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complex behaviors
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Abstract

Background: Animals exhibit astonishingly complex behaviors. Studying the subtle features of these behaviors
requires quantitative, high-throughput, and accurate systems that can cope with the often rich perplexing data.

Results: Here, we present a Multi-Animal Tracker (MAT) that provides a user-friendly, end-to-end solution for
imaging, tracking, and analyzing complex behaviors of multiple animals simultaneously. At the core of the tracker is
a machine learning algorithm that provides immense flexibility to image various animals (e.g., worms, flies,
zebrafish, etc.) under different experimental setups and conditions. Focusing on C. elegans worms, we demonstrate
the vast advantages of using this MAT in studying complex behaviors. Beginning with chemotaxis, we show that
approximately 100 animals can be tracked simultaneously, providing rich behavioral data. Interestingly, we reveal
that worms’ directional changes are biased, rather than random – a strategy that significantly enhances chemotaxis
performance. Next, we show that worms can integrate environmental information and that directional changes
mediate the enhanced chemotaxis towards richer environments. Finally, offering high-throughput and accurate
tracking, we show that the system is highly suitable for longitudinal studies of aging- and proteotoxicity-associated
locomotion deficits, enabling large-scale drug and genetic screens.

Conclusions: Together, our tracker provides a powerful and simple system to study complex behaviors in a
quantitative, high-throughput, and accurate manner.
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Background
Animal behavior is rich and complex [1]. It spans a tre-
mendously wide range of phenotypes such as sleep, mat-
ing, food search, and fighting. In its early days, this
fascinating field was dominated by classical field studies
involving visual inspection and hand-written documen-
tation. The discipline has considerably evolved and
nowadays is known as “computational ethology” [2].
Technology advances are now replacing the laborious
manual work and scientists employ sophisticated com-
putational approaches to generate accurate quantitative
understanding of the detail-rich complex behaviors.
In the last few decades, significant advances in genetic-

and neural-related techniques have been achieved, and
animal model systems have become popular to study
complex behaviors under lab-controlled environments.

These animal models range from simple invertebrates,
such as worms and flies, to mammalian models, includ-
ing mice and monkeys [2].
Of particular interest is the small roundworm C. elegans

[3]. Among the many advantages that this nematode offers
are its short generation time, the easy and inexpensive
handling, and the availability of its fully-reconstructed
neural system consisting of only 302 neurons [4]. C. ele-
gans animals also show remarkably complex behaviors, in-
cluding mating [5], roaming and foraging [6], lethargus
[7], and taxis towards various stimuli such as preferred
temperature [8], magnetic fields [9], and food [10–12].
Over the years, large genetic screens have identified a vast
set of mutations in genes that modulate these behavioral
outputs, enabling a mechanistic insight into these com-
plex behaviors [13, 14].
In addition, a growing interest is directed towards

quantitative measures of aging and proteotoxicity-
associated physiological decline. C. elegans is an appeal-
ing model organism to study these processes as many
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human neurodegenerative diseases that result from ag-
gregation of proteotoxic proteins can be recapitulated in
the worms’ muscular and nervous systems [15]. These
diseases are often associated with deteriorating locomo-
tion abilities, culminating eventually in complete paraly-
sis. It therefore becomes an important, yet extremely
challenging, task to quantify minute locomotive changes
in a high-throughput manner.
To study such complex behaviors, numerous tracking

systems that image freely-moving animals have been de-
veloped. These systems extract various fine locomotion
features, such as animal posture, undulation properties,
speed, and attraction or repulsion towards or away from
stimulants [16–23]. To support high-throughput studies,
some of these systems were designed to track multiple
worms at a time. This sort of tracking is particularly
challenging as accurate extraction of genuine worm en-
tities from ‘noisy’ background is difficult. Moreover, fre-
quent animal collisions preclude extraction of long
individual tracks.
Here, we present a novel Multi-Animal Tracker

(MAT), an end-to-end, user-friendly solution for im-
aging, tracking, and analyzing complex behaviors. At the
heart of the tracker is a machine learning algorithm;
thus, the tracker makes no prior assumptions regarding
the size or the shape of the tracked animals and hence is
compatible in studying virtually any animal of interest.
We also included built-in functions that allow non-
programmers to analyze and visualize the immense data.
We demonstrate its high-compatibility tracking various
animals, and its powerful abilities studying complex be-
haviors in C. elegans animals in an accurate and high-
throughput fashion.

Results
In the following sections, we demonstrate the vast uses
of the novel MAT to studying complex behaviors. We
begin by describing the packages included in the soft-
ware suite and then provide experimental evidence, in-
cluding novel gained insights, for the extensive usage of
this MAT in studying chemotaxis and sensory integra-
tion, as well as aging- and proteotoxicity-associated
locomotion decline.

The new MAT provides an end-to-end solution for
tracking animals – from video acquisition and track
identification to advanced analyses
Our novel MAT includes three software modules,
namely (1) video acquisition, (2) track extraction, and
(3) advanced functions for analyzing complex behav-
iors (Fig. 1a). All packages are based on MATLAB
(MathWorks© Inc.) and a detailed guideline for in-
stalling and using the different modules is provided in
the accompanying Additional file 1.

The ‘AnimalsRecorder’ module allows capturing of
time-lapse movies in a variety of video formats. This
package circumvents the need to rely on commercial
software that often interfaces with exclusive cameras
and setups. The user can easily modulate various im-
aging parameters such as recording duration, number of
frames, and exposure time.
The main module in the software is ‘AnimalsTracker’.

This module uses a machine learning algorithm to identify
individual animals and extracts their continuous tracks
over long temporal recordings, typically consisting thou-
sands of frames. The Graphical User Interface (GUI) in
this module displays several panels that allow scrolling be-
tween the different frames, and visually comparing the ori-
ginal image to a filtered one (Fig. 1b). This feature
provides a simple and convenient mean to inspect and
evaluate how well the tracker extracts the observed en-
tities from their background in each frame. The user can
quickly adjust the extraction sensitivity between different
frames. Once satisfied with the entities extraction, the user
is asked to mark individual animals in order to train the
machine learning algorithm to correctly identify them.
The additional module, ‘AnalysesPlugins’, contains sev-

eral useful built-in analyses functions; some of these
functions are basic analysis tools, but others offer ad-
vanced toolkits that allow non-specialist programmers to
sophisticatedly analyze the complex behavioral para-
digms. These tools are further described below.

