagenesis experiment to
replace the ATG2 codon by GTG in two of the 4.1R135
cDNAs, 1' and 4' (Figure 2A, 1'ATG2mut and
4'ATG2mut). The mutant cDNAs were in vitro-transcribed
and translated, and the synthesized products analyzed by
autoradiography (Figure 2B). The mutation completely
abolished the synthesis of the short 4.1R product from
both 4.1R135 cDNAs, whereas the synthesis of the ATG1-
translated product remained unchanged (compare lanes
1' and 1'ATG2mut and lanes 4'and 4'ATG2mut). These
results are consistent with the hypothesis that the short
protein originates from 4.1R!35 ¢cDNAs translated from
the downstream ATG?2 site.
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The short protein product is synthesized from the
ATG2 present in exon 4 and is not a proteolytic frag-
ment from the long protein product. A. Schematic rep-
resentation of the 4.1R!3% mutant cDNAs used in the in vitro
assays shown in B. The ATG2 was replaced by GTG in
cDNAs |' and 4' thus generating I'ATG2mut and
4'ATG2mut, respectively. In the third mutant, a TGA stop
codon was introduced between exons 2 and 4 of cDNA 4'
(4'STOP). B. Autoradiograph showing the products obtained
from the in vitro-coupled transcription and translation reac-
tions of the indicated 4.IR cDNAs. Lanes I', 4'and 4 corre-
spond to the in vitro products from the wild type cDNAs I,
4'and 4, respectively.
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The short protein synthesized in vitro from 4.1R!35 cDNAs
is not produced by proteolysis

The results described above also suggest that the short
4.1R product is unlikely to be produced from proteolytic
cleavage of the long 4.1R protein. However, to rule out
this possibility definitively we introduced a stop codon in
cDNA 4' upstream of the ATG2 by site-directed mutagen-
esis (Figure 2A, 4'STOP). Figure 2B shows that, indeed, in
the absence of the full-length ATG1-translated product,
the short protein product was still generated (4'STOP).
Additionally, when the 4.1R135 cDNAs were expressed in
vitro in the absence of the T7 promoter, no protein prod-
ucts were observed (data not shown).

These results indicate that the 4.1R sequence does not
contain a cryptic promoter directing the synthesis of the
short protein product, and that the short product does not
result from proteolytic cleavage of the long one.

In vivo expression of the set of 4.1R!35 cDNAs containing
exon 4

All previous experiments were developed in a coupled in
vitro transcription-translation reticulocyte lysate system.
We next considered whether the ATG2 site of 4.1R135
c¢DNAs was also used in living cells to give rise to the pro-
duction of the short 4.1R protein. To investigate this,
cDNAs 1', 2', 3" and 4' were independently transfected in
COS-7 cells and the expressed proteins were analyzed by
western blot. To detect the exogenous ATG1-translated
4.1R protein specifically we used the anti-FLAG antibody,
since this epitope was added to the N-terminus of the long
4.1R molecule. To detect both the exogenous ATG1- and
ATG2-translated 4.1R proteins we used the anti-myc anti-
body as this epitope was added to the C-terminus of the
4.1R molecule. Figure 3A and 3B shows representative
results obtained for cDNAs 1' and 4' that were similar to
those observed for cDNAs 2' and 3' (data not shown). As
expected, the long protein was synthesized and recog-
nized by both antibodies (Figure 3A lanes 1' and Figure 3B
lanes 4'). The short protein was also synthesized and
detected by the anti-myc antibody but not by the anti-
FLAG antibody (Figure 3A lanes 1' and Figure 3B lanes 4').
The size of the short protein generated from cDNAs 1' and
4' was similar to that of the ATG2-translated 4.1R isoform
synthesized from the corresponding 4.1R30 cDNA (com-
pare Figure 3A lanes 1' and 1 and Figure 3B lanes 4' and
4). These results indicate that the short protein most prob-
ably corresponds to the 4.1R product synthesized from
the ATG?2 site.

