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Abstract

Background: Gene expression within cells is known to fluctuate stochastically in time. However, the origins of
gene expression noise remain incompletely understood. The bacterial cell cycle has been suggested as one source,
involving chromosome replication, exponential volume growth, and various other changes in cellular composition.
Elucidating how these factors give rise to expression variations is important to models of cellular homeostasis,
fidelity of signal transmission, and cell-fate decisions.

Results: Using single-cell time-lapse microscopy, we measured cellular growth as well as fluctuations in the
expression rate of a fluorescent protein and its concentration. We found that, within the population, the mean
expression rate doubles throughout the cell cycle with a characteristic cell cycle phase dependent shape which is
different for slow and fast growth rates. At low growth rate, we find the mean expression rate was initially flat, and
then rose approximately linearly by a factor two until the end of the cell cycle. The mean concentration fluctuated
at low amplitude with sinusoidal-like dependence on cell cycle phase. Traces of individual cells were consistent
with a sudden two-fold increase in expression rate, together with other non-cell cycle noise. A model was used to

relate the findings and to explain the cell cycle-induced variations for different chromosomal positions.

Conclusions: We found that the bacterial cell cycle contribution to expression noise consists of two parts: a
deterministic oscillation in synchrony with the cell cycle and a stochastic component caused by variable timing of
gene replication. Together, they cause half of the expression rate noise. Concentration fluctuations are partially
suppressed by a noise cancelling mechanism that involves the exponential growth of cellular volume. A model
explains how the functional form of the concentration oscillations depends on chromosome position.
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Background

Single-cell experiments have shown gene expression to
fluctuate randomly under constant conditions [1-7],
which can have key consequences for the fidelity of sig-
nal propagation [8], cell fate decisions [9, 10], and fitness
[4, 11-16]. Noise in gene expression is often quantified
by the observed cell-to-cell variability in the production
rate or concentration of a protein when observing many
cells in an isogenic population [1, 17]. Fluctuations in
gene expression can be caused by many local and global
factors such as random binding events of RNA poly-
merase [18], fluctuating concentration of ribosomes, or
availability of amino acids [4, 19]. The cell cycle has
been suggested as a general source of gene expression
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noise [17, 19], meaning that, in a snapshot of a popula-
tion, two cells can differ in protein production rate or
concentration because they are in different phases of
their cell cycle. Alternatively, two cells at the same cell
cycle phase can differ because of cell cycle-independent
effects. The key aim of this study is to quantify and dis-
entangle these effects in Escherichia coli, and to mechan-
istically understand cell cycle contributions.

Eukaryotes exhibit distinct cell cycle phases that
display different levels of growth activity and of DNA
replication, which in turn can result in varying expres-
sion levels as the cell cycle progresses. Single-cell inves-
tigations of Saccharomyces cerevisiae have indeed shown
quasi-periodic fluctuations of protein expression rates
[20] and concentrations [21] in synchrony with the cell
cycle. The prokaryotic cell cycle does not display such
distinct replication and growth phases. E. coli, for
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instance, grows and replicates DNA continuously
throughout its cell cycle, though for slow growth there
are periods without replication activity [22, 23]. Expres-
sion activity can be dependent on the cell cycle none-
theless, for example because the replication of a gene
may double the transcriptional activity at a specific
moment in time, as suggested by recent single-cell
studies [17, 24, 25]. That doubling would then in turn
affect enzyme concentration and could cause quasi-
periodic fluctuations. However, at the same time, cells may
exploit specific regulatory mechanisms to filter such pertur-
bations [26, 27]. Direct experimental investigations of the
impact of the bacterial cell cycle on expression variability
are lacking. Elucidating this question is important to under-
stand the origins of gene expression noise, modeling of gen-
etic circuits, and resulting impact on growth variability [28]
as well as other forms of cellular heterogeneity [10].

To address these questions, we followed a single-cell
approach. We imaged E. coli cells as they grew into
micro-colonies and measured gene expression as the
fluorescence signal of chromosomally encoded fluorescent
proteins (Additional file 1: movie S1). As shown herein,
understanding the temporal dynamics requires detailed in-
formation on cellular volume increases in time, as protein
concentrations are affected both by time-dependent ex-
pression and dilution. Thus, we accurately determined
protein expression and cell size at sub-cell cycle reso-
lution. We further developed a model to predict the cell
cycle dependence and amplitude of these quasi-periodic
fluctuations in expression rate and concentration. The
model predicted their dependence on chromosomal pos-
ition, which we tested with genetic constructs.