A machine learning algorithm extracts accurate tracks of
multiple animals over long time periods
At the core of the tracker is a machine learning algo-
rithm which provides an immense flexibility to image
and track virtually any moving animal, including worms,
flies, zebrafish, and mice (Fig. 1c–f, and Additional file 2:
Movie S1, Additional file 3: Movie S2, Additional file 4:
Movie S3, Additional file 5: Movie S4). The user is not
required to explicitly provide animal features. Rather, the
user ‘trains’ the tracker by clicking on a small number of
animal entities from the assay images using a user-
friendly GUI (Fig. 1b). The tracker learns the animals’
features based on the user’s picks, and uses this informa-
tion to build a discriminative model between animal en-
tities and background ‘noise’ (Fig. 2a). Moreover, the
machine learning algorithm is insensitive to different ac-
quisition parameters such as resolution, contrast, frame
rate, color depth, etc. The tracker successfully distinguishes
(with a configurable parameter for an approximate false
negative rate, β, set to 0.01 by default, see Methods) between
animals and background ‘noise’ that typically accumulates
during long experiments (Additional file 6: Figure S1a). As
few as a dozen clicks on animal entities from the first,
mid, and last frames of the movie are sufficient for accur-
ate extraction of animal trajectories throughout thousands
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of frames. In fact, accuracy analyses show that the tracker
achieves a precision of approximately 0.9 and recall of
over 0.85 (Fig. 2b, see Methods for details).
A major obstacle in maintaining long tracks of individ-

ual animals is the frequent collisions between them. To
overcome this, we implemented a simple variation of the
Kalman filter [24], which predicts the future position of
the colliding animals based on previously observed mo-
tility features (e.g., velocity, acceleration; see Methods
for implementation). Implementing such a predictor sig-
nificantly improves detection following animal collision;
for example, implementing the predictor reduces the
cases where none of the animal trajectories could be re-
solved following collision to approximately 2% only
(whereas as many as 46% of the collision events could

not be resolved if not implementing the predictor;
Additional file 6: Figure S1b). Moreover, the prediction
also significantly extends the tracks’ length as it compen-
sates in cases where animal segmentation fails to identify
a genuine animal (Fig. 2c, Additional file 7: Figure S2).
Overall, this allows the tracker to maintain identification
of individual animals over long imaging time periods
(Additional file 6: Figure S1c, Additional file 7: Figure S2,
Additional file 8: Movie S5, Additional file 9: Movie S6,
Additional file 10: Movie S7).
Clearly, collision events become more probable as ani-

mal density increases, thereby limiting the time of effi-
cient tracking. In our experimental setups (circular,
50 mm diameter field of view), we found a negative lin-
ear correlation (ϱ = −0.7, P < 0.001) between the number

Fig. 1 A novel end-to-end Multi-Animal Tracker software allows recording, tracking, and analyzing multiple animals at a time. a Flowchart describing
the sequential usage of the different packages included in the software suite. b A simple, user-friendly Graphical User Interface is provided to analyze
tracks of multiple animals throughout a movie recording typically consisting of thousands of frames. The tracking software uses a machine learning
algorithm to identify animal instances. The user is asked to ‘teach’ the software what is an animal by clicking on several animal instances. c–f The
software is able to track and analyze the movement of different animals. Shown are representative tracks extracted from movies of behaving (c) worms,
(d) flies, (e) zebrafish, and (f) mice
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of worms on the experimental plate and the average dur-
ation of tracking (Fig. 2d). In addition, the implemented
Kalman-type predictor aids ignoring potential interfer-
ence during the experiment. For example, the software
discounts transient user interventions, such as manual
handling of mice during the course of the experiment,
and proceeds by focusing on mice tracks only (Add-
itional file 5: Movie S4).

The new tracker is highly suitable for studying large-scale
dynamics of chemotaxis behavior
To demonstrate the many advantages and the high suit-
ability of the MAT to study complex behaviors, we

focused on C. elegans nematodes. One of the fascinating
complex behaviors that these worms exhibit is chemo-
taxis, in which animals navigate up a chemical gradient
towards the chemical source. Very often, chemotaxis as-
says are quantified by an attraction index that reflects
the end position of the animal, disregarding its intricate
trajectories throughout the course of the chemotactic
behavior [10]. High-throughput analyses of such trajec-
tories with their relation to the chemical source are im-
perative to underpinning the mechanisms by which
animals navigate through gradients. Our tracking system
is particularly suitable for studying complex chemotactic
behaviors – it extracts long behavioral tracks of dozens

Fig. 2 The tracking software successfully extracts trajectories of multiple animals at a time despite background noise. a Principal component
analysis over all detected animal instances in a single frame shows that worm entities are faithfully segregated from background entities. For
example, during long temporal recordings, drop condensation on the lid and trail marks contribute to the identification of approximately 2000
erroneous entities per frame. The number of genuine animal entities, however, remains constant (around 100) throughout the movie (see also
Additional file 6: Figure S1). Thus, the software successfully learns the crucial features to detect animal entities and discards background noise.
b Accuracy of worm detection as a function of the training size. The precision (fraction of actual worms out of total entities classified as worms)
reaches nearly 90%, and recall (out of all worms genuinely found on the plate, how many are indeed classified as worms) reaches approximately
85%. Fscore is the harmonic average of the two parameters (precision and recall); as few as 50 worms are sufficient to reach these accuracies (see
Methods for details how these parameters were obtained). c Implementing a variant of a Kalman predictor significantly enhances track length.
Shown are the lengths (in seconds) of all tracks without implementing the predictor (left), and when using the predictor (right). The y-axis and
x-axis denote the start and end time, respectively, of the period the tracks lengths were averaged on. Shown are all tracks identified throughout
the movie. Significant longer tracks are extracted if implementing the predictor (80 ± 0.54 [s] compared to without the predictor 58 ± 0.3 [s], in
the period of the experiment that yielded the longest tracks, P < 0.001). d There is a trade-off between the number of worms loaded on the assay
plate and the average length of detected tracks. The more worms loaded the shorter are the continuously detected tracks. Up to 200 worms can
be assayed simultaneously in a field of view of 4 × 4 cm if not requiring extraction of long continuous tracks
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of animals at a time, and positions these trajectories
relative to the stimulus source that is set as a reference
point.
We used the tracking system to extract trajectories of

