
Cancer is a consequence of multicellularity due to the fact 
that the cellular genome is under continuous attack from 
a variety of environmental or metabolic genotoxic agents. 
Moreover, the DNA replication machinery is not perfect 
[1]. Hence, the development of mutations in cells is both a 
natural and artificial – for example, in the case of smoking 
– process. The finite number of cells and the randomness 
of cell mutation events lead to a stochastic cell dynamics 
encompassing several scenarios, including extinction of 
acquired clonal stem cell disorders, which explains, 
among other things, spontaneous resolution of diseases.

Although many mutations are either neutral [2] or 
cytotoxic, some mutations may increase the risk of 
malignant transformation in which the cell loses 
regulated growth control giving rise to a clone that may 
threaten the life of the organism [3,4]. The risk of 
acquiring mutations depends on the mutation rate, the 
population of cells at risk, and the average lifetime of the 
cell since it is unlikely that multiple simultaneous 
mutations occur in the same cell [5,6]. Tissues have 
evolved an architecture where most cells have a relatively 
short lifetime and undergo continuous turnover, and this 

mitigates the accumulation and retention of mutant cells 
[7]. At the root of this process are the stem cells that are 
able to maintain tissue integrity because of a dual 
phenotypic characteristic: self-renewal and production of 
progeny that can differentiate into various cell lineages 
that together constitute tissues and organs. One can 
visualize tissues as having a tree-like organization of cells 
with stem cells at one extreme and mature, non-dividing 
cells at the other extreme [8]. Intermediate cells divide, 
often at relatively high rates, but live for relatively short 
periods of time. Although mutations can occur at every 
level of this cell hierarchy, the relatively short lifetime of 
more mature cell stages means that, in effect, the real risk 
of long-lasting oncogenic mutations is restricted to the 
small population of stem cells and early progenitor cells 
that maintain a given tissue. This, in turn, effectively 
reduces the probability of the occurrence of mutations, 
given the small population of cells at risk, despite the fact 
that a mutation arising in a stem cell can persist for a long 
time. It is important to point out that the relevance of a 
mutation is cell context-dependent – a mutation in a 
gene that is not expressed in a cell is of no consequence 
to that cell but expression of the gene in more committed 
cells, downstream of the cell that is the source of the 
mutation, may lead to a phenotype associated with 
disease [9,10]. The natural history of such mutations is 
the focus of this article. We put forward a possible role of 
stochastic effects on the generation and fate of mutations 
acquired by stem cells. Other investigators have also 
explored the impact of randomness on the fate of tumor 
cells [11,12]. We will provide some examples from several 
well-known blood disorders to illustrate the concepts 
that will be discussed.

Stochastic dynamics of stem cells
For practical purposes, it is generally accepted that one 
can consider the number of stem cells contributing to a 
given tissue (for example, hematopoiesis) as constant (N), 
especially over short periods of time. As stated before, 
the probabilistic behavior of the finite cell population is 
the basis of a stochastic dynamics that can be captured by 
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the Moran process (Figure 1). At any given time step, a 
cell will be selected for reproduction with a probability 
that is dependent on its frequency within the population 
and also proportional to its reproductive fitness (r). 
Reproduction will increase the net size of the population 
by one cell, so one must exit the pool if the population is 
to remain constant. It is assumed that this cell is selected 
randomly and that it has started the path of 
differentiation in the sense that such a cell will never 
again be selected to reproduce in the stem cell pool. 
Initially, we only have N normal cells and whenever one is 
selected to divide, there is a probability µ that one of the 
daughter cells will acquire a mutation in a specific gene 
(Figure 2a). �erefore, with probability 1 – µ, no 
mutation will occur. If a mutation occurs, there will then 
be a new population of (mutant) cells to consider (M) 
that can also be selected to divide. When mutant cells 
divide, they give rise to more mutant cells since the 
probability of correcting a mutation is virtually zero [5,6]. 
Mutations can alter the relative reproductive fitness of 
cells – while the relative fitness of normal cells can be 
defined to be one, mutant cells will have a relative fitness 
r (Figure 2a); r < 1 means a lower relative fitness, r > 1 
represents a higher relative fitness and r = 1 means that 
the mutation gives no reproductive advantage compared 
to the remaining wild-type population. �erefore, 
assuming that mutant cells are present, the probability 