Results and discussion

The protein production rate fluctuates quasi-periodically
To measure the effect of the cell cycle on protein ex-
pression, we first determined protein production rate as
quantified by the time derivative of the total cellular
fluorescence (Methods). Taking the data for all cells with
a completed cell cycle (n=393) over all cell cycle phases,
the protein expression rate displayed a total noise inten-
sity (defined as standard deviation divided by the mean)
of 0.48 [17]. When plotting the production rate versus
cell cycle phase ¢ (where 0 is cell birth and 1 is cell div-
ision) and averaging over all cells (Fig. 1a), it displayed
the following trend: it was approximately constant in the
first half, after which it rose to about two-fold at the end
of the cycle (Fig. 1b, Additional file 2: Figure S1). An ini-
tially constant rate and two-fold increase is consistent
with the known chromosome replication pattern for the
observed mean growth rate (0.6 dbl/h): a single chromo-
some copy in the first period of the cell cycle, after
which replication occurs in the second period that pro-
duces two copies [29]. Each chromosome copy then
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yields a fixed expression rate. This is not unreasonable,
as other components required for expression, such as
RNA polymerases and ribosomes, also double through-
out the cell cycle. At faster growth, replication occurs
throughout the cell cycle for multiple nested chro-
mosome copies [30]. Consistently, we found that the
production rate was not initially flat, but instead rose
continuously throughout the cell cycle when growing on
a different medium that supported a higher mean
growth rate of 1.8 dbl/h (Additional file 2: Figure S2).
The total increase remained two-fold, in agreement with
an expected doubling of the number of gene copies.
Overall, these data indicate that the mean protein ex-
pression rate is likely proportional to the gene copy
number and hence doubles during chromosome replica-
tion. This variation is more continuous at high growth
rate because of the nested replication and overall higher
gene copy numbers.

Deterministic cell cycle variations contribute to
expression noise

To quantify the contribution of the mean cell cycle fluc-
tuations (Fig. 1b) to protein production noise we split
the single-cell production rate (which is distinct from
the protein concentration) p(¢, x) into the population
averaged rate p,(¢) and individual deviations Jp(¢, x),
which together capture all cell-to-cell variability (Fig. 1a,b):
p(d,x) = p.(¢p) + Sp(¢,x). Here, ¢ denotes the cell cycle
phase and x all other causes of cell-to-cell variability; ¢ re-
fers to cell cycle dependence, which here is redundant be-
cause it is implied by the ¢ dependence but used for
notation consistency. p,(¢) can be estimated by the curve
in Fig. 1b, and subtracted from individual traces to obtain
an estimate for dp(¢, x). The noise intensity caused by the
deterministic cell cycle fluctuation p,(¢) is 0.26, which
was obtained by considering the phase ¢ as a random vari-
able and then calculating the variance of the trace. Noise of
the individual expression traces dp(¢, x), averaged over all
cells and ¢, was 0.42 (Additional file 2: Figure S3a). These
values are consistent with a scenario in which population
mean trace p,(¢) and deviation traces JIp(¢h, x) are
independent and thus their variances (squared noise) can
be added up: 0.48% ~ 0.26> + 0.42*. This population-average
cell cycle contribution towards production rate noise does
not include cell cycle stochasticity of individual cells and
we will consider that below.

Concentration fluctuations are buffered by dilution

Fluctuating production rates can cause noise in the pro-
tein concentration. To determine the latter, we quanti-
fied the mean fluorescence per unit area of the cell. The
noise intensity of 0.15 (0.10 for fast growth), which was
obtained by taking the data of all cells and at all cell
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Fig. 1 Dependence of protein production rate (a, b), protein concentration (c, d) and cell length (e, f) on cell cycle phase. Observables are normalized
by the respective population average and therefore unitless. (a, ¢, ) Data for 393 cells (gray) with three example traces and the binned colony average
(thick black line). Histograms display the total frequency of production rate or concentration values summed over all phases. To convey the differences
in noise intensity, a bar of size 0.2 times the population mean is displayed. (b, d, f) Phase-dependence of the binned data. In (f) an exponential function
(black dashed line) is fitted to the averaged cell length. Error bars are obtained by bootstrapping. For cell length, error bars are plotted but are smaller
than the line thickness. Growth was on minimal medium supporting a growth rate of 0.6 dbl/h