a large number of animals tracked simultaneously during
30 minutes of chemotaxis. To study the chemotaxis per-
formance quantitatively, we defined three regions of
interest (ROIs, Fig. 3a), namely the start point where a
drop containing over 150 worms is placed (Blue), an area
circling the spot of the chemotactic cue (Red), and an
area circling the control area typically spotted with the
buffer solution used to dilute the chemical cue (Orange).
The tracking software counts the number of worms en-
tering or leaving each of these ROIs, thus providing a
quick and quantitative analysis of chemotaxis kinetics
that can be viewed as a temporal variation of the often
used ‘chemotaxis index’ (Fig. 3b, c).
Presenting the rich trajectory data for multiple worms

may become cumbersome given the enormous amount
of data obtained by the tracking of multiple worms in a
spatiotemporal manner over long time periods. To over-
come this, we developed the Attraction Field (AF) view,
which captures many of the intricate parameters ex-
tracted throughout the course of the experiment in a
single representation (Fig. 3d, f ). For this purpose, we
binned the entire field of view into squares (for our reso-
lution we used 35 × 25 squares), and for each square we
plotted both the average direction of the worms (arrows)
and the overall occupancy over time (color coded). This
AF representation provides a quantitative spatial meas-
ure of the chemotactic response; for example, higher
chemoattractant levels yield more direct trajectories to-
wards the chemoattractant from wider regions in the ex-
perimental field and higher worm occupancy around the
target region compared to lower levels of the chemo-
attractant (Fig. 3d–f ). When combining the AF views
with the ROI kinetics representation (Fig. 3f, g), these
data culminate in a rich quantitative spatiotemporal rep-
resentation of the chemotactic response as measured
simultaneously for multiple worms over long time pe-
riods. The AF and ROI analyses are supplied as built-in
functions in our software analysis suite (Additional file 1).
Three key movement features define chemotaxis be-

havior in worms and presumably in other animals (e.g.,
fly larvae [25]). These include reversals/sharp turns,
runs, and pirouettes that are defined as bouts of multiple
sharp turns and reversals [12, 26]. As expected, these
three parameters are dose dependent – the higher the
chemoattractant concentration, the fewer the pirouettes
and reversals and the longer the run times (Fig. 4a–c,
Additional file 11: Figure S3). Interestingly, we find that
an animal’s speed remains constant throughout the
chemotactic behavior and is independent of the distance
from the target. Conversely, the probability for a

pirouette grows linearly with the distance from the tar-
get (Fig. 4d).

Worms incorporate directional mechanisms to improve
chemotaxis efficiency
Surprisingly, the above experiments provided new in-
sights regarding chemotaxis strategies. During chemo-
taxis, worms use two main strategies, namely (1) a
biased random walk (klinokinesis) where worms increase
or decrease turning rates depending on whether they
crawl down (dc/dt < 0) or up (dc/dt > 0) a chemical gra-
dient, respectively [12]; or (2) a weathervane movement
(also known as klinotaxis [27]), where worms moving
perpendicular to the gradient reorient to move towards
the gradient. Interestingly, Shimomura et al. [12] showed
that worms’ klinokinesis is not entirely composed of uni-
form reorientation events, and worms that are off-
course just before the pirouette tend to compensate with
a larger change in their direction following the pirouette
such that they are better oriented towards the source.
Our experimental results not only recapitulated these

observations (Fig. 5a), but also provided novel understand-
ing of this complex behavior; worms, originally directed
towards the chemoattractant, tend to maintain their gen-
eral direction following a pirouette (Fig. 5b, see also
Methods). This, in addition to the observations made
by Shimomura et al. [12], explains why both directed
(–90° < BBefore < +90°) and undirected (+90° < BBefore < 270°)
trajectories improve their general direction following a
pirouette (Fig. 5aII, bII; Rayleigh Z-test, P < 10–5, for both
directed and undirected). Directional changes that follow
pirouette events show a bimodal distribution where small
(ΔB ≈ 0° rad, cos(ΔB) ≈ 1) and large (ΔB ≈ ± 180° rad,
cos(ΔB) ≈ –1) changes make nearly half of the total direc-
tional changes (Fig. 5aIII, bIII).
To understand the functional significance of this

reorientation strategy we simulated chemotaxis of
worms adopting different criteria for choosing
directional changes following a pirouette (sampled
from our experimental data, see Methods for details).
Interestingly, chemotaxis performance of worms simu-
lated according to the strategy detailed above was su-
perior over other possible strategies as the worms
reached the target significantly faster (by approxi-
mately 50%, P < 10–5, Wilcoxon rank-sum test, Fig. 5c).
These findings provide a novel understanding of ani-
mal chemotaxis strategies, and further underscore the
significant roles of pirouettes in mediating efficient
chemotaxis.

Worms integrate environmental cues and enhance
chemotaxis towards richer environments
Integrating information extracted from the environ-
ment is an important ability shared by many animals
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Fig. 3 The Multi-Animal Tracker is particularly suitable for studying complex behaviors such as chemotaxis. a An image of the experimental
chemotaxis plate. Agar plugs soaked with the attractant odorant (red circle), or the control buffer (yellow circle), are placed on the plate’s lid.
Neither the attractant, nor the buffer, come in contact with the agar on the plate. Approximately 150 worms are loaded at the starting point (blue
circle). The chemoattractant source, the buffer source, and the starting point form an imaginary equilateral triangle with an edge of 4 cm. b A
quantitative cumulative dynamics of worm position in the chemotaxis assay over the course of approximately 15 minutes. The lines indicate the
number of worms in each of the regions of interest throughout the experiment (color coded). In this experiment, nearly 180 worms were loaded
on the assay plate. About two-thirds of them reached the chemoattractant during the first 15 minutes of the assay. c Images were taken at the
specific time points (I–IV) throughout the assay (indicated as dashed lines in b) to illustrate chemotaxis progression in the assay plate. Shown are
also the trajectories (red) as identified by the tracker software. d–g The software suite includes a module to generate Attraction Fields (AF), a
visualization designed to provide spatial representation of the chemotaxis process throughout the experiment. Shown here are AFs of two
chemotaxis assays in which the isoamyl-alcohol attractant was used in 10−4 (d) and 10−2 (f) dilutions. The experimental field is binned to squares
(35 × 25 in this case, but any binning defined by the user is possible). Arrows represent the average direction of the worms and the color code
indicates the overall occupancy throughout the course of the experiment (15 minutes, ~1000 frames). e, g Chemotaxis dynamics as detailed in
section b. Together, these plots provide a full spatiotemporal representation of the chemotaxis behavior of multiple animals over the course of
thousands of captured frames
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[28, 29]. In particular, during food search, animals
often face confusing cues and attending to the most
reliable of them is likely to improve their chance of
quickly reaching food sources [30]. For example, mul-
tiple cues originating from a source may be rendered
as a more reliable food source than a source emitting
a single cue.
We employed our MAT system and asked whether C.