Consistent with the results observed in vitro, all these data
suggest that the ATG2 site present in the set of 4.1R135
cDNAs containing exon 4 is indeed used in living cells.
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The short protein 4.1R is also expressed in vivo from
4.1R'35 cDNAs. A. Western blot of total protein extracts
of COS-7 cells transfected with an empty plasmid (-) or
transfected with 4.IR cDNAs |'and | revealed with anti-myc
(anti-myc) and anti-FLAG (anti-FLAG) antibodies. B. West-
ern blot of total protein extracts of COS-7 cells transfected
with an empty plasmid (-) or transfected with 4.1R cDNAs 4'
and 4 revealed with anti-myc and anti-FLAG antibodies. All
4.1R proteins were tagged at the amino and carboxyl termini
with FLAG and myc epitopes, respectively, to detect the
exogenously expressed proteins 4.[R.

Generation of the short 4. IR isoform is not due to a cryptic
promoter

A cryptic promoter could be responsible for the produc-
tion of mRNA species giving rise to the short 4.1R protein
detected in the immunofluorescence and western blot
analyses. To test this possibility we eliminated the
cytomegalovirus (CMV) promoter from the construct con-
taining ¢cDNA 1' (Figure 4A, 1'ACMV) and performed
transfection experiments in COS-7 cells to analyze the
protein expression pattern by western blot (Figure 4B)
using the anti-myc and the anti-FLAG antibodies. The
long and short 4.1R protein bands were observed for the
control cDNA 1' construct, whereas removal of the CMV
promoter resulted in a lack of synthesis of both 4.1R pro-
teins (Figure 2B, lanes 1'ACMYV). Thus, the short 4.1R pro-
tein detected in COS-7 cells transfected with the set of
4.1R135 cDNAs containing exon 4 is not due to the exist-
ence of an internal promoter.

The 5' sequence upstream of the ATG2 site directs internal
translation from a bicistronic vector

Having ruled out the existence of a cryptic promoter and
proteolytic cleavage as the mechanisms for generating the
short 4.1R isoforms, we considered internal translation to
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The generation of the short protein 4.1R is not due
to a cryptic promoter. A. Schematic representation of the
plasmids used in the western blot analysis shown in B. The
first plasmid contained the 4.IR ¢cDNA 1' under the control
of the CMV promoter, whereas the CMV promoter was
eliminated from the second plasmid (I'ACMYV). 4.1R proteins
were tagged at the amino and carboxyl termini with FLAG
and myc epitopes, respectively, to detect the exogenously
expressed 4.IR proteins. B. Western blot of total protein
extracts from COS-7 cells transfected with an empty plasmid
(-) and from cells transfected with the indicated plasmids,
revealed with the anti-myc and the anti-FLAG antibodies.

be the most plausible mechanism responsible for their
synthesis. To test this hypothesis, a sequence comprised of
583 nucleotides upstream of the ATG2 (from nucleotide
39 to 621 in the reference sequence AF156225) of 4.1R
was inserted into a bicistronic plasmid between the Renilla
and firefly luciferase reporter genes (RLuc-4.1s-FLuc).
Bicistronic plasmids containing the 583 nucleotides in an
antisense orientation (RLuc-4.1a-FLuc) or the foot-and-
mouth disease virus (FMDV) IRES (RLuc-FMDV-FLuc)
inserted between the two cistrons were used as negative
and positive controls, respectively (Figure 5A). These plas-
mids were independently transfected into COS-7 cells and
the expressed proteins were detected by enzymatic activity
assays. As shown in Figure 5B, cell lysates transfected with
RLuc-4.1s-FLuc were positive for firefly luciferase suggest-
ing that the cloned 583 nucleotides of 4.1R contain a
functional IRES. Expression of the second cistron directed
by the 4.1R sequence was lower than that directed by the
FMDV IRES. A second bicistronic system consisting of
DsRed and enhanced green fluorescence protein (EGFP)
as first and second reporter cistrons, respectively, corrob-
orated the results obtained with the Renilla/firefly luci-
ferase system (Figure 5B). As the fluorescence intensity of
DsRed and EGFP is very easily measured by flow cytome-
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The 4.1R sequence upstream of the ATG2 directs
translation of the second cistron from bicistronic
vectors. A. Schematic representation of the bicistronic and
monocistronic constructs used. B. The indicated constructs
were transfected into COS-7 cells. Luciferase activity or fluo-
rescence intensity was determined when the bicistronic vec-
tors containing the Renilla/firefly luciferase or the DsRed/
EGFP reporters, respectively, were used. The firefly:Renilla
or EGFP:DsRed ratios are expressed relative to that of the
plasmids containing the sequence of 4.IR in the antisense ori-
entations (RLuc-4.la-FLuc and DsRed-4.1a-EGFP, respec-
tively), which were assigned a value of |. Error bars
correspond to the SEM from five independent experiments.
C. Total RNA was isolated from COS-7 cells transfected
with an empty plasmid (-) or transfected with DsRed-4.1s-
EGFP, DsRed-4.1a-EGFP and pEGFP and analyzed by North-
ern blot using full-length EGFP cDNA as a hybridization
probe. The arrowhead indicates the position of the full-
length bicistronic RNA and the asterisk that of the EGFP
monocistronic RNA.

try, we adopted this system for the rest of the experiments
in this study.