cycle phases, was consistent with previous reports [1].
After ordering by cell cycle phase and averaging (Fig. 1c),
the concentration also showed systematic variations
(Fig. 1d, Additional file 2: Figure S1): it increased slightly
right after cell birth, then decreased and finally rose
again. The amplitude of these variations was 4 % of the
mean. This low value (Additional file 2: Figure S3b) and
the initial increase seemed inconsistent with the large
amplitude of variations in production rate caused by the
cell cycle, as well as with the initially constant value of
production rate (Fig. 1b) [25].

To get a more intuitive understanding of these differ-
ences, we formulated a minimal cell cycle model based on
the measured cell cycle dependency of production rate
(Fig. 1b). The concentration cannot be determined by sim-
ply integrating the production rate, as this would ignore
dilution due to volume growth. To quantify the volume
growth, we determined for each cell its length and its de-
pendence on the cell cycle phase (Fig. 1e, Methods) [28].
The population mean cell length L(¢) was well described
by an exponential function (Fig. 1f) [31-33], and not by
bi-linear or linear functions (Additional file 2: Figure S4),
as suggested previously [34—37]. Therefore, an exponential
function for cell size was used as input for the minimal
model (Fig. 2b). With a mean protein production p(¢) at

phase ¢ (Fig. 2a), the concentration E(¢) can then be

written as: E(¢) = (Fo—i— /¢p(¢l)d¢,)/L(¢), where F
0

is the total amount of protein at cell birth.

By design, E (¢) (Fig. 2c) reproduced the measured data
(Fig. 1d) and provided an explanation for the observed
functional form, including the counterintuitive increase in
concentration at the beginning of the cell cycle, before
duplication occurs. As E(¢) is periodic, we know that
increases (dilution rate smaller than expression rate) are
balanced by decreases (dilution rate larger than expression
rate). In cases where duplication occurs late, the
expression rate is essentially constant because there is only
one gene copy, while the dilution rate changes. Thus,
dilution is then comparatively weak at the beginning of
the cell cycle, resulting in an increasing concentration,
while dilution is comparatively strong further into the cell
cycle, resulting in decreasing concentrations. This ration-
ale also explains why concentration fluctuations are small:
the functional form of the total fluorescence (as a function
of the cell cycle phase) is almost identical to that of the
volume (Fig. 2b).

Stochastic replication timing contributes to expression
noise

The single cell data also suggested that stochasticity in
replication timing is a source of protein production
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Fig. 2 Model for cell cycle dependence of protein concentration. a Average protein production rate normalized by the mean. b Exponential
length increase normalized to a mean of one (black). Population average protein production rate integrated in time, or the population average
total fluorescence (green). ¢ Determined cellular protein concentration, given by the green signal divided by the black line in panel b
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noise, which is supported by previous studies [23, 38]
(Fig. 1a, thin lines). In other words, dp(¢, x) would be
the sum of fluctuations caused by cell cycle stochasticity
p.(¢, v) and of fluctuations dp,,.(x) unrelated to the cell
cycle (Fig. 3a). Here, v is the cell cycle phase at which
the gene of interest is replicated and v varies from cell
to cell. Thus, the sum of dp.(¢h, v) and the population-
average p, (¢) yield all the fluctuations p (¢, v) caused by
the cell cycle. To determine the stochastic contribution
of the cell cycle to the expression noise, one needs to
quantify dp.(¢, v). However, it is not trivial to distinguish
Op.(¢, v) from the other stochastic, non-cell cycle varia-
tions in the experimental single-cell traces.

To overcome this problem, we started with p.(¢, v)
and followed a variance decomposition approach using
the law of total variance [39, 40]. The variance of the full
cell cycle fluctuations can be decomposed as follows:

Var(p,($.v)) = (Var(p,(¢.v)|®))
+ Var((p.(¢,v)|¢)) 1)

Here, angular brackets denote averaging, and the nota-
tions Var(... |¢) and ( ... |¢) indicate, respectively, the
variance and the average for a given phase ¢ (conditioned
on ¢). In the second term, the brackets thus indicate
an averaging over the stochastic variable v, which
yields p,(¢). Next, the variance is taken. This variance
was in fact calculated previously, and found to be (0.26)*
(Fig. 1b). Thus, the second term indicates the determinis-
tic contribution to the cell cycle induced noise.

