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Abstract

Background: Normal brain function depends on the development of appropriate patterns of neural connections. A
critical role in guiding axons to their targets during neural development is played by neuronal growth cones. These
have a complex and rapidly changing morphology; however, a quantitative understanding of this morphology, its
dynamics and how these are related to growth cone movement, is lacking.

Results: Here we use eigenshape analysis (principal components analysis in shape space) to uncover the set of five
to six basic shape modes that capture the most variance in growth cone form. By analysing how the projections of
growth cones onto these principal modes evolve in time, we found that growth cone shape oscillates with a mean
period of 30 min. The variability of oscillation periods and strengths between different growth cones was correlated
with their forward movement, such that growth cones with strong, fast shape oscillations tended to extend faster. A
simple computational model of growth cone shape dynamics based on dynamic microtubule instability was able to
reproduce quantitatively both the mean and variance of oscillation periods seen experimentally, suggesting that the
principal driver of growth cone shape oscillations may be intrinsic periodicity in cytoskeletal rearrangements.

Conclusions: Intrinsically driven shape oscillations are an important component of growth cone shape dynamics.
More generally, eigenshape analysis has the potential to provide new quantitative information about differences in
growth cone behaviour in different conditions.

Keywords: Axon guidance, Neurite growth, Neural development, Eigenshape analysis, Shape analysis, Brain
morphometry, Oscillations, Microtubules

Background
Brain function depends on precisely specified patterns
of wiring between neurons, and failures of wiring can
compromise normal function [1-3]. This wiring develops
during early life as axons grow and navigate to find their
appropriate targets, often over long distances. A critical
role in guiding axons to their targets during neural devel-
opment is played by neuronal growth cones [4,5]. Growth
cones have a remarkably complex and dynamic morphol-
ogy, with their shape changing on the timescale of minutes
[6-8]. In vivo some of these shape changes appear related
to the position of the growth cone along its trajectory,
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with more complex morphology at choice points [9-14]
suggesting that shape changes play an important role in
guidance. However, previous morphological analyses of
growth cones have been largely driven by human judge-
ment regarding important shape dimensions, rather than
these dimensions being determined directly from the
data.
The most prominent features of growth cone structure

are filopodia and lamellipodia. Filopodia can be quantified
in terms of their number, positions, angles and lengths,
while a simple measure of lamellipodial extent is the total
area of the growth cone. One way of quantifying the shape
of a growth cone at each moment is therefore to pro-
vide a list of these quantities, which for a typical growth
cone with say five filopodia would consist of 21 numbers
(two for the position coordinates and one each for angle
and length for each filopodium, plus total area). While
such a quantification can be useful, it clearly has sig-
nificant limitations. First, it relies on time-lapse imaging
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of a resolution sufficient to resolve all individual filopo-
dia, which can be difficult to achieve for dynamic growth
cones for long periods of time, especially in vivo. Second,
despite its length this list still ignores many obvious char-
acteristics of growth cone shape, such as the shape of the
lamellipodia. Third, the formulation of this list takes no
account of the statistical structure of the actual data: it is
driven by human intuition rather than an objective dis-
section of where the most variance of growth cone shape
actually lies.
Here we therefore take a different approach to quantify-

ing growth cone shape. The approach is based on principal
component analysis (PCA), a well-known mathematical
method for revealing the dimensions of a dataset which
have the most variance. The application of PCA in the
context of shapes is often called eigenshape analysis [15].
Each shape can be parameterised by the coordinates of a
set of points, usually placed around the perimeter of the
shape. This vector of coordinates can be represented as a
point in a high-dimensional space, so that a set of shapes is
represented by a cloud of points in that space. PCA rotates
the axes of this space so that the axes are now ordered
in terms of the variance in the data they explain. This
reveals the directions (dimensions) through this cloud
of points along which there is maximum variance, i.e.,
along which the cloud of points is most spread out. The
first few principal components or eigenshapes then rep-
resent the most important shape dimensions, which can
be seen as the fundamental building blocks of the set of
shapes in question. On a cellular scale, eigenshape analysis
has previously revealed important information about the
shapes of keratocytes [16] and Dictyostelium [17]. It has
also proved to be an extremely useful data analysis tool
in domains as diverse as Caenorhabditis elegans locomo-
tion [18], computer vision [19], palaeontology [20], botany
[21] and musical instrument design [22]. Here we use
eigenshape analysis to reveal the basic building blocks of
growth cone morphology, previously unknown properties
of how growth cone shape evolves through time, and new
insights into the relationships between growth cone shape,
chemotactic responses and forward movement. We then
show that a simple computational model of shape changes
based on dynamic microtubule instability can quantita-
tively reproduce the characteristic timescales present in
the data.

Results
Growth cone eigenshapes
To generate a database of growth cone shapes we first
made time-lapse movies of growth cones from neonatal
rat superior cervical ganglion neurites (n = 163) grow-
ing in vitro for 2 to 8 h (mean 2.6 h) at 15 s to 1 min
intervals (seeMethods, Table 1 and Figure 1a). From these
we determined characteristic growth cone shapes using
eigenshape analysis, i.e., PCA in the space of shapes for
the dataset [15] (Figure 1b). The outline of each growth
cone in each frame (n = 25, 461) was automatically
extracted, and parameterised by 250 evenly spaced points.
The vector of 500 numbers (250 coordinate pairs) rep-
resenting each outline can be represented as a point in
a 500-dimensional space (approximately 25,000 points in
total for this dataset). PCA was then applied to extract
the directions in the shape space that captured the largest
proportion of the variance. The Bayesian information cri-
terion (BIC) [23], which trades off variance explained
versus model complexity (number of principal compo-
nents retained), can be used to determine objectively the
number of these dimensions that capture most of the vari-
ance of the set of shapes. According to this criterion, the
optimal model retained only the top five components,
which captured 86% of the variance in growth cone shape
(Figure 1c). We henceforth refer to these as the significant
modes.
These shape modes split into three types, which we