The process directing translation of the second cistron in
the bicistronic assay is not due to RNA processing or RNA
cleavage

To investigate the possibility that RNA cleavage or RNA
splicing contributed to the expression of the second
reporter gene, we examined the integrity of the bicistronic
transcript by northern blot analysis (Figure 5C) following
transfection of COS-7 cells with the bicistronic vector
DsRed-4.1s-EGFP or with DsRed-4.1a-EGFP or with a
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plasmid coding only for EGFP (pEGFP vector), which was
used as monocistronic transcript control (Figure 5A). A
band corresponding to the expected size of 2100 bp for
the bicistronic RNAs was detected with an EGFP-specific
c¢DNA probe from total RNA extracts isolated from cells
transfected with the bicistronic vectors (Figure 5C).
Monocistronic EGFP mRNA (720 bp) species were not
detected in any of the bicistronic vectors used (compare
lanes DsRed-4.1s-EGFP and DsRed-4.1a-EGFP with
pEGFP).

An IRES element located in the region 5' upstream of the

ATG2 directs translation of the second cistron

A positive bicistronic test indicates that an alternate initi-
ation mechanism is involved in the production of the
short 4.1R isoform. A number of internal translational ini-
tiation mechanisms have been described: reinitiation,
leaky scanning, shunting and internal ribosome entry
[27]. Reinitiation cannot explain the generation of the
short 4.1R isoforms. To distinguish between the other
three possibilities, we generated an additional bicistronic
construct in which a synthetic stem loop with a AG° =-57
kcal/mol, which is known to decrease the scanning of the
ribosome [34], was inserted either 5' to the first cistron,
HDsRed-4.1s-EGFP, or between the stop codon of the first
cistron and the 4.1R sequence, DsRedH-4.1s-EGFP (Fig-
ure 6A). These constructs and the original DsRed-4.1s-
EGFP construct were independently transfected in COS-7
cells and expression of DsRed and EGFP was determined
by flow cytometry. Figure 6B illustrates that the hairpin
abolished the expression of the first cistron when added to
its 5' end but not the expression of the second cistron
(lanes HDsRed-4.1s-EGFP). The second cistron was also
expressed when the hairpin was added downstream of the
DsRed reporter gene (lanes DsRedH-4.1s-EGFP). These
results indicate that the 4.1R sequence comprised between
the ATG1 and the ATG2 contains an internal ribosome
entry site.

The length of the 4.IR sequence between the two reporter
genes determines the efficiency of the second cistron
translation

To determine the influence of the 5' region upstream of
the ATG2 on the usage of the second cistron, we prepared
three different 5' deletion constructs (Figure 7A, DsRed-
413s-EGFP, DsRed-215s-EGFP and DsRed-149s-EGFP).
As negative controls, we used the same 4.1R sequences in
antisense orientations. All these constructs were trans-
fected in COS-7 cells and fluorescence intensity was ana-
lyzed by flow cytometry (Figure 7B). The construct lacking
170 nucleotides from the 5' region of exon 4 (made up of
413 nucleotides) had slightly lower efficiency than the
construct with the entire sequence (583 nucleotides). The
other two deletion constructs had very low efficiencies,
almost comparable with that of their corresponding anti-
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The 4.1R sequence contains an IRES element driving
translation of the second cistron. A. Schematic repre-
sentations of the two bicistronic constructs used in which a

stable hairpin (C\\)) that impedes ribosome scanning was
cloned upstream (HDsRed-4.1s-EGFP) or downstream
(DsRedH-4.1s-EGFP) of the first cistron, DsRed. B. The indi-
cated constructs were transfected into COS-7 cells and their
fluorescence intensity determined. Values presented are nor-
malized against the fluorescence intensity produced from the
plasmid DsRed-4.1s-EGFP, which was assigned a value of 100.
Error bars correspond to the SEM from four experiments.

sense controls. Thus, removal of 5' sequences negatively
affects the translation of the second cistron, being nucle-
otides 170 to 368 essential for IRES activity.