elegans can integrate environmental information (i.e., at-
tend to more than one cue at a time) presented as food
odorant cues. To do this, we compared worm chemo-
taxis towards each of two cues, isoamyl-alcohol (IAA)
and diacetyl (DA), when presented independently and
when combined as a single mixture (Fig. 6a). Specifically,
we used the same experimental design as detailed above
for the chemotaxis assays (Figs. 3, 4, and 5). We first
assayed worm chemotaxis to each cue in a dose-
dependent manner and chose two equipotential concen-
trations (the concentration of each cue that attracts the
worms to the same extent, see Methods). Both stimuli at
these concentrations attract worms with the same kinet-
ics (DA: β1 = 0.5 ± 3.3 × 10−3; IAA: β1 = 0.5 ± 2.1 × 10−3;

β1 denotes the coefficient of the liner regression of
chemotaxis dynamics, Fig. 6b). Interestingly, worms
are significantly more attracted when these cues are
combined and presented as a mixture, as many more
worms reach the target area with faster kinetics (Mixture:
β1 = 0.94 ± 4.1 × 10−3, Fig. 6b). Importantly, we halved the
concentration of each stimulus in the mixture compared
to its concentration when presented individually, and yet
worms were significantly more attracted to the com-
bination of the cues (P < 0.007 compared to IAA and
P < 2.5 × 10−5 compared to DA, Fig. 6b). This suggests
that worms can attend both cues concomitantly as
they navigate in search of food.
We next asked which features in the chemotaxis be-

havior underlie this enhanced attraction. For this, we an-
alyzed the directness of the worms towards the different
stimuli by quantifying the projection of their steps on
the vector that connects the worm and the chemo-
attractant (see Methods). We found that worms pre-
sented with a mixture of cues move more directly
towards the source than worms presented with each cue
alone (P < 0.006, Fig. 6c). Together, these data

Fig. 4 Analysis of chemotaxis parameters. The software extracts several parameters that describe the chemotaxis performance: (a) mean
probability for a pirouette, (b) mean probability for a reversal, and (c) mean run lengths (time between reversals). All these parameters are dose
dependent – mean probabilities for pirouettes and reversals increase with decreases is the concentration of the attractant. Conversely, mean run
length time decreases. Error bars denote SEM of individual tracks. For the different concentrations of isoamyl-alcohol: 10–2, we averaged 447 tracks
in total; 10–3, 1195 tracks in total; 10–4, 1470 tracks in total. d Probability for a pirouette increases the further the animal is located from the attractant,
while the speed remains constant throughout the course of chemotaxis. Points are averages taken from 64 experiments comprising 7505 pirouette
events and > 105 speed points
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demonstrate that worms can integrate environmental in-
formation and attend to more than one cue at a time.
Furthermore, this integration is translated to behavioral

outputs manifested primarily by the ability to better re-
orient the trajectory following a pirouette (Additional
file 12: Figure S4).

Fig. 5 Worms improve their orientation towards the target following the exit from a pirouette. a (I) Angular bearing histogram of worms oriented
off-course (90° < B < 270°) immediately before initiating the pirouettes (BBefore); (II) Angular bearing histogram of the worms from (I) immediately
after the pirouettes (BAfter); (III) A histogram of the cosine of the difference in the bearings before and after a pirouette cos(BBefore – BAfter) for
worms that were initially off-course. The histogram shows two peaks (around 1 and –1) indicating that worms tend to perform either extreme
(e.g., 180°) or minute (e.g., 0°) angle changes. However, the tendency to perform a pirouette with a larger angular difference in bearing is
significantly more probable (P < 10–6, permutation tests, see Methods). The data is composed of 13,297 disoriented pirouette events. b (I) Angular
histogram of bearings for worms oriented on-course (0° < B < 90° or −90° < B < 0°) immediately before the initiation of a pirouette (BBefore). (II) Angular
histogram of worms bearing that are on-course immediately after the pirouette (BAfter). (III) A histogram of the difference in the bearings before and
after a pirouette cos(BBefore – BAfter) for on-course worms. As in off-course worms, these initially on-course oriented worms tend to perform either
extreme or minute angle changes, but the frequency of minute changes (cos(Δ angle) = 1) is significantly higher (P < 10–6, see Methods). The data is
composed of 15,368 oriented pirouette events. c Simulations of chemotaxis trajectories. We used three different strategies for choosing the exit angle
from a pirouette (see Methods for details). The experimentally observed principle, where the exit angle is sampled according to the entry angle,
provides an efficient chemotaxis strategy reflected by the significantly shorter time to reach the target point (P < 0.007 and P < 2.5 × 10–3, Wilcoxon
rank-sum test for random and uniform sampling, respectively). Error bars denote SEM of the number of simulated worms in each simulation. Overall,
we simulated 250 worms per strategy

Itskovits et al. BMC Biology  (2017) 15:29 Page 8 of 16



Quantitative analyses of worm motility during aging and
neurodegenerative-linked proteotoxicity progression
Finally, we demonstrate the powerful advantages of
using this novel MAT in studying fine locomotion defi-
cits associated with aging and neurodegenerative-related
diseases. During these processes, animal locomotion de-
teriorates, culminating eventually in complete paralysis
[31, 32]. It therefore becomes extremely challenging to
quantify minute locomotion changes during these crit-
ical periods. Moreover, due to large locomotion variabil-
ity within worm populations it is critical to collect large
data sets in order to obtain reliable and reproducible re-
sults [33]. The MAT system overcomes these hurdles
owing to its high-throughput and accurate tracking.
To quantify locomotion during aging, we used syn-

chronized worm populations and measured animal mo-
tility as they age. As expected, we found a steady and
significant decline in animal motility that positively cor-
related with age (Fig. 7a, b). Moreover, as velocity is con-
siderably low in aged animals, our tracker faithfully
identifies multiple worms at a time to score minimal dis-
placement events at the single pixels per second reso-
lution. Importantly, the significant decline in the average