term reflective (R), symmetric (S) and mixed (M) modes
(Figure 1d). For R modes, the shapes corresponding to
equal positive and negative movements along the shape
axis are approximately reflections of each other, with the
principal R mode (R1) representing bending of the growth
cone. S modes instead have approximate symmetry about
their midline for all positions along the shape axis, with
S1 representing spreading of the growth cone. M modes
have neither of these properties, but may represent a lin-
ear combination of R and S modes (see Figure 1). The split
between these different types continues for the higher-
order modes (Figure 1e). The number following R, S or
M refers to the logical sequence for each type of mode.
This is most clear for the R modes: R1 displays one bend,
R2 (see later) displays two bends, R3 displays three bends,
and so on. The modes were robust to the number of
points used to define the outline, provided this exceeded

Table 1 Summary of datasets used

Cell type Time step Duration Movies Frames

In vitro (no gradient) Rat SCG 15 s to 1 min 2 to 8 h 163 25,461

Pipette assay Rat SCG 1 min 1 h 191 11,801

In vivo Zebrafish RGC 1 to 10 min 1 to 24 h 27 2,249

Time step is the frequency of image capture. Each movie is for a different growth cone.
RGC, retinal ganglion cell axons (approximately 2 days post fertilisation); SCG, superior cervical ganglion axons (early postnatal).
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Figure 1 Five significant shapemodes explain 86% of the variance in growth cone shape. (a) Typical sequence of frames (here 2 min apart)
from a time-lapse movie of an SCG growth cone in vitro. Scale bar: 10 μm. (b) Schematic of the steps involved in the eigenshape analysis to extract
the shape dimensions that capture the most variance: outline capture, parameterisation of outline by 250 evenly spaced points, principal
component analysis of the resulting 500-dimensional space. Scale bar: 10 μm. (c) Variance explained as a function of number of mode shapes for
the in vitro (no gradient) dataset (see Table 1). (d) The significant modes and their variance explained, shown as the mean shape plus the shape one
standard deviation in each direction along the shape axis. Our naming convention for each mode is that the letter represents the type of symmetry,
while the number is used to distinguish between different R/S/M modes. M1 and M2 approximately represent linear combinations of shapes R2 and
S2 (see later). Note that all fine details (for instance, relating to filopodia) occur with a fairly random distribution around the growth cone, and are thus
smoothed out once the dataset of images is appropriately large. (e) Higher-order shape modes and their variance explained. It is remarkable that
the split between R and S symmetry persists across many higher-order modes. M3 could be arising here as an attempt to explain slight asymmetries
in the underlying data. M modes in pairs, such as M1 and M2 in (c), can sometimes be understood as a linear combination of an R mode and an S
mode. This occurs because when two modes have similar eigenvalues, any two orthogonal directions in that two-dimensional subspace can appear
in the principal component decomposition. (f) Illustration of shape reconstruction using different numbers of modes. The red curve is the traced
outline of a growth cone at one instant, and the blue curve is the best reconstruction of this shape given the specified number of eigenshape
modes. Higher modes provide additional levels of detail for reproducing the true shape, but each individually only reproduces a tiny proportion of
the variance across the full dataset. M, mixed; R, reflective; S, symmetric; SCG, superior cervical ganglion; SD, standard deviation; var, variance.
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approximately 200 (Figure 2a–d). Thus, just five charac-
teristic shape modes capture most of the variance in this
set of growth cones, and these modes describe distinct
features of growth cone morphology.
Taken individually, none of these mode shapes explic-

itly represent filopodia. No information has been lost
overall, however: the axes of the space have simply been
rotated, and adding together a sufficient number of mode
shapes will perfectly reconstruct the original shape to
any desired level of accuracy (Figure 1f ). Rather, the
analysis has determined that choosing a few axes that
represent individual filopodia explicitly does not capture
the largest amounts of variance in the data. It is easy to
see intuitively why this would be the case. To construct
a filopodium at a particular location using the PCA axes
requires the addition of many higher-order modes, each
of which by itself only explains a very small amount of
variance across the whole dataset. Individual filopodia
are sparse, in the mathematical sense that most of the

time there is no filopodium at a particular position, but
when it is present it is represented strongly. We therefore
also performed an independent component analysis [24],
which is well suited for extracting sparse structure in
data. As expected, this produced mode shapes hinting at
filopodia-like structures (Figure 2e). However, these inde-
pendent component modes are less useful for capturing
general patterns of overall shape [15], and we therefore
focused on eigenshape analysis.
To maximise throughput, we used a plastic substrate

and relatively low magnification imaging for our exper-
iments. Could the significant eigenshapes derived from
these data be missing key features of growth cone shape
that would become apparent from analysis of higher-
quality images? To address this we also performed exper-
iments on a glass substrate (ten movies, 2,325 frames),
which allowed, for instance, clearer visualisation of filopo-
dia. In this case there were seven significant mode shapes,
but their form was similar to those observed on a plastic

ba
R1 (42%) S1 (23%) M1 (11%) M2 (8%) R3 (4%) R1 (45%) S1 (23%) M1 (11%) M2 (8%) R3 (3%)

dc
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Figure 2Mode shape robustness to number of points used to parameterise the outline, and independent components analysis. (a) 500
points: shapes and variance explained are the same as for Figure 1 with 250 points (five significant components). Using 1,000 points also produced
identical results (data not shown). (b) 100 points: shapes are the same, but variance explained is slightly different (four significant components).
(c) 50 points: both shapes and variance explained are now noticeably different (three significant components). (d) 25 points: shapes and variance
explained are now very different (two significant components). Thus 250 points is a sufficiently detailed parameterisation such that no further
changes in shape or number of significant components occur as this number is increased. (e) 20 independent components were found for the in
vitro (no gradient) dataset using the FastICA algorithm [24]. Ordering is arbitrary. Some of these components (e.g., M5 to M7) appear to be trying to
represent individual filopodia.