The 4. IR sequence containing the IRES interacts with PTB
Although the precise mechanism by which cellular IRESs
promote translation is not fully understood, the participa-
tion of IRES-binding proteins, referred to as ITAFs, is well
documented [31]. To analyze proteins interacting with the
583 nucleotide segment containing the 4.1R IRES, we per-
formed UV-crosslinking experiments. Reticulocyte lysates

http://www.biomedcentral.com/1741-7007/6/51

were used as a source of ITAFs. As a control we used a 4.1R
riboprobe lacking IRES activity, the 149-ribonucleotide
fragment corresponding to the 3' terminal end of the 583
ribonucleotide sequence (see Figure 7). Figure 8 shows
that the 32P-labelled 583 riboprobe crosslinked proteins
ranging in size from 22 to 80 kDa which, by contrast, the
149 ribonucleotide fragment did not crosslink. The
crosslinking of these proteins was globally competed by
incubation with a 150-fold molar excess of the unlabelled
583 riboprobe. A protein of approximately 57 kDa was
one of the most prominent bands bound to the 583 ribo-
probe. As PTB is a ~57 kDa protein that interacts with pyri-
midine-rich sequences of many viral and cellular IRESs,
we analyzed the possible interaction of PTB with the 583
riboprobe. Figure 8B shows that the 583 but not the 149
riboprobe crosslinked purified, recombinant PTB. This
result is consistent with the presence of a polypyrimidine-
rich tract in the large fragment, which is absent from the
short one.

Discussion

Non-erythroid cells express a wide range of 4.1R isoforms
that vary in N-terminal extensions and in internal
sequences. This diversity is mainly generated by mecha-
nisms coupling alternative promoter transcription, alter-
native splicing of the 4.1R pre-mRNA and the use of
different translation-initiation sites [19-22]. We report
here an additional layer of complexity in the already com-
plex 4.1R gene regulation pathways based on our finding
that alternative internal translation, more specifically an
IRES-driven translation, is involved in the generation of
the short isoforms of protein 4.1R. Therefore, mammalian
4.1R mRNA is added to the limited number of cellular
polycistronic transcripts synthesizing two proteins har-
bouring different N-terminal regions by initiating transla-
tion from two in-frame AUG codons.

In the past, we learnt that two types of 4.1R isoforms with
different amino-terminal regions, long and short iso-
forms, were synthesized from two sets of mRNAs gener-
ated by alternative splicing of the 4.1R pre-mRNA [19-21].
The long isoforms are generally referred to as 4.1R135 or
135 kDa although their molecular masses vary from ~97
to 135 kDa. The short isoforms are generally referred to as
4.1R80 or 80 kDa, although their molecular masses vary
from ~62 to 80 kDa. The two types of 4.1R mRNAs differ
solely by the presence or absence of 17 nt, depending on
whether exon 2' was maintained or skipped, respectively,
implying that proteins 4.1R80 are synthesized from
mRNAs containing a rather long 5' UTR (more than 600
nt). Typically, mRNAs that are translated by the linear
ribosome scanning mechanism contain short 5' UTRs; by
contrast, mRNAs containing IRES elements keep long 5'
UTRs [35]. It has always intrigued us whether the long 5'
UTR in the 4.1R mRNAs responsible for the generation of
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The length of the 4.1R sequence inserted in the bicistronic vector determines the expression of the second cis-
tron. A. Schematic representation of the 4.I1R sequences introduced into the intercistronic region of the DsRed-EGFP bicis-
tronic vector. Numbers in the intercistronic region (583, 413, 215 and 149) refer to the nucleotides maintained from the 3'
region of the 583 nt 4.IR sequence. The fragments were cloned in the sense (s) and antisense (a) orientations. B. The indicated
constructs were transfected into COS-7 cells and their fluorescence intensity determined. The EGFP:DsRed ratios are
expressed relative to that of the plasmids containing the sequence of 4.IR in the antisense orientations, which were assigned a
value of |. Error bars correspond to the SEM from five experiments.