In the first term, the variance of p (¢, v) is determined
conditionally on ¢, and then averaged. This term thus
denotes the stochastic contribution to the cell cycle-
induced noise. The data does not directly provide an
estimate of this variance, because the cell cycle-induced
noise and noise from other sources are confounded in
the measured single-cell traces of the production rate
(Fig. 1la). Indeed, in these traces, other noise sources,
such as metabolism [28] and fluctuating transcription

factors [1], are substantial and can mask the quick two-
fold increase expected from gene replication events.
However, in a subset of traces, the two-fold increase was
clear (Fig. 3b,c, Methods). Fitting each of these traces
with a step-function (Additional file 2: Figure S5)
provided a distribution of the step-moment, v. We
obtained a wide distribution for v with a mean 0.64 and
a standard deviation of 0.17 (Fig. 3c). To check whether
this distribution was consistent with the full dataset, we
compared the average of the fitted step-functions to the

average of all measured traces (p,(¢), Fig. 1b), and found
that they were similar (Fig. 3d). These findings suggested
that gene duplication events with stochastic timing in
individual cells underlie the smooth shape of the popula-

tion average production rate (Fig. 1b).

The distribution of v (Fig. 3c) now allowed us to esti-
mate the first term in eq. (1), by first determining the
variance of the step-functions at fixed phase, and then
averaging over all phases (Additional file 2: Figure S6a).
We obtained a value of (0.23)? for this stochastic contribu-
tion of the cell cycle to expression noise, which is compar-
able in magnitude to the deterministic contribution
denoted by the second term ((0.26)?, Additional file 2:
Table S1). Thus, variability in initiation timing contributes
substantially to the cell cycle-induced noise. The deter-
ministic and stochastic contributions together (p.(¢, v))
thus caused a variance of (0.23)* + (0.26)* = (0.35), which
is about half (52 %) of the protein production variance
(Fig. 5b, Additional file 2: Table S1).

To estimate how the protein concentration noise is
affected by the cell cycle, we computed the concentration
traces resulting from the step-like production rate func-
tions (Additional file 2: Figure S6a). For each p.(¢, v) of
the set (Fig. 3c) the corresponding concentration curve
was computed, considering that proteins are diluted due
to volume growth (Additional file 2: Figure S6b). We
found that the quasi-periodic concentration fluctuations
caused by the cell cycle (which includes deterministic and
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Fig. 3 Production rates of single cells. a Description of variables used for noise decomposition. The protein production rate p(¢, x) (red line) is the
sum of three contributions: (1) the population-average cell cycle fluctuations p,(¢) (black line), (2) the contribution due to stochastic replication
timing (difference between blue and black line, dp(¢, v)), and (3) stochasticity resulting from other, unknown, noise sources (difference between red
and blue line, 8p,(x)). The sum of dp (@, v) and &p,(x) represents all of the stochastic contributions &p(g, x). The phase at which replication occurs is
denoted by v. b Experimental traces of three different cells (thick lines) and fitted step functions (thin lines). See Additional file 2 for definition of step
function. Initial value was set to 1 and data is slightly vertically shifted for clarity. ¢ Histogram of v. Data is from 53 cells in which a step-function could
be discerned from the rest of the noise (13.5 % of the traces). d Comparison of experimental average production rate curve (gray line) and mean of
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stochastic components) contributed less than 1.5 % to
the variance in protein concentration (Additional file 2:
Figure S6b and Fig. 5b). Note that one can distinguish
contributions from the population average trend (Fig. 1d)
and the stochastic deviations around it due to variability
in replication timing (less than 1 % contribution each,
Additional file 2: Table S1).

Location on the chromosome affects expression
fluctuations

Chromosome replication is initiated at the origin of rep-
lication (oriC) from which two replication forks then
progress simultaneously and bi-directionally along the
two strands of DNA [41]. This raises two expectations:
first, genes located at opposite sides but at the same dis-
tance from oriC should be duplicated at the same time
and thus show the same cell cycle dependence of protein
production and concentration. Second, if one gene is lo-
cated upstream of the other, the increase in protein

production should occur earlier. To test the first predic-
tion, we investigated a ¢fp gene positioned symmetrical
to the yfp gene studied so far, at the opposite strand at
the same distance from oriC (Methods, Fig. 4a inset).
We indeed found that both reporters displayed a similar
dependence of production rate and concentration on cell
cycle phase (Fig. 4ab, Additional file 2: Figure S1).