Goodhill et al. BMC Biology  (2015) 13:10 Page 5 of 18

substrate (Figure 3a). From this dataset we also gener-
ated degraded growth cone outlines to match approxi-
mately the quality of outlines available using the plastic
substrate. The resulting modes shapes were very similar
(Figure 3b; in this case there were five significant modes).
Thus the leading shape modes are not very sensitive to
the level of detail at which the growth cone outlines are
captured, making this form of quantification suitable for
a much broader range of imaging regimes than quan-
tifications relying on precise identification of individual
filopodia.

Growth cones oscillate
Each growth cone outline can be projected onto each
shape mode to give a set of mode scores. These mea-
sure the degree to which each shape is represented by
each outline, i.e., the position of the growth cone shape
along that shape axis. The overall mode score frequency
distributions are shown in Figure 4. As expected the
R mode projections have roughly symmetric frequency
distributions, while M modes have slightly asymmetric
distributions, and S modes have highly asymmetric dis-
tributions. There are no linear relationships between the
distributions of pairs of mode scores since, by defini-
tion, PCA dimensions are orthogonal. A statistical test
for nonlinear relationships [25] showed some dependen-
cies between modes, though plotting pairs of mode scores
against each other did not reveal any obvious patterns
(data not shown).
We then examined how mode scores varied through

time for each individual growth cone (Figure 5a). These

revealed strong hints of periodic behaviour. For instance
in the top left panel of Figure 5a, the R1 mode score
varies regularly between positive and negative values,
indicating a periodic alternation in the growth cone shape
between bending left and bending right. To detect peri-
odic patterns quantitatively, we used the autocorrelation
and Fourier power spectrum of mode scores. Oscilla-
tions in mode scores were common in all significant
modes (examples shown in Figure 5b,c,d). Similar oscil-
lations were seen on a glass substrate (data not shown).
Oscillation strength and frequency for each mode were
quantified using a modified version of the method of [26]
(see Methods). The distributions of oscillation strengths
(hereafter oscillation scores) and frequencies for all sig-
nificant modes (n = 5 × 163 = 815) are shown in
Figure 6a,b. The mean oscillation frequency was 0.0338 ±
0.0197 min−1 (mean ± standard deviation), correspond-
ing to amean period of 30min. Themean oscillation score
was 6.0 ± 2.6. R1 oscillations were on average signifi-
cantly stronger than oscillations in othermodes (P < 0.03,
Wilcoxon rank-sum tests). We used shuffled controls to
demonstrate that these oscillations were not simply an
artefact of our analysis methods (example in Figure 5e,
histograms in Figure 6a,b). The mean shuffled frequency
was 0.0754 min−1, and the mean shuffled score was 3.5.
t-tests comparing the real and shuffled distributions gave
P values of 10−76 for frequencies and 10−107 for scores.
Different modes for the same growth cone sometimes
oscillated at the same frequency, and sometimes at differ-
ent frequencies (see examples in Figure 5), with the former
case revealing a range of phase relationships (Figure 6c).

a
R1 (46%) S1 (17%) M1 (11%) M2 (8%) R3 (4%) S4 (2%) M3 (2%)

b
R1 (52%) S1 (16%) M1 (10%) M2 (7%) R3 (4%)

Figure 3Mode shapes are similar on a glass substrate. All other in vitro data used a plastic substrate. To confirm that the higher level of image
quality available using a glass substrate (e.g., greater detail regarding filopodia) did not affect our overall conclusions, we also performed time-lapse
imaging of rat SCG axons growing in glass-bottomed dishes (no gradient, ten movies, 2,325 frames). (a) In this case there were seven significant
mode shapes, but their form was similar to those observed on a plastic substrate (Figure 1). (b) Eigenshapes from the same dataset with artificially
degraded image quality are very similar (in this case there were five significant modes). This is because all fine details (for instance relating to filopodia)
occur with a fairly random distribution around the growth cone, and are thus smoothed out once the dataset of images is appropriately large.
SCG, superior cervical ganglion.
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Figure 4Mode score distributions and relations across the in vitro (no gradient) dataset. R (reflective) modes are symmetrically distributed
around the mean shape, while S (symmetric) and M (mixed) modes have skewed distributions. This is because they contain a ‘thinness versus
fatness’ component, which has a hard lower limit. We also examined the joint distributions of pairs of modes. No linear correlations were expected
since the shape modes are by definition orthogonal, and no obvious structure was visually apparent. However, a statistical test for nonlinear
relationships [25] showed some dependencies between modes, particularly S1/M1 and S1/M2 (values shown in table; the measure varies between 0
and 1, with 0 indicating statistical independence).

Overall, we conclude that growth cone shape oscillates on
an average timescale of 30 min.