4.1R80 proteins was maintained because it contained a rel-
evant structured element. The present study demonstrates
the existence of an IRES element within this region. The
IRES element directs the synthesis of the second cistron in
two bicistronic systems (Figure 5) and, more importantly,
the synthesis of the short isoforms of proteins 4.1R, both
in vivo and in vitro, (Figures 3 and 1, respectively) from
4.1R mRNAs containing exon 2' and most probably from
4.1R mRNAs skipping exon 2'. A protein that is consid-
ered to be a general ITAF, PTB [31], is bound to the IRES-
containing region but not to an inactive fragment imme-
diately adjacent to the AUG2 (Figure 8). Our finding that
a single 4.1R cDNA can give rise to two 4.1R isoforms,

long and short, establishes a new level of complexity that
needs to be taken into account in future studies.

Most cellular IRES elements characterized to date are
located in 5' UTR and few of them are located in coding
regions [36-38]. Interestingly, the IRES element identified
in 4.1R is not only derived from within the coding region
of the mRNAs containing exon 2' but also in the 5' UTR of
4.1R mRNAs lacking exon 2'.

Some earlier studies analyzing cellular IRES elements did
not rule out all the possible mechanisms involved in the
generation of a shorter protein and, in some cases, the
putative IRES sequence happened to be a cryptic promoter
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PTB binds to the 4.1R sequence containing the IRES. 4.1R radiolabeled transcripts containing (583 nt) or lacking (149
nt) IRES activity (see Figure 7) were used in UV-crosslinking assays with reticulocyte lysate (RRL) proteins (A) or purified
recombinant polypyrimidine tract-binding protein (PBT) (B). Following RNase A treatment, proteins were fractionated by 10%
SDS-PAGE and autoradiographed. As a control, bovine serum albumin was added at the same molar concentration as PTB. A
I 50-molar excess of competitor to labeled probe was added where indicated.

[39]. It should be mentioned that mechanisms responsi-
ble for the generation of two isoforms from a single
c¢DNA, such as transcription from a cryptic promoter or
proteolytic cleavage from the large protein product of
4.1R, were examined in this study. Our data (Figures 4
and 2, respectively) indicated that the short isoforms of
protein 4.1R were not generated by either of these two
mechanisms. Similarly, the possible contribution of inter-
nal translation mechanisms such as shunting or leaky
scanning to the internal initiation of translation was also
examined in the bicistronic assay. A hairpin sequence
capable of abolishing ribosome scanning was introduced
at the 5' region of the first cistron and resulted in the fail-
ure to synthesize the first, but not the second, cistron (Fig-
ure 6). RNA cleavage and processing were also ruled out
(Figure 5C). Our data clearly imply that internal entry of
the ribosome to the AUG2 is responsible for the genera-
tion of the short isoforms of proteins 4.1R.

Many cellular IRES are relatively inactive in in vitro trans-
lation systems and, in cell assays, they are activated when
cells are submitted to stress conditions or at some stages
of the cell cycle. It is of note that large amounts of 4.1R80
isoforms were synthesized from 4.1R!35 cDNAs contain-
ing exon 4 in in vitro translation assays and in in vivo trans-
fection experiments performed in non-synchronized cells.
Consistently, no altered production of 4.1R80 isoforms
was detected when transfected cells were arrested in mito-
sis with nocodazole and then released by nocodazole
wash-out or subjected to etoposide-induced apoptosis,
serum starvation or heat-shock treatments (data not
shown). These observations imply that the short isoforms

of protein 4.1R, 4.1R80, may be generated constitutively
by internal translation from AUG1/AUG2-containing
mRNAs.

Given that the short isoforms of protein 4.1R can be syn-
thesized from their own mRNAs, those lacking exon 2'
(AUG1) and containing exon 4 (AUG2), what would then
be the significance of their generation also by IRES-medi-
ated translation from mRNAs containing AUG1? It is rea-
sonable to hypothesize that 4.1R80 isoforms must be vital
to the cell and that diverse mechanisms have therefore
evolved to ensure their existence.

Examples of cellular proteins containing two separate
IRES sequences have been described [38]. We [33] and
others [40] have shown that a third translation-initiation
codon (AUG3) present in exon 8 originates ~60 kDa iso-
forms of protein 4.1R from 4.1R ¢cDNAs lacking exons 2'
(AUG1) and 4 (AUG2). This mRNA species contains a 5'
UTR that is too long (more than 900 nt) for a linear ribos-
ome scanning mechanism, which may be compatible
with the existence of an IRES element. In some experi-
ments, in addition to the generation of the 135 kDa iso-
form of protein 4.1R we have detected a 60 kDa band
(data not shown) suggesting that, indeed, 4.1R mRNAs
may contain more IRES elements than that described in
this study.