Figure 1. The basic principles of the Moran process. The Moran process assumes that, over short periods of time, the total population of cells 
is constant. (a) To start with, a cell is selected for reproduction. Selection is dependent on the frequency of the cell in the population and its 
reproductive �tness (r). (b) The cell divides, and the number of cells increases by one. (c,d) Therefore, another cell is selected for export (c), which 
returns the population to its normal level (d).
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Figure 2. Evolutionary dynamics under the Moran process. 
(a) When normal cells divide, there is a probability µ that one of the 
daughter cells will have a mutation, while with probability 1 – µ no 
mutation occurs. Mutant cell replication increases the number of 
mutant cells – no back mutations are allowed. (b) Cells have a relative 
reproductive �tness r compared to normal cells, which have a �tness 
1. (c) The probability that a cell is chosen for reproduction (PM for 
mutant and PN for normal cells) is dependent both on its frequency 
and its relative �tness. If j is the number of mutant cells at that time 
and N is the total number of cells present, the number of normal cells 
will be N – j. Since a cell has to be chosen at any time – if a mutant 
cell is not chosen for reproduction, a normal cell will be chosen.
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(PM) that a mutant cell is chosen for reproduction at any 
given time is given by:

P j rj
rj N jM ( )

( )
=

+ −1

where j denotes the number of mutant cells present at 
that time (Figure 2c). This probability will vary with time 
and increases as the population of mutant cells expands. 
Since at any time point a cell has to be chosen for 
reproduction, the probability of selecting a normal cell 
for replication is given by the equation below [13]:

PN( j) = 1 – PM( j)

If this process continues for a very long time, the result 
will ultimately be a state where either all the cells are 
normal (extinction, Figure 3a) or all the cells are mutated 
(fixation, Figure 3d). It is possible to calculate the 
probability that the mutant population will reach fixation, 
although the time it will take to reach this state may be 
very long. For example, normal hematopoietic stem cells 
(HSCs) on average divide once per year [14]. Given that 

approximately 400 HSCs are actively involved in 
hematopoiesis [15,16], one can consider that, on average, 
approximately one cell is chosen daily for reproduction 
[14]. Therefore, one can imagine that the process to 
fixation is generally slow and probably unreachable in the 
lifetime of a human [17] unless the reproductive fitness of 
the mutant is very high, a characteristic that appears to 
be unusual [18]. This is important – it is well known that 
in acquired HSC disorders such as chronic myeloid 
leukemia (CML), leukemic stem cells will generally 
coexist with normal stem cells [19]. In paroxysmal 
nocturnal hemoglobinuria (PNH), another clonal stem 
cell disorder, there is also evidence for the coexistence of 
normal and mutant clones [20]. Finally, many patients 
with acute leukemia have been cured with chemotherapy 
alone, a feat that would be impossible if the normal HSCs 
were obliterated by the malignant clone. Hence, 
neoplastic diseases due to acquired mutations are 
generally characterized by co-existence and competition 
of normal and mutant stem cells, and therefore the 
interesting dynamics occur before fixation.

In several bone marrow disorders, disease requires that 
a specific threshold of mutant stem cells is surpassed: at 

Figure 3. The outcomes of Moran dynamics. (a,d) Assuming that a mutant stem cell is present, stochastic dynamics will predict extinction of 
the mutant cell (a) or fixation (d). (b,c) However, fixation may require a long time – hence the clone may persist in a latent state (no disease) (b) or 
could reach a threshold leading to a disease state (c). At any of these steps, stochastic extinction is still possible, although less likely as the burden 
of mutant cells increases. Once the mutant clone reaches fixation (d) this is irreversible. Hence, the only two stable states are extinction or fixation.
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least 20% of the bone marrow cells have to be blasts to 
diagnose acute leukemia, and 10% clonal plasma cells are 
required to diagnose multiple myeloma [21]. Although 
these thresholds are somewhat artificial, they are 
meaningful at the clinical level, and they surely correlate 
with a corresponding burden of mutated stem-cells at the 
time diseases are diagnosed. We can use the Moran 
process to define the probability that, at least once, a 
mutant stem cell can expand to reach a defined threshold 
required to cause disease. This is again a function of the 
fitness (r) of the mutant and given by:

p M M r
r

M

M( , )0 1
1
1

0

1
=

−
−

−

−

where M0 is the initial number of mutant cells and M1 is 
the number of mutant cells needed to reach the threshold 
[13]. This probability is independent of the size of the stem 
cell compartment and depends only on the relative fitness 
of the mutant population versus normal cells. The above 
model considers that the HSC pool is homogenous and 
cells divide symmetrically – differentiation is the result of 
selection of a cell to differentiate. On average, this behavior 
gives the same qualitative results as a more elaborate 
model where the symmetry or lack thereof of stem cell 
replication is taken into consideration. A model that 
captures these various dynamics has been described in 
detail elsewhere [22]. Assuming that a threshold has to be 
reached to give rise to disease, it is possible to determine 
the probability distribution functions for the time it will 
take to reach that threshold as a function of the relative 
fitness advantage due to a specific mutation (Figure 4). 
One can make two observations: (i) the probability that the 
threshold is reached early in time grows as the fitness 
advantage increases; and (ii) the width of these 
distributions is inversely related to the fitness advantage. 
For a small fitness advantage, the time distribution for 
reaching the threshold is very wide, rendering any 
summary estimates such as the average meaningless.

The Moran model assumes homogenous mixing of 
populations; that is, the spatial distribution of the 
population is not considered. This means that one cell in 
a specific place reproduces and a cell elsewhere is chosen 
for death, a scenario perhaps easiest to accept in small 
populations of stem cells, such as in an individual colonic 
crypt [23]. However, the Moran process may also be of 
relevance to hematopoiesis, where stem cells are 
distributed throughout the bone marrow, since HSCs 
appear to be coupled chemically and perhaps even 
neurologically [24,25], which may allow them to function 
as a homogenous population. Perhaps the best example 
of this tight coupling is the constant frequency of 
oscillations in a disease known as cyclic hematopoiesis 
(neutropenia). In this condition, the neutrophil count 

(and that of other types of cell) oscillates with a regular 
frequency (19 to 21 days) for the lifetime of the person 
[26]. For this process to be sustained, tight coupling of 
cellular reproduction in time must be present, even 
though the cells are scattered in space – otherwise the 
oscillations will dissipate as cell reproduction loses 
synchronization [10]. On the other hand, Moran 
dynamics introduced here does not capture the 
symmetric or asymmetric division of individual cells and 
therefore the process can only provide an average 
account of the population dynamics. However, one can 
argue that it is the population that evolves and not the 
individual cell(s). An analysis of the impact of the 
symmetry of cell division on mutant clone dynamics has 
been described elsewhere [22].

Application of stochastic dynamics to disease 
modeling: clonal expansion
Reproduction of mutant cells leads to their expansion 
into a clone. How frequently the cells are chosen for 
replication depends on their relative frequency in the 
population and on their relative reproductive fitness 
(Figure 2b,c). Although cells with a higher relative fitness 
will be more likely to be selected for reproduction, it does 
not follow that cells with neutral or even reduced relative 
fitness cannot expand. Although the probability that a 
neutral clone will expand to reach a given threshold is 
small, this can happen and may lead to disease. The best 
example is PNH, an acquired clonal HSC disorder due to 
a mutation in the PIG-A gene. The ultimate result of this 