Relationship between oscillations andmovement
Given the variability of oscillation strengths and frequen-
cies about their means, we were interested in whether
there were any predictive relationships between mode
scores, or oscillation strengths and frequencies, and
growth cone movement between frames, characterised by
step lengths (distance moved) and bearing changes (angu-
lar difference in direction) between consecutive frames.
Step length from time t to t + 1 was weakly positively
correlated with S1 mode score at time t (r = 0.11, P =
10−47, Spearman correlation), meaning that wider growth
cones had a small tendency to take larger steps. Other
mode scores were almost uncorrelated with the move-
ment of the growth cone (Table 2), and in particular the
correlation of the R1 mode score with subsequent bear-
ing change, although significant, was very small. Thus
the periodic alternation in shape of bending left versus
bending right did not translate into zigzags in overall
axon trajectory. Rather, a periodic sweeping left and right
of the growth cone was superimposed on a steady for-
ward motion. R1 oscillations could be seen as a way by
which growth cones might systematically probe or ‘sniff ’

the environment for molecular or topographical cues,
sweeping out more area than they would without these
oscillations.
However, oscillation strength and frequency for each

movie were correlated with the movement of the growth
cone averaged over all frames (Table 3). Average growth
rate (step length averaged over each movie) was corre-
lated with S1 oscillation strength (see Methods, r = 0.20,
P = 0.016, n = 150, Figure 6d) and R1 oscillation fre-
quency (r = 0.37, P = 10−6, Figure 6e). Performing a
linear regression of average step length against the ten
variables of oscillation score and frequency for the five
significant modes produced a good prediction of average
growth rates (R = 0.46, P = 0.0002, Figure 6f, Table 4).
(Note that oscillation strength and frequency are prop-
erties of an entire movie, and thus cannot be correlated
with growth cone behaviour at one moment in time, such
as instantaneous growth rate.) Thus, growth cones that
are oscillating strongly and rapidly tend to make forward
progress faster.

Oscillations during chemotaxis
An important mechanism by which axons are guided in
vivo is chemotaxis. We therefore applied eigenshape anal-
ysis to determine the characteristic behaviour of a new set
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Figure 5Mode shapes oscillate over time. (a) Variations in mode scores over time for the top five modes for two example growth cones. Note
the clear oscillations, particularly for R1 (reflective mode 1) in the top row and S1 (symmetric mode 1) in the bottom row. (b,c) Autocorrelation and
Fourier power spectra for all significant modes from the above two growth cones. (d) Analysis of oscillations for another example growth cone, this
time showing much longer-period oscillations in R1. (e) Shuffle control for the growth cone from panel (d). Randomly shuffling the positions of all
frames within the movie destroys oscillations. This is seen most clearly by the presence of very weak power, spread across many frequencies, in the
Fourier power spectrum. We also shuffled all frames across the entire dataset 10,000 times, and calculated the mean total power and peak power. In
all 10,000 cases these mean power values were less than for the unshuffled data. Autocorr, autocorrelation.
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Figure 6 Properties of oscillations. Oscillations are predictive of movement. (a,b) Distribution of strongest oscillation frequencies (a) and scores
(b) across the in vitro dataset (blue). Also shown are the corresponding distributions for the shuffled controls (red). The mean of the oscillation scores
is 6.0, while for the shuffled controls it is 3.5 (P < 0.001). (c) Phase relationships between shape mode oscillations. Frequency distributions of phase
relationships are shown for pairs that showed consistent relationships for the five significant modes in the in vitro (no gradient) dataset. The lack of
consistent phase between R (reflective) and S (symmetric) modes is not surprising, due to their fundamentally different symmetry properties. If, for
instance, R1 and S1 were consistently in phase, it would mean that growth cones bending left were consistently fatter (or thinner) than growth
cones bending right. (d,e) Average step length is correlated with mode S1 oscillation strength (see Methods) (d) and mode R1 oscillation frequency
(e). (f) Strengths and frequencies of all significant modes together are predictive of average step length. See Tables 2, 3 and 4.

of growth cones as they underwent chemotactic move-
ment in the growth cone turning (or pipette) assay for
1 h [27] (Figure 7a, Table 5). This assay produces a gra-
dient steepness of approximately 10% across the growth

cone [28]. Previously it was found that axons growing in
gradients of steepness less than 1% show a bell-shaped
chemotactic sensitivity curve predicted well by a Bayesian
model of the chemotactic response [29]. We confirmed
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Table 2 Correlations betweenmode scores

Mode score Unsignedmode score

R1 S1 M1 M2 R3 R1 S1 M1 M2 R3

Step length
r 0.01 0.11 −0.01 0.03 −0.01 0.08 0.01 0.05 0.09 0.07

P 0.13 10−47 0.06 0.001 0.15 10−25 0.28 10−13 10−34 10−18

Absolute bearing r −0.00 0.06 0.02 0.00 0.02 0.03 0.06 0.06 0.06 0.02

change P 0.92 10−16 10−4 0.61 0.03 10−4 10−13 10−16 10−17 0.02

Bearing change
r 0.03 −0.00 0.00 0.00 −0.01 −0.00 −0.01 −0.01 −0.01 −0.00

P 0.0002 0.80 0.95 0.72 0.24 0.54 0.14 0.07 0.37 0.84

The data are for each moment and growth cone movement over the following minute for the in vitro (no gradient) dataset. r is the Spearman correlation. Correlations
for both signed and unsigned (absolute value) mode scores are shown.

that a similar curve holds for steeper gradients (Figure 7b),
as theoretically predicted [30]. By reducing PKA activity
in the growth cone via addition of KT5720 [31-33], we
also found that the chemotactic response for repulsion
was approximately the mirror image of that for attraction
(Figure 7b).
In this dataset there were six significant eigenshape

components, explaining 87% of the variance (Figure 7c).
These were very similar to those we observed for the
original in vitro (no gradient) dataset, but more clearly
illustrated the split into R and S modes. These modes
oscillated similarly (Figure 7d), though the short assay
duration prevented observation of longer oscillations.
There were no significant differences between oscillation
strength and period between different gradient condi-
tions, and no relationship was observed between final
turning angle and oscillations. However, mean mode pro-
jection scores (rather than oscillation scores) varied sys-
tematically across gradient conditions, demonstrating a
direct effect of chemotactic cues on growth cone shape
(Figure 8, Table 6). For instance, the mean R1 mode scores
roughly followed the same shape as the chemotactic sen-
sitivity curves.
In a further set of turning assay experiments (n = 12,

data not shown), we imaged growth cones for 1 h without
a gradient, then applied a gradient for 1 h, to deter-
mine whether the presence of the gradient would change

the properties of the oscillations for each growth cone.
However, we found no significant differences.