Conclusion

The capacity of the 4.1R gene, EPB41, to encode and dif-
ferentially express many 4.1R isoforms by alternatively
spliced transcripts differing on translation initiation sites
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and internal sequences, makes EPB41 a paradigm of cellu-
lar economy in storing information. Our results show for
the first time that, in addition to the regulation at the tran-
scriptional and splicing levels, protein 4.1R generation is
also controlled at the translational level. The capacity of a
single mRNA species to produce two 4.1R proteins by
using an internal ribosome entry site adds a new level of
complexity to the already complex regulation of 4.1R
expression. Our study emphasizes the need to take into
account this new level of regulation to achieve a better
understanding of the biology of 4.1R proteins and their
homologs, a large group of protein isoforms involved in
the organization of the actin and microtubule cytoskele-
tons.

Methods

Cell culture and transfection

COS-7 cells were grown as described [41]. Transfection
experiments were performed by electroporation using the
Electro Cell Manipulator 600 (BTX, San Diego, CA). Cells
were processed 48 hours after transfection.

Antibodies

Anti-FLAG antibody is a rabbit polyclonal antibody
(Sigma, Saint Louis, MO). Anti-c-myc monoclonal anti-
body 9E10 was obtained from the American Type Culture
Collection. Anti-horseradish peroxidase-labelled second-
ary antibodies were obtained from Southern Biotechnol-
ogy Associates, Inc. Goat anti-rabbit immunoglobulin G
(IgG) (H+L) secondary antibody conjugated to Alexa
Fluor 488 was obtained from Molecular Probes.

4.1R cDNAs, 4.1R mutant constructs and in vitro protein
expression

4.1R cDNAs used for in vitro and in vivo expression were
generated by RT-PCR using total RNA from MOLT-4 T
cells as described previously [32,33]. These cDNAs
encoded 4.1R proteins tagged at the C-terminus with the
c-myc epitope. Some of the cDNAs encoded 4.1R proteins
also tagged at the N-terminus with the FLAG epitope. The
cDNAs were cloned into pCR3.1 (Invitrogen) and verified
by sequencing [41].

In two 4.1R cDNAs, previously designated 4.1R13°A16
and 4.1R135A16,18,19 (for simplicity named in this study
cDNAs 2' and 4', respectively) the ATG2 present in exon 4
was mutated and the adenine was substituted by guanos-
ine, thus generating 1' ATG2mut and 4' ATG2mut, respec-
tively. The mutant 4' STOP carried a nucleotide
substitution at position 182 of exon 2 that changes the tri-
plet AAG to the stop triplet TAG. These three mutant con-
structs were obtained using the QuikChange site-directed
mutagenesis following the manufacturer's instructions
(Stratagene). In vitro protein expression was achieved by
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coupled in vitro transcription and translation reactions, as
previously described [41].

Bicistronic vectors

The DsRed coding sequence was amplified by PCR from
the pDsRed1-N1 vector (Invitrogen) with the sense
primer Nhel-red (5'-CCGGTCGCTAGCATGGT-
GCGCTCC-3") and the antisense primer BgllI-stop-red (5'-
CTAGAGTAGATCTCGCTACAGGAA-3'). The PCR prod-
uct was cloned between the Nhel and BgIII sites of pEGFP-
N1 (Invitrogen).

Different 4.1R sequences, amplified by PCR, were inserted
into the Sacl site of the bicistronic vector. The sense prim-
ers used for the DsRed-4.1s-EGFP, DsRed-413s-EGFP,
DsRed-215s-EGFP, DsRed-149s-EGFP construct were 5'-
GGCCGGAGCTCCACAGCACCAAC-3', 5'-GACITGAC-
CGAGCTCAAGGAGCGGACA-3', 5'-CCCAATTGCA-
GAGCTCGAACCGGAAC-3' and 5'-GCAGAAACAG
AGCTCGCTCAGGAAGAAC-3', respectively, and the anti-
sense primer was 5'-GCAGTGCATGAGCTCGTGTTTTCT-
GATTGG-3' in all cases.