Figure 4. Probability distribution functions to reach the 
diagnostic threshold. Stochastic simulations of Moran dynamics, 
recording the probability that the mutant clone reaches the 
diagnostic threshold at a given time after the occurrence of the 
mutation (diagnosis is here defined as at least 20% of the cells being 
mutated) as a function of the fitness advantage (r) of mutated cells. 
The smaller the fitness advantage of mutated cells, the longer it takes 
for the threshold to be reached, and the smaller the probability of 
reaching the threshold in a given time.
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mutation is loss of expression of glycosylphosphatidylino-
sitol (GPI)-anchored proteins from the plasma membrane 
of cells (for example, CD55 and CD59), which renders 
red blood cells unusually sensitive to complement-
mediated lysis, thus leading to intravascular hemolysis 
and hemoglobinuria [27]. To date, no fitness advantage 
has been identified in cells with this mutation 
(summarized in [28]). We have shown that a Moran 
model of HSC dynamics can predict various aspects of 
the natural history of PNH. The model assumes that the 
PIG-A mutation gives no fitness advantage to the HSC 
(neutral drift). We introduced in the model (i) the 
number of active HSCs that are contributing to 
hematopoiesis, (ii) the rate of replication of the cells 
(approximately once per year) [16], (iii) the known 
mutation rate in the PIG-A gene [29] and an acceptable 
threshold of mutant cells needed to cause disease [30]. 
Extended simulations of the process lead to predictions 
of the incidence of PNH in the general population and an 
average clone size within patients [28] in good agreement 
with available data. Therefore, clonal expansion by 
neutral drift can lead to disease, and perhaps explain why 
a disease such as PNH is so rare.

Expression of BCR-ABL in HSCs leads to a disease 
resembling chronic phase CML in experimental animals, 
suggesting that this oncogene is enough to explain the 
early chronic phase of the disease [31,32]. Modeling of 
the dynamics in CML suggests that BCR-ABL does not 
give a fitness advantage to the mutant stem cells [33-35]. 
This is now supported by direct and indirect experimental 
evidence [36,37]. Neutral drift implies that expansion of 
this population of CML stem cells will generally be slow 
and, as a consequence, the clone size will be small. In 
addition, there is a reasonable chance that the mutant 
stem cell clone will be stochastically eliminated [34]. Can 
such an event happen? Currently, patients with CML are 
treated with tyrosine kinase inhibitors, such as imatinib 
or nilotinib, that have no detectable effect on the CML 
stem cells [38]. Therefore, it has been assumed that 
imatinib cannot cure patients with this disease and 
patients should continue therapy indefinitely. However, 
stochastic extinction implies that imatinib can effectively 
cure some patients even without directly killing the CML 
stem cells. In such cases, therapy could be stopped 
without relapse of the disease. The major issue here is 
how long treatment should continue since one wants to 
be certain that the CML stem cells have been 
stochastically eliminated before withdrawing therapy. 
This issue has been addressed using a computational 
model of CML dynamics under imatinib therapy that 
takes into consideration stochastic dynamics within the 
stem cell pool. Starting from diagnosis, it may take up to 
5 years or more for the patient to reach a major molecular 
response (>4 log reduction in disease burden) and 

probably longer to achieve a complete molecular 
response. If therapy were continued for another 2 years 
after reaching this threshold, the probability of relapse 
becomes small [34] (below 2%). Recent data from the 
French CML group suggests that indeed some patients 
may be able to stop therapy without relapsing, although 
longer follow-up is needed [39].

Stochastic dynamics of latency
It is not uncommon to find mutations in disease-
associated genes in healthy adults. For example, almost 
every human has a PIG-A mutated clone [40]. Small 
clones harboring the Philadelphia chromosome and 
expressing BCR-ABL have been described [41], and the 
JAK2V617F mutation, which is normally associated with 
chronic myeloid neoplasms, may be present in up to 1% 
of the population [42,43]. The origins, implications and 
dynamics of these observations have been discussed 
elsewhere [44]. PIG-A mutant clones may disappear 
during follow up [40] or fluctuate stochastically but 
others may persist without detectable evolution, as has 
been reported in individuals with JAK2V617F essential 
thrombocythemia [45]. Latency is therefore compatible 
with stochastic behavior within the stem cell pool 
(Figure 4). However, there is at least one other scenario 
that can explain latency. In many if not all tumors, 
acquisition of the full cancer phenotype may require the 
serial accumulation of gain-of-function mutations in 
oncogenes and loss-of-function mutations in tumor 
suppressor genes, as well as epigenetic changes. For 
example, the adenoma to carcinoma sequence in colon 
cancer is associated with mutations in APC, K-RAS, and 
TP53 amongst others [46]. Hence, it is possible that a 
transient clone may arise harboring one of these 
mutations but, without the accumulation of additional 
mutations, it may not grow enough to be detectable, thus 
remaining a latent clone.