Eigenshapes and oscillations in vivo
To investigate whether similar behaviour is observed in
vivo, we performed time-lapse imaging, image segmenta-
tion and eigenshape analysis as before on mGFP-labelled
growth cones (n = 27) of zebrafish retinal ganglion cell
axons as they navigated across the optic tectum for peri-
ods of 1 to 24 h (mean 14.5 h) (Figure 9a) [34]. This
revealed six significant shape modes that were very sim-
ilar to those seen for the in vitro no gradient and pipette
datasets (Figure 9b). Oscillations in mode shapes were
also qualitatively similar (Figure 9c,d,e). The mean oscilla-
tion frequency was 0.0148± 0.0134min−1. The difference
with the in vitro frequency is likely at least partly due
to the longer duration of the movies, which allows lower
frequency oscillations to be included in the mean (see
the simulations in the following section). The mean oscil-
lation score was 6.6 ± 3.2, similar to the in vitro data.
Correlations between oscillations and average step lengths
were small (data not shown), but this dataset is much
smaller than the in vitro dataset. Thus, the eigenshapes
and oscillations displayed by growth cones as they nav-
igate in a molecularly and structurally complex in vivo
environment are similar to those displayed in a much sim-
pler in vitro environment, arguing that these behaviours

Table 3 Correlations between oscillation strength and period for the average step length

Oscillation strength Oscillation period

R1 S1 M1 M2 R3 R1 S1 M1 M2 R3

Average step length r 0.08 0.20 0.05 0.12 0.03 −0.37 −0.15 −0.18 −0.06 −0.11

(growth rate) P 0.34 0.016 0.56 0.16 0.75 10−5 0.073 0.024 0.45 0.19

This is for the in vitro (no gradient) dataset. Average growth rate (step length averaged over each movie) is most correlated with S1 oscillation strength and R1
oscillation frequency. No significant results were found for signed or unsigned bearing change (data not shown). The oscillation strength measure was designed to be
accurate on narrow bands of frequency, and is known to be affected by large variations in frequency as a result of non-linear scalings in the computed power
spectrum [26]. We therefore only considered oscillations with a period under 32 min (frequency over 0.031 min−1).
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Table 4 Regression of oscillation strengths and periods for
all significant modes and average step length

Oscillation Oscillation Oscillation
strength period strength

and period

Average step length
R 0.26 0.34 0.46

P 0.075 0.002 10−4

This is for the in vitro (no gradient) dataset. R is the coefficient of multiple
correlation, the multidimensional generalisation of the correlation coefficient.

represent fundamental characteristics of growth cones
rather than an in vitro artefact or the response to a specific
environment.

A computational model of oscillations
What events inside the growth cone could be driv-
ing the strong periodicity in shape dynamics we have
observed? Can we explain both the mean period of 30
min, and the large variability about this average? A critical
component of the growth cone cytoskeleton is micro-
tubules [35,36]. These extend from the axon shaft into
the body of the growth cone, and sometimes into indi-
vidual filopodia [37]. Microtubule growth is characterised

Figure 7 Similar modes and oscillations are seen during chemotaxis. (a) Example of growth cone moving in response to gradient produced
from a pipette (p). Scale bar: 40 μm. (b) Chemotactic sensitivity curves (final turning angle after 60 min of growth) for both attractive and repulsive
conditions. (c) Significant modes for pipette assay movies. The two M (mixed) modes from Figure 1c have now separated more clearly into R
(reflective) and S (symmetric) modes, but otherwise the mode shapes, and their variance explained, are very similar to the in vitro (no gradient)
dataset. (d) Oscillations in a representative pipette movie. NGF, nerve growth factor; SD, standard deviation.
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Table 5 Summary of the pipette assay experiments

NGF Only NGF + KT5720

[NGF] (μM) Movies Frames Movies Frames

0.1 15 878 13 814

2 17 1,033 9 593

5 18 1,099 18 1,167

10 9 566 10 595

20 17 1,064 12 764

30 10 622 17 1,059

Total 88 5,376 79 4,992

[NGF] refers to NGF concentration in the pipette. There were also 26 control
movies, totalling 1,547 frames.
NGF, nerve growth factor.

by dynamic instability, whereby phases of growth are
followed by catastrophic collapse, and then a return to
the growth phase [38]. Walker et al. [39] constructed a
computational model of this phenomenon, with param-
eter values constrained directly from experimental mea-
surements. Janulevecius et al. [40] then adapted this
model to show that the small volumes of cells, and
thus the limited supply of free tubulin, could signifi-
cantly impact on microtubule dynamics. As a minimal
model of growth cone shape changes, here we con-
sider two microtubules within a growth cone compet-
ing for the same limited supply of tubulin monomers
(Figure 10a).
We assume that the extension of one of these micro-

tubules corresponds to a shape deviation in one direction
(e.g., bending of the growth cone to the right), while the

Figure 8 Averagemode scores as a function of NGF concentration for the pipette assay data. These show how average growth cone shape is
affected by concentration and whether the gradient is attractive or repulsive. R1 (reflective mode 1) roughly follows the chemotactic sensitivity
curve (Figure 7b), while the other modes show more complex relationships. NGF, nerve growth factor.
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Table 6 Significance values for shape differences between attraction and repulsion

NGF concentration (μm)

Mode 0.1 2 5 10 20 30

R1 0.00093 1.6 × 10−16 5.4 × 10−20 6.9 × 10−71 3.9 × 10−11 2.1 × 10−7

S1 0.81 1.8 × 10−12 3.4 × 10−28 0.00045 1.7 × 10−12 1.6 × 10−54

R2 0.068 0.29 5.6 × 10−15 1.5 × 10−34 8.1 × 10−10 0.96

S2 0.81 1 3.4 × 10−14 0.041 0.035 3.1 × 10−38

S3 0.00087 1 0.053 0.066 0.066 1

R3 0.053 1 0.0041 1 0.32 2.1 × 10−7

P values with Holm–Bonferroni correction for mean shape mode projections for NGF versus NGF plus KT5720 pipette assays (Figure 8).
NGF, nerve growth factor.