To change the position we studied a gfp gene under
Py, control closer to oriC than yfp or cfp (Methods,
Fig. 4e). As expected from the earlier replication, the
GFP production rate indeed increased earlier than the
previous YFP signal (Fig. 4e). It started comparatively
low, then increased more than two-fold and subse-
quently decreased again to end at twice the initial rate
(Fig. 4e). The cause of the high fold-change and decrease
is unknown, but changes in chromosome structure or
transient improvement in competition for RNA poly-
merases for this promoter (two binding sites at the two
replicated genes) could play a role. As predicted by the
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Fig. 4 Influence of chromosomal position. Production rate (a) and concentration (b) for genes at equidistant and symmetric positions with
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of gfp compared to other fluorescent genes. Error bars are obtained by bootstrapping

model (Fig. 4c,d), the dip in GFP concentration occurred
earlier and the initial increase disappeared (Fig. 4f). The
magnitude of fluctuations remained at around 4 %.
Overall, these data show that gene position on the
chromosome affects cell cycle-related noise.

Conclusions

In summary, we found that the cell cycle can be a major
causal factor of observed noise in the rate of gene ex-
pression (52 %), with the rest coming from other sources
such as metabolism [28, 42, 43], transcription factors [8],
or expression machinery [18] (Fig. 5a). Within the cell
cycle contribution, the data suggests two components: a
deterministic mean determined by the cell phase (29 %),
and a stochastic contribution caused by variability in the
timing of replication (23 %) (Fig. 5b). The initially flat
production rate suggested gene copy number is the main
factor in cell cycle-induced expression rate variations,
though alternative factors, such as cell cycle-induced
variations in transcription factor concentrations, could
also contribute.

The analysis indicated a noise-cancelling mechanism:
even sudden two-fold production rate increases caused
by replication of the gene are effectively compensated
for by an acceleration of dilution due to exponential
growth [26, 27] (Fig. 5b). The observed minor effect of

the cell cycle on the protein concentration is thus due to
a passive homeostasis mechanism that exploits the
balance between synthesis and dilution. When proteins
are actively degraded, this noise cancelling mechanism
would be less efficient. We note that a similar, but likely
active, balancing between synthesis and dilution was ob-
served in mammalian cells where transcription rate is
adjusted to cell size [44, 45]. The homeostatic mechan-
ism we observed does not necessarily act on noise from
other sources, such as fluctuations in RNA polymerase
availability [18] or transcription factors [2], if they are
not synchronized with exponential volume growth.
Indeed, concentrations do display significant noise inten-
sities (0.15 for slow growth, 0.10 for fast growth). We
note that other cancelling mechanisms can act on non-
cell cycle expression noise. For instance, metabolic noise
that causes expression noise is partially compensated for
by increased growth [28].

Our findings provide insight into how elementary pro-
cesses, such as gene replication events and volume
growth, can cause and filter noise in bacterial cells.
Elucidating the sources of gene expression noise is
important to obtaining a bottom-up understanding of
cellular heterogeneity, cellular homeostasis, and cell cycle
regulation, and to providing input for mathematical
models of gene expression networks. Our results confirm
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previous demonstrations that variance decomposition can
be a useful tool in disentangling different noise sources
within cells.

Methods

Strains, growth media, and cell growth

E. coli strain MG22 [1] was used for all experiments
unless noted otherwise. This strain is a derivative of
MG1655 that contains yfp and ¢fp under control of a lac
promoter, which were inserted into the chromosome at
the intC and galK locus. These two loci are equidistant
from the origin of replication, on opposite halves of
the circular chromosome. Additionally, we used strain
ASC636 in which gene lacA of the lac operon was
replaced by gfp (constructed by A. Bohm).

For microscopy experiments we used either M9 minimal
medium (main text figures) or rich defined medium
(MOPS EZ rich defined medium from Teknova, Additional
file 2: Figure S2). M9 was supplemented with 200 uM ura-
cil and 0.1 % maltose was added as a carbon source, yield-
ing a growth rate of 0.6 dbl/h. To the rich medium we
added 0.2 % glycerol as a carbon source, yielding a growth
rate of 1.8 dbl/h. In all experiments we also added 200 uM
IPTG to fully induce the lac promoters.