animal speed was not due to possible death of a fraction
of the animals (for which we may score a zero speed).
To rule out this possibility, we set our tracking algo-
rithm to discard worm events that showed no activity
throughout the experiment. This ensured that dead ani-
mals would not skew and bias the experimental results.
We next employed our tracker to study aging-associated

motility impairment following external manipulations
such as those used in large-scale RNAi or chemical
screens. In C. elegans, knocking down the sole insulin/
IGF-1 signaling (IIS) receptor, daf-2, leads to long-lived,
stress-resistant animals that maintain robust proteostasis
[34–36]. Indeed, worms treated with daf-2 RNAi showed a
significantly slowed deterioration in motility starting from
day 6 and on (Fig. 7c). Similarly, we utilized our MAT sys-
tem to quantitatively measure proteotoxicity-associated
locomotion decline. For this, we tracked motility of worms
expressing the aggregative peptide composed of 35 glu-
tamine repeats (polyQ35) in their body wall muscles,
which leads to motility impairment in a time-dependent
manner [37]. As velocity declined with age, animals
treated with daf-2 RNAi exhibited a significantly slower
decline, indicating the protective role of inhibiting IIS in

Fig. 6 Worms integrate environmental information preferring richer environments. a Integration experiments were performed by comparing
worms’ chemotaxis in three different assay plates. Two of the plates contained only one of the two cues each (e.g., diacetyl (DA) and isoamyl-alcohol
(IAA)). The concentrations for the two cues were predetermined via dose-response assays and equipotential concentrations (i.e., attracting the worms
to the same extent) were chosen. A third assay plate contained a mixture of both cues, each cue in a concentration that is half of what was used in
the single cue assay plate. b Chemotaxis dynamics for the three assays. In the single chemoattractant experiments, we used a volumetric concentration
of 0.75 × 10− 5 for DA, and 0.5 × 10− 4 for IAA. Accordingly, the mixture was composed of 0.37 × 10− 5 of DA and 0.25 × 10− 4 of IAA. We fitted a linear
curve to the dynamic curves and estimated the linear coefficient (β1) to describe the potential of the cues to attract animals (DA: β1 = 0.5 ± 3.3 × 10–3;
IAA: β1 = 0.5 ± 2.1 × 10–3). Chemotaxis towards each of the individual cues was very similar (as pre-calibrated by dose-response assays) indicating their
equipotential attraction. The mixture, however, was significantly more attractive than each of cues alone. Shown is an example of a single experiment
where approximately 100 worms were loaded on each plate. c The mean projection, the component of the movement towards the target, is
significantly higher in the mixture compared to each of the cues alone (P < 2.5 × 10–5 and P < 0.007, compared to DA and IAA alone,
respectively). Error bars denote SEM of all tracks together taken in a specific region of the experimental field. These data are composed
of 92 run bouts for DA; 96 run bouts for IAA; and 159 run bouts for the mixture
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proteotoxicity (Fig. 7d). In particular, the MAT system reli-
ably detected minute motility differences (fractions of
mm/sec) that ultimately reflect significant differential
aging and proteotoxicity paces. Together, these results
demonstrate that our MAT system is highly suitable for
studying proteotoxicity- and age-related maladies in large
worm populations, enabling fast, high-throughput, and ac-
curate screens of mutant animals or RNAi libraries.

Discussion
Herein, we present a novel MAT that allows the tracking
of multiple animals simultaneously over long time pe-
riods. Importantly, this user-friendly system offers an
end-to-end solution – from acquisition and recording
movies, through tracking algorithms and advanced built-
in analyses functions, to displaying the rich data in com-
prehensive and informative plots.
A major advantage of our system over existing multi-

worm trackers is that we implemented a machine

learning algorithm coupled with a Kalman-type pre-
dictor [24]. These features turn the tracker into a multi-
purpose system compatible with tracking various ani-
mals differing in size, appearance, velocities, and other
activity parameters. Indeed, we show that the software
can faithfully track nematodes, flies, zebrafish, and mice
(Fig. 1, Additional file 2: Movie S1, Additional file 3:
Movie S2, Additional file 4: Movie S3, Additional file 5:
Movie S4). Moreover, the tracker is indifferent to the ac-
quisition systems (e.g., a wide variety of optical setups
can be used), and it does not require adjusting parame-
ters for particular environments or experimental settings
(e.g., resolution, brightness, hue, etc.).
Combining machine learning algorithms together with

the predictor also supports accurate detection and segmen-
tation of animal entities, specifically so when background
environments are ‘noisy’. For example, long temporal ex-
periments are challenging as the environment is dynamic
and often changes over the course of the experiment (e.g.,

Fig. 7 The Multi-Animal Tracker (MAT) is compatible with accurate high-throughput measurements of aging- and neurodegenerative-associated locomo-
tion decline. a Synchronized CF512 worms were grown to 1, 4, 8, and 12 days of adulthood. An agar plug soaked with 1 μL of the repellent 2-nonanone
(1:10 diluted in ethanol) was attached to the plate lid and worm movement was recorded 2 minutes thereafter for 1 minute. Analysis using the MAT
showed constant aging-associated decline in mean speed. b Speed distributions within worm populations were unimodal, indicating that the
mean value was not biased by a subpopulation of paralyzed or dead worms. The number of speed points in both (a) and (b) that we averaged on
were 30,512 for Day 1; 23,672 for Day 4; 9401 for Day 8; and 6240 for day 12. c CF512 worms were grown to days 1, 6, and 12 of adulthood on
either control bacteria (EV) or on daf-2 RNAi bacteria. Repellent was added and worm movement was analyzed as in (a). Analysis using the MAT
confirmed that reduced insulin/IGF-1 signaling (IIS) slows age-associated motility decline. d AM140 worms expressing the aggregative polyQ35-YFP
fusion protein were grown to days 2, 5, and 8 of adulthood on either control EV or daf-2 RNAi bacteria, and speed was scored as in (a). Note that
x-axis is drawn to scale with panel c. Speed declines as worms age and proteotoxicity progresses, but reduced IIS slows motility decline. Error bars
denote SEM of three biological repeats for panel a and four biological repeats for panels c and d. Each biological repeat consists of 2–3 replicate
plates with dozens of worms per plate. Detailed data points are provided in Additional file 13: Table S1.* P < 0.05; ** P < 0.005; *** P < 0.0005
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water condensation on the plate lid). Our system reaches
approximately 90% detection accuracy (precision and re-
call) when tracking around 100 worms simultaneously
(Fig. 2 and Additional file 7: Figure S2). Furthermore,
high-throughput studies that track multiple animals at
a time pose an additional challenge – the greater the
number of animals tracked, the higher the chances
that they will collide, therefore precluding the possi-
bility to track individuals over long time periods.
However, implementing the predictor in our system
significantly aids in resolving such collision events
(Fig. 2c and Additional file 7: Figure S2).
Machine learning approaches had been previously ap-