extension of the other microtubule corresponds to a shape
deviation in the opposite direction (e.g., bending to the
left). Referring to the lengths of the two microtubules at
time t as l1(t) and l2(t), we take the normalised difference
in lengths L(t) = (l1(t) − l2(t))/(l1(t) + l2(t)) as an ana-
logue for the projection onto an eigenshape mode. The
model and parameters for each microtubule were taken
directly from [40] (see Methods), with the growth cone
volume assumed to be 30 μm3 (i.e., roughly 6 μm in diam-
eter and 1 μm high). The only interaction between the
microtubules was via their competition for the same pool
of tubulin monomers.
Growth cones (n = 400) were simulated for the equiv-

alent of approximately 2.6 h (the mean length of movies
in the in vitro dataset, corresponding to 3 × 106 events
in the Monte Carlo simulation). L(t) was then subsam-
pled to one value every minute of simulated time, the
time resolution of most of our in vitro experimental data.
As expected, l1(t) and l2(t) tended to compete with each
other (Figure 10b). We found that L(t) generally showed
periodic oscillations over time, qualitatively resembling
the experimental data (Figure 10c,d,e). To quantify this
behaviour, oscillation scores and frequencies were calcu-
lated for L(t) exactly as for the experimental data, produc-
ing distributions over the set of simulated growth cones.
Oscillation scores were larger than for the experimental
data, with a mean and standard deviation 17.4± 6.0, com-
pared to 6.0 ± 2.6 for the experimental data (Figure 10f).
This is perhaps not surprising, since there are many addi-
tional sources of noise in the data, which are not present
in the model. However, surprisingly given the simplicity of
the model, there was an extremely close match between
the oscillation frequencies of the model and the in vitro
data: 0.0333 ± 0.0210 min−1 for the model, compared to
0.0338 ± 0.0197 for the data (P = 0.9, t-test, Figure 10g).
Thus, the model implicates dynamic microtubule instabil-
ity as the driving force behind oscillations in growth cone
shape.
The model also allows an analysis of how the duration

of simulated time affects mean frequencies. Intuitively,

longer durations would lead to lower average frequen-
cies, since more distant parts of the underlying frequency
distribution are now included in the average. Simulating
100 growth cones for 1.7 × 107 events (approximately
15 h of real time, similar to the mean for the in vivo
dataset) gave a mean frequency of 0.0176± 0.0124 min−1,
confirming this intuition. This was not significantly dif-
ferent to the mean oscillation frequency observed in the
in vivo data (P = 0.12), suggesting that the lower mean
frequency observed in our in vivo compared to in vitro
data is mainly due to the longer average length of these
movies, rather than any fundamental difference in oscil-
lations between in vitro and in vivo settings. This is
consistent with the idea that oscillations are intrinsically
driven.

Discussion
Neuronal growth cones have one of the most dynamic
morphologies of any (sub)cellular system, and this is chal-
lenging to quantify. Here we have applied for the first
time to growth cones a shape analysis technique that has
proved useful in many other contexts, and shown that just
a few basic shape primitives capture the vast majority of
the variance in growth cone shape. The form of the leading
modes themselves is quite intuitive: R1 represents bending
while S1 represents thinness versus fatness, whether these
are a result of lamellipodial or filopodial outgrowth. By
reducing shape to just the list of numbers representing the
projections onto the significant modes, it becomes possi-
ble to identify patterns in the data that are not otherwise
apparent. In particular, by examining how these projec-
tions evolve over time, we found that shape oscillations are
a key organising principle of growth cone shape dynamics.
The forward movement of growth cones has previously
been reported to follow cycles of pausing and growth
[41,42], and zigzag behaviour in gradients [43]. However,
our morphometric [44] analysis reveals for the first time
the shapes representing the most important degrees of
variance in growth cone morphology (i.e., eigenshapes),
how the projections of these shapes vary through time
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Figure 9 Similar mode shapes and oscillations are also present in vivo. (a) Typical sequence of frames 10 min apart from a time-lapse movie of
a zebrafish retinal ganglion cell growth cone navigating across the tectum in vivo. Scale bar: 10 μm. (b) The significant shape modes derived from
this dataset. (c,d,e)Mode oscillations for a 2 h movie with frames every 1 min (c), and 20 h movies with frames every 10 min (d,e). In the former case
oscillations of similar period to those observed in vitro are seen, while in the latter cases oscillations with longer periods become apparent.
Autocorr, autocorrelation; SD, standard deviation.
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Figure 10 Computational model of dynamic microtubule instability reproduces the periodicities seen experimentally. (a) The model
consists of two microtubules (red and blue lines) competing for a limited supply of tubulin monomers (purple dots) within the growth cone. (b)
Lengths of both microtubules as a function of time for a typical simulation. (c,d,e) Autocorrelation functions for three different simulations with
identical parameters but different random seeds, illustrating strong periodicity but also different frequencies at which these can occur in the model.
(f,g) Distribution of oscillation scores (f) and frequencies (g) across 400 simulated growth cones. MT, microtubule.

(i.e., oscillations), and how they are correlated with growth
cone movement (i.e., growth cones with strong fast shape
oscillations tended to extend faster). We observed the
same general patterns of eigenshapes and oscillations in
vitro and in vivo, suggesting that oscillations are a sur-
prisingly robust and fundamental aspect of growth cone
behaviour.