Cells were inoculated in the morning from -80 °C
glycerol stock into tryptone yeast (TY) medium and
grown for 7 h at 37 °C. Then, cells were diluted highly
(~1/10,000 to ~1/100,000) to three different final concen-
trations into the defined experimental medium (see above).
TY was thereby diluted to <0.05 vol% and remaining TY
was consumed by the cells. Cells were grown overnight
and the next morning a falcon tube with still exponentially

growing cells (OD600 < 0.2) was chosen. Cells were diluted
again to OD600 = 0.005 and then used for microscopy.

Sample preparation and microscopy

The sample preparation for microscopy was done in the
warm room at 37 °C to minimize temperature stress.
We placed a polyacrylamide gel into a glass chamber,
pipetted 1 pL of cells onto the gel and closed it with a
coverslip. The sample was sealed with a metal clamp
(Additional file 2: Figure S7a). This setup provides an
oxygen reservoir for the cells but avoids gel dehydration.

To produce polyacrylamide gels, we mixed 1.25 mL
40 % acrylamide, 3.7 mL water, 50 uL fresh 10 % ammo-
nium persulfate, and 5 pL. TEMED, poured it into a glass
chamber and let it polymerize [28, 46]. Then, the gel
was cut into pieces of ~1 cm?® and stored in a falcon
tube with water (Milli-Q). Before the experiment a gel
pad was placed into a falcon tube with 5 mL of the
respective growth medium and the medium was ex-
changed several times.

Cells were imaged with a Nikon TE2000-E inverted
microscope using a 100x oil objective (Nikon, Plan Fluor
NA 1.3) and additionally 1.5x intermediate magnification.
It was equipped with a cooled CCD camera (Photometrix,
Cool-Snap HQ), a Xenon arc lamp with liquid light guide
(Sutter, Lambda LS) for fluorescence illumination, com-
puter controlled shutters (Sutter, Lambda 10-3 with
SmartShutter), and an automated stage (Mérzhéduser). The
microscope was located in an incubation chamber (Solent)
to keep the temperature at 37 °C. Fluorescence filters were
obtained from Chroma and we used #49003 (YFP),
#49001 (CFP), and #41017 (GFP). Microscope and image
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acquisition were computer controlled with MetaMorph
software (Molecular Devices).

We searched the pad for isolated cells and manually
saved the positions of 4—6 cells. Then, an automated script
was looped repeatedly (for up to 20 h) over all positions
and images of the growing microcolonies were acquired.
Loop times were adjusted to cell doubling times and we
used 100 sec/loop for p = 0.6 dbl/h (main text figures) and
45 sec/loop for p = 1.8 dbl/h (Additional file 2: Figure S2).
Each loop, the routine refocused based on image contrast
(Brenner algorithm) and acquired phase contrast images
at three different heights (0.2 um off focus and in focus).
Fluorescence images were acquired approximately every 7
loops to reduce photodamage and bleaching. This resulted
in 55 phase contrast and 8 fluorescence images per cell
cycle, on average. Fluorescence images were 2 x 2 binned
to increase signal-to-noise ratio and illumination was kept
as short as possible (YFP: 25 ms, CFP: 30 ms, GFP:
50 ms). Growth rates under the microscope were very
similar to bulk growth rates in a plate reader.

Movies were obtained until cells formed a second layer
or outgrew the field of view, which happened usually
after 8—9 generations and a colony size of several hun-
dred cells. Each experiment was performed at least twice
(Additional file 2: Figure S1). Data of YFP and CEFP
(which are encoded in the same strain) that is displayed
in a single figure was obtained from the same micro-
colony in the same experiment (e.g. Fig. 4ab, Additional
file 2: Figure S1 and Figure S2). The replicate displayed
in Additional file 2: Figure S1 is a different experiment
than Fig. 1. Experiments at different growth rates (e.g.
Fig. 4ab versus Additional file 2: Figure S2) are also inde-
pendent experiments. GFP is encoded in a different
strain, and hence the GFP data was measured in differ-
ent experiments than the YFP and CFP data.