Stochastic extinction
The stochastic dynamics associated with the Moran 
process predicts the possibility of extinction of any 
mutant clone, irrespective of its relative fitness. This 
phenomenon, however, becomes quite likely when the 
mutation either gives a relative fitness disadvantage or is 
neutral. It is important to remember that even for 
mutations that increase the reproductive fitness of the 
cell, extinction is still possible. One can computationally 
show that even for a mutation that increases the relative 
fitness of cells by a factor of two, which, in evolutionary 
terms, constitutes a very high fitness advantage, the 
probability of extinction of the mutant cell is still about 
50% [13]. Of course, as the cell expands into a clone, 
extinction becomes less likely, explaining why most 
tumors do not resolve without therapy.
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However, stochastic extinction is not just an in silico 
curiosity: there is evidence that clonal extinction occurs 
in vivo. Let us discuss several examples. First, healthy 
individuals have been shown to have small clones with 
the Bcr-Abl oncogene but not necessarily develop CML 
[41]. In some of these individuals, the clone will disappear 
in time without any specific therapy. Another example is 
patients who have been diagnosed with myelodysplastic 
syndromes, a group of clonal preleukemic stem cell 
disorders, that in some cases resolve without any specific 
therapy directed at the malignant clone [47]. One of the 
best examples of clonal extinction is that observed in 
transient myeloproliferative disorder (TMD), which 
occurs in a significant fraction of children with Down’s 
syndrome and is often diagnosed at or soon after birth 
[48,49]. The malignant cells appear to have a very 
‘primitive origin’, implying mutations in early progenitor 
cells if not in the HSCs. In the vast majority of patients, 
the condition resolves with minimal or no therapy, 
although it is lethal in some cases. One of the fascinating 
features about PNH is that the disease sometimes 
resolves in the absence of therapy (other than allogeneic 
bone marrow transplantation) that directly targets the 
mutant clone. The frequency of this spontaneous 
resolution is in the range of 12 to 15% and has been 
confirmed using both the Ham’s test (a test of the 
sensitivity of red cells to complement-mediated lysis) and 
the more sensitive flow cytometry assay (which directly 
determines the fraction of cells that belong to the PNH 
clone by detection of CD55 and CD59 positive and 
negative cells) [50,51]. While no clear explanation has 
been provided for this phenomenon, our own simulations 
of HSC dynamics predict that clonal extinction after 
diagnosis can occur in about 12% of patients, in excellent 
agreement with epidemiological data [28].

We wish to remind the reader that, in principle, other 
potential explanations, alternative to stochastic 
extinction, could exist for the disappearance of mutant 
clones. For example, our model does not consider the 
potential impact of immune surveillance and elimination 
of tumor cells by the immune response. There is some 
evidence for this phenomenon, especially in the context 
of allogeneic stem cell transplantation. However, 
elimination of a mutant clone due to an autologous 
immune attack is also possible. These scenarios are not 
mutually exclusive and perhaps either occurs in a subset 
of patients.

Conclusions
Stochastic behavior is an intrinsic aspect of life – both at 
the cellular and organismal level. Acquisition of 
mutations and the evolution of clones are processes that 
are highly sensitive to stochastic effects since the 
population under consideration is often small. 

Mathematically, it is as if cells play dice – many times the 
impact of such a gamble is inconsequential, at other 
times it leads to the loss of a particular cell lineage. 
Unfortunately, there are times when acquired mutations 
lead to clonal expansion and disease. Depending on the 
fitness of the mutant clone, stochastic extinction is 
possible, especially when the population is small and the 
relative fitness advantage minimal compared to normal 
cells but also even when the population is not small or 
the fitness advantage is significant. It is in these 
circumstances that chance may play a role in cure versus 
disease. Reduction in disease burden to low levels could, 
in principle, lead to clonal extinction, especially if the 
fitness advantage of the mutant cells can be reduced by 
therapy.
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