We also presented a computational model of growth
cone shape changes based on dynamic microtubule insta-
bility. This model is clearly a highly abstracted version
of reality, and is intended as simply a minimal model
of variation along a shape axis (e.g., bending left ver-
sus bending right). It is therefore remarkable that such
a simple mechanism produces an excellent match to
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not only the mean frequency of oscillations in the data,
but also the variance in this distribution. This pro-
vides strong support for the hypothesis that the basic
driver of the growth cone shape oscillations we have
observed is dynamic microtubule instability in the context
of competition for a limited supply of tubulin monomers.
Clearly in reality many other components will be involved,
most notably the actin cytoskeleton, and how these
work together to determine oscillations remains to be
determined.
We have examined growth cones in a relatively feature-

less in vitro environment, a chemotactic gradient, and
traversing the optic tectum in vivo. Eigenshapes and oscil-
lations are remarkably consistent between these different
cases. This argues that these properties are intrinsic and
do not represent responses to the local environment, such
as a way of navigating around local obstacles, consistent
with an explanation in terms of intrinsic periodicity of
microtubule growth. The complete trajectories of growth
cones in vivo often involve navigating throughmany stages
and choice points, for instance retinal axons growing from
the eye to the brain [45,46] or callosal axons finding
their targets in the opposite hemisphere [47]. Eigenshape
analysis provides a method for re-examining more quan-
titatively exactly how shape changes over such trajecto-
ries, and how it is correlated with navigational function.
Whether shape oscillations change their properties over
complex trajectories and how such changes might be
related to the environmental cues present at eachmoment
remain to be determined.
Our tracing of growth cone outlines was performed

on relatively low-magnification phase contrast (in vitro)
or fluorescent (in vivo) images, and thus fine details of
some filopodia were inevitably lost. However, we have
demonstrated directly that the eigenshapes we found are
quite robust to image quality (Figure 3). Filopodia are not
ignored in our analysis: for instance the presence of a
filopodium in the right-hand side of the growth cone will
show its effect by increasing the score for mode R1 (cf
Figure 1f ). Eigenshape analysis complements rather than
replaces fine-scale analysis of filopodial dynamics, since it
combines filopodial and lamellipodial structure to empha-
sise overall shape trends rather than fine-scale structure.
Despite recent advances for fluorescently labelled growth
cones [48], fine analysis of filopodia is still limited by
the difficulty in obtaining large datasets: fully automated
image analysis techniques have difficulty with phase-
contrast imaging at this level of detail, and hand-tracing is
prohibitively time-intensive. Unfortunately manual obser-
vations are not scalable [49], meaning that there is
currently a growing mismatch between our ability to
manipulate growth cones and to assess the effect of these
manipulations on growth cone behaviour using manual
techniques.

Conclusions
Eigenshape analysis of growth cones has the potential
to provide a novel quantitative understanding of the dif-
ferences between growth cones in different conditions.
These include the effects of the environment as axons
navigate towards their targets during development, differ-
ences between initial development and regeneration, and
differences between mutants and wild type. Overall this
work reveals a new dimension to the understanding of
the dynamic morphology of growth cones, and potentially
opens up novel directions for research into understanding
the biological basis of developmental brain disorders.

Methods
All experiments were approved by The University of
Queensland Animal Ethics Committee and were per-
formed according to the National Health and Medical
Research Council’s animal code of practice.

In vitro imaging
Neurons from superior cervical ganglia (SCG) from P0-
P4 Wistar rat pups were prepared as previously described
[50]. SCGs were incubated in 0.25% trypsin (Gibco) at
37°C for 20 min and then triturated for 10 min. Cells were
plated in Opti-MEM solution containing 10 μg/mLmouse
laminin (Invitrogen) and 0.3 nM nerve growth factor (2.5S
mouse NGF, Biosensis) and incubated overnight at 37°C in
35 mm plastic or glass-bottomed Petri dishes. Phase con-
trast images of growth cones were acquired at 20× for 2
to 8 h at 1 min intervals with a Zeiss Axio Observer.

Imaging in steep gradients of nerve growth factor
SCG neurons were prepared as above. After overnight
growth, steep gradients of NGF were produced as
reported previously [27,50]. Briefly, axons were posi-
tioned with their growth cones 100 μm away from a glass
micropipette containing NGF, and with their direction of
growth at 45° to the pipette tip. NGF was expelled at 2 Hz
using 3 psi to create gradients with a 10% to 15% change in
concentration across 10 μm. Phase contrast images were
acquired at 20× for 1 h at 1min intervals with a Zeiss Axio
Observer.

Zebrafish imaging
Adult Tupfel longfin zebrafish were cared for by the Aus-
tralian Zebrafish Phenomics Facility. Embryos 2.5 to 5
days post fertilisation carrying the BGUG transgene [51]
for sparse mGFP labelling were used in the experiments.
N-phenylthiourea (0.003%) kept the embryos transpar-
ent. Embryos were mounted in low melting point 1.5%
agarose (SeaPlaque) in E3medium on a glass coverslip and
maintained at 28.5°C. Confocal image stacks were taken
through the tectum (typically 40 to 60 μm, 1 μm intervals)
and digitally flattened for analysis. GFP images at 10 and 1
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min intervals were taken using a Zeiss LSM 510, through
either a 20× or 40× objective. From the final time-lapse
movies, spans 1 to 20 h long with visible growth cones
were chosen for analysis.