Image analysis

Images were analyzed with custom MATLAB software
(MathWorks) based on Schnitzcells [47]. An automatic
script determined cell outlines by applying a Laplacian
of Gaussian filter to the averaged phase contrast image
and then cut accidently connected groups of cells based
on the concavity of the cell outline (Additional file 2:
Figure S7b). Segmentation was checked manually and
corrected if necessary. Cells were then tracked from
image to image, resulting in a branch-structured lineage
tree, and tracking was checked manually. For all cells
with an observed complete cell cycle each measured
time point was associated with a cell cycle phase, with 0
being cell birth and 1 cell division.

Cellular length was used as measure for cell size be-
cause the rod shaped E. coli only grow along their long
axis and cell width is independent of cell cycle phase
(Additional file 2: Figure S8, ref. [48], contrary to results
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in ref. [49]). We fitted a third degree polynomial through
the silhouette of the segmented cell [28]. The cell length
was then obtained by integrating the curve between both
cell poles.

Fluorescence images were corrected for alignment off-
set, background (camera noise), uneven illumination,
and were deconvolved to suppress blur (Additional file
2: Figure S7c). To obtain autofluorescence intensity we
measured a non-fluorescent strain (MG1655) with the
same illumination settings as standard experiments.
Measured signal intensity was 2.5 % (CFP) resp. 0.4 %
(YEP) of the actual concentration signal from fluorescent
proteins. Fluorescence signals were not corrected for au-
tofluorescence because this was small compared to the
signal and only introduced a constant offset with no ef-
fect on the results.

The total fluorescence of each cell was determined by
summing up the pixel intensities within the cellular out-
line. The protein production rate p(t) was determined as
the slope of a linear fit of three consecutive total fluores-
cence data points centered around t. For the first and
last measurement of the cell cycle, fluorescence informa-
tion of parent and daughter cells, respectively, was used
to determine the slope. Protein concentrations were cal-
culated by dividing total fluorescence by the segmented
cellular area.

Data processing
We analyzed cell cycles within a time window of the
experiment that showed a constant population-mean
growth rate and mean protein concentration. Population
mean growth and concentration were considered con-
stant when they fluctuated less than 5 % around the
long-term average (for GFP in strain ASC636 10 % was
used as cutoff criterion). Cells that stopped growing or
were filamented were removed (less than 15 cells per
dataset). The fraction of analyzed cells relative to all cells
observed with a complete cell cycle was over 86 % for
MG22 datasets and over 50 % for ASC636 datasets. The
main conclusions were robust to taking the complete
data set of growing non-filamentous cells with complete
cell cycles. Datasets contained between 215 selected cells
(large cells in rich medium) to 435 selected cells
(minimal medium). If one dataset was used for multiple
plots (e.g. Figs. 1 and 4a,b), the same cells were analyzed.
Traces of production rate (Fig. 3) for individual cells
were considered ‘step-traces’ when they deviated from a
fitted step-trace (see also Additional file 2) less than a
fixed threshold. To be considered a step-trace, the mean
squared deviation of a data point on the trace from the
fitted value had to be below 2 % of the squared trace-
average. Figures and percentages in the main text are
determined from one microcolony per strain and growth
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condition. Results for the repeat experiment are shown
in Additional file 2: Figure S1.

To determine the average dependence of a signal (e.g.
concentration) on cell cycle phase we binned the signal
according to phase and averaged it within each bin
(Fig. 1b,d,f). Error bars are standard errors of the mean
from a resampled distribution of the signal, obtained by
bootstrapping from the experimental data for each bin.

The contribution of a specific noise source X (for ex-
ample, deterministic cell cycle variations) to total protein
production noise was calculated by using the additivity of
variances for independent variables. The production rate p
was, for example, written as sum p =X+ Y with Y being
the unknown, unmeasured, fluctuations (such as dp(¢, x),
see also main text). Then, Var(p) = Var(X) + Var(Y), and
the fraction of the variance in p, which is caused by X, is
Var(X)/Var(p). We normalized variables such as p by their
mean so that the squared noise is identical to the variance.
For example, the contribution of g, (¢) to p(¢, x) is 0.26%/
0.48% For protein concentration, the calculation is
identical.

Additional files

Additional file 1: Movie S1. Time lapse movie of growing cells. Phase
contrast and yfp fluorescence channel for MG22 cells grown on M9+ 0.1 %
maltose + 200 UM Iptg (for example Fig. 1). The movie covers a time of 12 h
40 min. (AVI 863 kb)

Additional file 2: Figures S1-S8, Table S1. Supplementary methods.
(DOCX 1071 kb)
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