plied to tracking single worms (for example, see [38, 39]).
Our approach, however, is slightly different and is particular
suitable for tracking multiple animals in long-temporal ex-
periments in which noise accumulates over time. We allow
the user to first set a fixed thresholding parameter (as part
of the training process), and then the user chooses seg-
mented entities corresponding to genuine animals. Based
on the features of these entities, a classifier is learned and is
subsequently used to classify other segmented entities
throughout the movie. Indeed, using several clicks on ani-
mal entities, the user ‘trains’ the algorithm to tell apart
genuine animal entities from possible background noise,
thereby significantly reducing erroneously detected animals.
Importantly, this learning step typically takes 1 minute,
after which the algorithm automatically extracts animal en-
tities from thousands of frames. If the same settings are
used for subsequent experiments then the same training set
can be used for their analyses. Together, the machine learn-
ing algorithm and the predictor, the broad possible usage,
and the ability to simultaneously track multiple animals
over long time periods make this MAT into a unique and
powerful system for studying animal behavior.
Various other machine-vision algorithms that support

high-throughput tracking of many individual animals
simultaneously are also available (i.e., in flies [40]). Simi-
larly to our tracker, these systems automatically track
large groups of unmarked animals. Furthermore, ma-
chine learning methods were developed to support auto-
matic behavioral classifiers based on animal trajectories
alone, which subsequently infer higher order behavioral
outputs such as social and individual behavior [41].
While our tracking system, together with its built-in
analytic functions, is primarily geared to studying
complex spatial navigation, it can also be used to study
other complex behaviors. It will therefore be interesting
to combine such machine learning post-acquisition
methods to extend the repertoire of complex behaviors
to be studied.
Interestingly, our initial experience with the MAT sys-

tem already yielded novel insights into the intricate
chemotaxis behavior. In a seminal study, Shimomura et

al. [12] demonstrated the critical role of pirouettes (a
bout of successive turns) in chemotaxis, where worms
entering a pirouette with an off-course angle tend to
exit the pirouette better oriented towards the center
of the gradient. Our tracking analyses confirmed these
results and added an additional important piece to
this fascinating strategy – worms that enter the
pirouette on-course oriented towards the target tend
to maintain this on-course trajectory following the
pirouette. Together, these strategies greatly enhance
an animal’s navigation abilities, enabling it to reach a
target source significantly faster (as we also corrobo-
rated through simulations, Fig. 5c).
In addition, we used our MAT system to show that

C. elegans animals can integrate environmental cues
(Fig. 6). Such integration is an important feature to
predict food abundance and quality [13]. Interestingly,
we found that this sensory integration is manifested
in the directional changes in the pirouette events –
animals crawling towards a richer target are more
likely to exit the pirouette at an angle that is more
directed towards the target (Additional file 12: Figure S4).
In our experiment, we used two cues, DA and IAA, sensed
primarily by AWA and AWC sensory neurons [42–45].
These two sensory neurons synapse on mutual down-
stream interneurons (AIA, AIY) that, along with add-
itional inter and command neurons, control worm
locomotion [46–48], thus presumably serving the point
where sensory information is integrated before dictating
locomotion outputs.
We also demonstrated that the MAT system allows

the study of aging and proteotoxicity-associated dis-
eases. These processes are characterized by gradual
locomotion decline, and quantitative accurate mea-
surements are required to study this slow progression.
Our system accurately captures such minute locomo-
tion changes (Fig. 7). Moreover, aging and proteotoxi-
city effects widely vary from animal to animal,
requiring assaying large population cohorts. The novel
MAT system is particularly suitable to this end as it
allows accurate tracking of animal locomotion in a
high-throughput manner, and can therefore serve as a
powerful system for extensive laborious screens of
mutants or chemical and RNAi libraries.

Conclusions
Herein, we present a novel MAT that provides accurate
high-throughput analyses of complex behaviors. Import-
antly, this user-friendly system is easy to operate and
does not require prior programming skills. With a wide
range of possible uses and the compatibility of studying
various animal models, this MAT will serve as an im-
portant system for elucidating novel principles under-
lying complex behaviors.
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Methods
The MAT
The software suite, together with its freely-available code,
can be downloaded through github (https://github.com/
itskov/MultiAnimalTrackerSuite). The downloaded files
also include a detailed user manual (with exemplar ana-
lyzed movies) for the installation and use of the different
packages in the software.

Machine learning algorithm for the identification of
behaving animals
Segmentation and feature selection
To minimize tracking of erroneous objects, we utilized a
supervised machine learning approach. Prior to tracking,
the GUI prompts the user to mark few samples of genu-
ine animal entities (these will form the training set). The
GUI presents the user with a frame from the experiment
video next to the same frame filtered with the Laplacian
of Gaussian (LoG) filter [49, 50]. That is, the image is
convolved with a matrix M LoG. In this filter, the stand-
ard deviation of the Gaussian, σLoG, is used to control
the preferred size of the entities to be highlighted in the
image. Thus, the user is presented with a scroll bar with
which it can control the size of the σLoG. Basing the
filter on the standard deviation of the Gaussian, σLoG,
allows the system to mark and track entities drawn
from different imaging settings, and/or different
model organisms. The chosen σLoG are subsequently
used to segment the entities that will be then classi-
fied as ‘animals’, or else considered as background,
and thus discarded.
Next, the tracker extracts features from the entities se-

lected by the user. We designed the tracker to extract
the smallest subset of features to enable good perform-
ance with a wide range of different model organisms and
imaging settings. These features include the area of the
entity, and the mean, median, minimum, and maximum
of the entity's pixels intensity. While this small set of
general features is sufficient to accurately segment ani-
mal entities (all the results presented within this paper
use these features only), additional features may be in-
cluded at the users discretion, which will support further
flexibility and efficient segmentation under various cir-
cumstances. The open source code can be easily
accessed and modified as necessary; the identity of the
extracted features is found in the ‘extractFeatures’
method, which is in the tracker object.