Semi-automated outline capture
All image processing was carried out using customised
software developed using Matlab (Mathworks). To extract
growth cone outlines, a quadrilateral region of interest
was manually placed over the growth cone for selected
frames of each movie and then automatically interpo-
lated for intervening frames. Frames where growth cones
were clearly bifurcating were excluded. Images within the
region of interest were filtered using the Matlab image-
texturing transforms stdfilt and entropyfilt. The growth
cone outline was then manually optimised in approxi-
mately five to ten frames, and these candidate outlines
were used to train linear support vector machines. This
involved calculating local metrics (pixel intensity, size and
distance from main body) pertaining to growth cone fea-
tures that the user accepted or rejected (e.g., missing
filopodia and foreign cell matter removal). The remain-
ing movie frames were then automatically re-segmented
using the support vector machines as a basis for attach-
ing disconnected growth cone segments and features. All
remaining imperfections were added or removed from
the binary images via manual post-processing. These
imperfections included particles floating in the media
that had temporarily attached themselves to the growth
cone, or defects in the underlying substrate (e.g., dark
lines) that had become inappropriately incorporated into
the growth cone outlines using the automated analy-
sis. Additions to the growth cone occurred when the
segmentation process failed to attach whole parts of
the growth cone (e.g., when the axon became too thin
to be segmented appropriately, or filopodia had clearly
been missed). These judgements were made by the
user performing the segmentation. Normally the total
user interaction time required per movie was less than
1 h.

Eigenshape analysis
All axon outlines were rotated to a common axis, and
truncated such that their length (to the most distal tip
of the growth cone) was 30 μm (20 μm for zebrafish
data). For the pipette assay data, all growth cone out-
lines were mirrored about the y-axis such that the pipette
tip was always located to the right of the growth cone.
Coordinates of the growth cone representation used for
the PCA (250 evenly spaced points) were determined by
piecewise cubic-Hermite polynomial parametric repre-
sentations (calculated using pchip in Matlab). PCA was
performed using princomp in Matlab. The BIC was used
to determine the number of PCA dimensions to retain.

The last significant mode was taken as the first mode with
negative BIC, given by

BICk = N
k∑

i=1
log(Vi) + N(d − k) log

⎛
⎝ d∑

i=k+1

Vi
d − k

⎞
⎠

+
(

(d + 1)k − k(k + 1)
2

)
log(N),

where k is the number of modes to keep, N is the number
of frames, d is the original dimensionality and V is the
variance of each mode.

Growth cone centre trajectories
The location of the growth cone centre (GCC) was esti-
mated using a custom automated heuristic. The regions
of the growth cone that had the darkest pixel intensity
and that were more distant from the rotation base were
picked as candidates for the GCC. If there were multiple
candidate regions, the most likely was determined as the
maximum of the transfer function Y = (yh1 × Ih2) where
y is the distance from the base of the rotated growth cone,
I is the mean pixel intensity of the candidate group, and
h1 and h2 were 1 and 2, respectively. The final GCC was
calculated as the pixel weighted centroid of the candidate
region. Clear anomalies in the automated method were
corrected by manual manipulation.

Trajectory analysis
GCC trajectories were smoothed using a moving aver-
age filter (step size of 3), discarding the first and last four
frames to remove edge effects. Step length was measured
as the Euclidean distance between successive time points,
with average path length being the sum of the step lengths
divided by the total number of time points. Average dis-
placement was calculated as Euclidean distance between
the first and last frames divided by the length of themovie.
The growth cone bearing was calculated as the angle of
each step, with the bearing change being calculated as
the clockwise angle between two given time points. Ini-
tial angles for the pipette assay were calculated using the
pipette location as a reference. For other assays the initial
angle was calculated as the direction of movement over
the first five frames. Final turning angles were measured
as the angle formed between the initial direction and the
direction of the GCC in the last frame from the GCC in
the first frame.

Statistical analysis of relationships
Unless otherwise stated all pairwise comparisons of data
were performed using Wilcoxon rank-sum tests, while
Kruskal–Wallis tests were used for comparisons of multi-
ple groups. Relationships between individual mode scores
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versus trajectory statistics were calculated using Spear-
man correlations. Multiple linear regression analysis was
used to correlate linear combinations of the mode scores
with the trajectory statistics. When performing corre-
lations and regression using oscillation statistics, only
the first 2 h of movies were considered to remove bias
based on movie length. The relationship between mode
score oscillations to turning angle and average path length
was calculated using both multiple linear regression and
Spearman correlations.

Time series analysis
A fast Fourier transform was calculated using fft in Mat-
lab by centring the signal (mode score or growth cone
area) about the mean and zero-padding the signal length
to the next power of 2. The autocorrelation function was
calculated using autocorr in Matlab. The extent of the
oscillatory behaviour of the autocorrelation function was
quantified using an oscillation strength metric adapted
from [26]. In brief, the symmetric autocorrelation func-
tion was calculated and smoothed using a Gaussian kernel
with a variance depending on imaging frequency. The cen-
tral peak was truncated to the level of the next highest
peak, and the fast Fourier transform calculated for the
resultant signal. The final oscillation strength was defined
as the power of the fast Fourier transform peak for the
autocorrelation function divided by themean power of the
remaining frequencies.

Computational model
The model was exactly as described in [40], except that
there are two microtubules rather than one. In brief a
microtubule of length l(t) grows according to

dl
dt

= ka[T]−kd

and shrinks according to

dl
dt

= −ks,

where t is time, [T] is the concentration of free tubu-
lin, and ka, kd and ks are rate constants. The frequencies
of catastrophe fc (switch from the growth phase to the
shrinkage phase) and rescue fr (switch from the shrinkage
phase to the growth phase) are given by

fc = ac[T]+bc
fr = ar[T]+br

where ac, ar , bc and br are constants. The values of all
parameters were determined from experimental data [40],
and are given in Table One of [40]. There was no spa-
tial component to the model, and thus no time delay in
the change in concentration available to one microtubule
after binding or release of a tubulin monomer by the other

microtubule. Simulations were performed using an event-
based Monte Carlo approach as described in [40], coded
in Matlab. Each simulation of 3× 106 events, correspond-
ing to 2.6 h of real time for one growth cone, took about 3
min to run on a 2.8-GHz Intel Core i7 iMac.
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