The hairpin structure (CCGGATCGG); described by
Koromilas et al [34] was cloned between the Xhol and
Nhel sites of DsRed-4.1s-EGFP to generate the DsRedH-
4.1s-EGFP and the HDsRed-4.1s-EGFP constructs, respec-
tively.

The 4.1R sequence amplified with the 5'-GGCCG-
GAGCTCCACAGCACCAAC-3' and 5'-GCAGTGCAT-
GAGCTCGTGTITTCTGATTGG-3' primers was cloned
into the Sacl site of the RLuc-FLuc bicistronic vector in
sense (RLuc-4.1s-FLuc) and antisense (RLuc-4.1a-FLuc)
orientations.

Luciferase quantification

Relative IRES activity was quantified in vivo as the ratio of
the expression of firefly luciferase to that of Renilla luci-
ferase in COS-7 cells transfected with the bicistronic con-
structs. Luciferase expression was determined from 1-2 x
105 cells using the dual luciferase reporter assay system
following the manufacturer's instructions (Promega) in a
luminometer (Berthold). Five independent experiments
were performed in triplicate.

Northern blot analysis

Total RNA from COS-7 cells transfected with different
constructs was extracted using TRIZOL Reagent (Invitro-
gen Life Technologies). For northern blot analysis, 20 pg
of RNA were denatured in 50% formamide and 2.2 M for-
maldehyde at 65°C, subjected to electrophoresis in a 1%
agarose/formaldehyde gel, and transferred to nylon mem-
branes. RNA samples were hybridized under standard
conditions to labelled EGFP cDNA. Final blot washing
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conditions were 0.5 x SSC/0.1% SDS (1 x SSC=0.15 M
NaCl, 0.015 M sodium citrate, pH 7.0) at 65°C.

RNA riboprobes

To generate RNA riboprobes, PCR was performed with
specific primers for the indicated 4.1R fragments to which
additional sequences were added for incorporating the T7
RNA polymerase promoter at the 5' end. Radiolabeled
RNA probes were prepared by transcription with T7 RNA
polymerase in the presence of 0.08 mM unlabelled rUTP
plus 25 pCi of (a-32P)UTP (400 Ci/mmol)(Amersham).

UV cross-linking assays

12.5 pl of rabbit reticulocyte lysates were incubated with
radiolabeled probes at 30°C for 30 minutes. The reaction
mixtures were exposed to UV (254 nm) (Stratalinker
1800; Stratagene) for 10 minutes on ice. Then 20 units of
RNase A was added to the reaction and incubated during
10 minutes at 37°C. For competition experiments, a 150-
molar excess of unlabelled RNA was added 10 minutes
before the addition of the radiolabeled probe. For PTB-
4.1R interaction experiments, 100 ng of recombinant His-
PTB (a gift from Dr. J.M. Izquierdo, Centro de Biologia
Molecular Severo Ochoa, Madrid) was incubated with the
appropriate radiolabeled probes. The RNA-protein com-
plexes were resolved by SDS-PAGE.

Immunofluorescence

COS-7 cells were fixed with 4% formalin (37% formalde-
hyde solution; Sigma), permeabilized, blocked, incubated
with the appropriate antibodies, and processed as
described [4]. Controls with primary antibodies omitted
were included in each experiment. Preparations were
examined under a Zeiss epifluorescence microscope.

Western blot analysis

Protein samples were separated by SDS-polyacrylamide
gel electrophoresis and transferred to Immobilon polyvi-
nylidine difluoride (Millipore) in Tris (tris(hydroxyl-
methyl)aminomethane)-borate buffer, pH 8.2. Mem-
branes were processed and developed as described [4].

Flow cytometry analysis

Transfected cells were detached from the dish and sus-
pended at 0.5-1 x 10° cells/ml in phosphate-buffered
saline, 2 mM EDTA. Samples were analyzed by flow
cytometry using an argon laser at 488 and 558 nm to
detect EGFP and DsRed expression, respectively, in a Cal-
ibur cytometer (Becton-Dickinson). Four to five inde-
pendent experiments were performed in triplicate.

Abbreviations

CMV: cytomegalovirus; EGFP: enhanced green fluores-
cence protein; FERM: four point one, ezrin, radixin and
moesin; Fluc: firefly luciferase; FMDV: foot-and-mouth
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disease virus; IRES: internal ribosome entry site; ITAF:
IRES trans-acting factor; PTB: polypyrimidine tract-bind-
ing protein; Rluc: Renilla luciferase.
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