The algorithm for calling or rejecting animal entities
Since users choose only ‘positive’ entities, and they are
not asked to mark entities which are not animals, a trad-
itional machine learning approach (as a linear separator,
decision tree, etc.) could not be used. Alternatively, we

found the following described method to be superior to
regression-based classification methods:
Denoting m as the number of entities marked by the

user, and n as the number of features extracted by the
tracker, then S is a matrix of size m× n, for which, for
any i,j entry, the value of Sij is the value of the jth feature
of the ith marked entity. We also denote Σ (of size n × n)
as the covariance matrix of the different features as esti-
mated from S. We measured the distance D of each sam-
ple in the training set, Si, from the estimated distribution
of the features in the video, defined by Σ and μS = E(S),
using the Mahalanobis Distance [51]:

D Sið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Si−μsð ÞT ⋅
X−1

⋅ Si−μsð Þ
q

We observed that the distribution of the distances cal-
culated as above appeared to be unimodal. Thus, we for-
mulated a rejection rule for new entities based on the
distribution of the Mahalanobis distances of samples in
the training set. Any new entity x, an n × 1 vector, was
classified as an ‘animal’ if it held that,

D xð Þ≤T βð Þ
Where T(β) is the value of the Mahalanobis dis-

tance, which is larger than (1 – β) ×m samples in the
training set. Throughout all our experiments, we set
β to be 0.96; however, this value can be easily ad-
justed to control type I and type II errors in the
classification.

Tracking algorithm
We used a simple tracking algorithm which matches
spatially closest entities between consecutive frames (the
only entities considered are entities that were labeled as
animals in the previous step). We incorporated a simple
variation of the Kalman filter [24] to predict the position
of animals that are obscured by other entities as, for ex-
ample, in the case of collisions or in ambiguity in
matching entities between consecutive frames. Prior to
matching an active track to a new entity found in a new
frame, the tracker calculates the track's predicted pos-
ition based on the animal's recent velocities and acceler-
ations. In case the tracker fails to match a single entity
to an active track, it will match the track to its predicted
position. The tracker will maintain tracking when the
animal reappears, or will discard its prediction if no ani-
mal entity was found to match the track during the three
subsequent frames.

Evaluating tracker accuracy
We performed several analyses to evaluate tracker accur-
acy. First, we generated a ‘gold standard’ set of approxi-
mately 500 worms that were manually identified and
marked. Using this training set (which reflects the
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presumably optimal human-eye tracker), we could
estimate the precision of our segmentation and worm
identification process. Specifically, we calculated three
well-known parameters in the field of object identifica-
tion, namely Precision, Recall and Fscore, all as a func-
tion of different training sizes. These parameters,
provided in Fig. 2b, are defined as follows:

(I) Precision: out of X entities classified as worms by
the software, how many were actual worms? Based
on the machine learning algorithm alone, we find
this measure to reach nearly 90% accuracy. In
practice, the prediction feature adds on top of this
to gain over 90% precision.

(II) Recall: out of all worms genuinely found on the
plate (based on the ‘gold standard’ set), how many
are indeed classified by the tracker as worms?
Figure 2b shows that the tracker reaches over 85%
accuracy even when using only 50 worms for the
training set.

(III) Fscore is the harmonic average of the two
parameters (Precision and Recall).

In addition, we assessed the tracker performance when
disabling the machine learning and the Kalman-type
predictor. We find that enabling these features signifi-
cantly improves animal segmentation and tracking
(Fig. 2c and Additional file 6: Figure S1 and Additional
file 7: Figure S2). In particular, these features are import-
ant even when analyzing movies that initially seem to be
‘easy-to-analyze’ with high contrast between animals and
background (see analyses in Additional file 7: Figure S2
and Additional file 8: Movie S5, Additional file 9:
Movie S6, Additional file 10: Movie S7).

Evaluating worm resolution following collisions To
estimate the precision by which our system correctly re-
solves worms after collision, we have taken a similar ap-
proach as described above to evaluate tracker accuracy.
We first defined collisions as events in which worms
have come to a close proximity (less than 15 pixels
which correspond to approximately 0.4 mm in our
setup), and manually matched worm identity before and
after the collision event. This is to be used as our ‘gold
standard’ measure. We then ran our tracker in two
modes, with and without the predictor. The results of
the accuracy of predicting the correct tracks following
collisions are summarized in Additional file 6: Figure S1b.
As evident, applying the predictor significantly improved
detection of worms after collision as only approximately
2% of the cases were not resolved (Resolved 0), whereas
without implementing our predictor, 46% of the collisions
were not resolved. Furthermore, in 44% of the collision
cases, one worm was correctly resolved (as opposed to

16% without the predictor) and in 55% of the cases both
worms were correctly resolved (as opposed to 38% with-
out the predictor).

Chemotaxis assays To get a large synchronized popula-
tion of young adult animals (N2, WT strain), we bleached
gravid worms and plated approximately 1000 eggs on a
90-mm standard NGM plate pre-seeded with 500 μL E.
coli OP 50 culture. These worms were assayed 3 days later
when they reached young adulthood (YA). Before the ex-
periment, the YA worms were rinsed off the growth plates
and washed three times in chemotaxis buffer (1 mM
CaCl2, 1 mM MgSO4, 5 mM K3O4P, pH 6.0). Chemotaxis
assays were performed on Chemotaxis plates, which in-
clude the same ingredients as the chemotaxis buffer with
the addition of 2% agar. Importantly, worms were grown
at 20 °C and behavioral assays were also performed in a
temperature-controlled room at 20 °C.
We marked an equilateral triangle on the plate’s lid

(90-mm round plates) with an edge length of 3 cm. We
used agar chunks soaked (15 μL) with the chemoattrac-
tants of choice and placed them on two of the triangle
vertices (Fig. 3a). On the third vertex, we placed a 5-μL
Chemotaxis Buffer drop of washed worms (we first esti-
mated worms’ concentration in the pellet following the
last wash to plate a desired number of worms). Chemo-
taxis assays were then imaged using a Photometrics
Micropublisher 5 MB camera, using Olympus SZ61 bin-
ocular equipped with a 0.5× lens. To acquire movies we
used our own in-house imaging software that is freely
available with this MAT and which uses MATLAB’s
image acquisition toolbox. Movies were acquired at a
rate of one frame per second.

Calculating worms’ directness in relation to the
chemoattractant target We quantified worm’s direct-
ness towards the chemoattractant at time t by obtaining
the projection of the worm’s velocity (v(t)) on the vector
that connects the worm and the chemoattractant (d(t),
normalized). That is, for each step of each worm, we cal-
culated the following dot product:

proj tð Þ ¼ < v tð Þ; d tð Þ >
d tð Þj j

In the integration experiments we used only projec-
tions of the worms that were on their way towards the
chemoattractant for the first time (and ignored revisiting
worms).

Identification and analyses of pirouettes To study the
role of pirouettes during chemotaxis, we used the same
notations as described previously by Shimomura et al.
[12]; we defined bearing (B) as the angle between the
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worm’s velocity vector and the spatial vector between
the worm’s position and the peak of the chemoattractant.
We used BBefore and BAfter as the bearing immediately be-
fore and immediately after a pirouette event, respectively,
and ΔB as BBefore – BAfter.
We defined sharp turns as succeeding movement vec-

tors with an angle of > 100° between them, and used the
definition suggested by Shimomura et al. [12] for a
pirouette, which is a bout of sharp turns. Following the
observation that run distribution can be described by
the sum of two exponents [12], we chose the minimal
size of a pirouette to be Tcrit = 5 sec. Any run shorter
than this will be considered to be a component of a
pirouette. We defined Bbefore as the average bearing for
three consecutive steps prior to the pirouette, and simi-
larly we defined Bafter to be the average bearing of three
consecutive steps after the pirouette.

Integration of environmental cues We first looked for
two chemoattractants that attract the worm in the same
manner. To do so, we performed an array of chemotaxis
experiments with varying chemicals and concentrations
and examined motility parameters such as chemotaxis
index dynamics, probability for a pirouette, and lengths
of runs, etc. We chose two chemoattractants that
showed the same effect on the worm’s chemotaxis:
0.75 × 10−5 DA, and 0.5 × 10−4 IAA. We then created a
mixture of the two chemicals such that each chemical
was diluted twice in the final solution, and performed
the chemotaxis assay with it. We compared chemotaxis
dynamics, directness, and bearing between the single
chemoattractant experiments and the mixture.

Chemotaxis simulations To study the significance of
directional changes following a pirouette in light of our
findings, we simulated worm courses towards an attract-
ant using three different reorientation strategies, namely
(1) choosing the directional change (ΔB) uniformly be-
tween –180° and +180°; (2) uniformly sampling from the
directional changes observed in our experiments regard-
less of the specific angle in which the worm entered the
pirouette; and (3) we first divided the directional
changes observed in our experiments into two groups –
one group contained directional changes made by
worms which were initially directed towards the target
(–90° < BBefore < +90°), and the other contained direc-
tional changes made by off-course worms (+90° < BBefore

< 270°). We next chose the directional change based on
the angle of the ‘simulated worm’ just prior to the pirou-
ette (e.g., if the worm was initially directed towards the
target then the directional change was sampled from the
directional change group of the directed worms). Inter-
estingly, worms simulated using the third strategy

reached their target significantly faster than if simulated
using the first two strategies (Fig. 5c).
For these simulations, we used a simple model consider-

ing a minimal number of parameters, namely worm start
point, chemoattractant position (target point), and prob-
abilities for a pirouette of directed and undirected worms.
The first two parameters, the start and target coordinates,
were extracted directly from the chemotaxis experiments.
The probability for a pirouette of directed worms was set
to 0.03 per second, reflecting two pirouettes per minute,
and the probability for a pirouette of undirected worms
was set to be five times more probable (0.15). All the an-
gular differences before and after a pirouette were directly
drawn from our experimental data based on directed and
undirected worm behavior. For this, we extracted from
the experimental data all pirouette instances and calcu-
lated angular differences before and after a pirouette and
constructed a distribution curve. For simulations, we drew
angular angle differences based on these distributions. Im-
portantly, the simulation results were not sensitive to
small changes in the parameters set.

Aging- and neurodegenerative-associated locomotion
decline
To study aging- and neurodegenerative-associated loco-
motion decline we prepared animals as described for the
chemotaxis assays above. Briefly, for aging assays, we
employed temperature-sensitive sterile worms (strain
CF512) that become sterile when exposed to 25 °C dur-
ing development. We synchronized animals by bleaching
gravid animals and performed the motility assays on
days 1, 4, 8, and 12 of adulthood. For the daf-2 RNAi ex-
periments we used empty vector as control, and age-
synchronized worm locomotion was measured at days 1,
6, and 12 of adulthood.
To assay locomotion in neurodegenerative-associated

disease we used the AM140 strain. These worms express
the aggregative peptide composed of 35 repeats of glu-
tamine fused to the yellow fluorescent protein in the
body wall muscles [37]. Motility was assayed at days 2,
5, and 8 of adulthood. In all these assays, the repellent
2-nonanone was added to stimulate motility. We started
measuring worm locomotion 2 minutes after the
addition of 2-nonanone for the duration of 1 minute.

Additional files

Additional file 1: The Zaslaver’s lab Multi-Animal Tracker (MAT) - a
user manual.
(PDF 863 kb)

Additional file 2: Movie S1. The Multi-Animal Tracker can track > 100
worms at a time. (AVI 62803 kb)

Additional file 3: Movie S2. The Multi-Animal Tracker can track
multiple flies at a time. (MP4 11655 kb)
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Additional file 4: Movie S3. The Multi-Animal Tracker can track
multiple zebrafish at a time. (MP4 39896 kb)

Additional file 5: Movie S4. The Multi-Animal Tracker can track
multiple mice at a time. The machine learning algorithm, together with
the Kalman predictor, filter out possible noise, such as user intervention,
during the experiment. (MP4 18744kb)

Additional file 6: Figure S1. The tracker implements a machine
learning algorithm and a predictor that contribute to accurate detection
and precise tracking following collision. (a) In a typical long behavioral
assay, condensation on the lid and trail marks left behind significantly
contribute to entities discovered by the tracker. The number of these
entities increases with time (red curve), but since the tracker employs a
machine learning algorithm for animal identification, it ignores these
erroneously detected entities, and the number of genuine animal entities
remains constant throughout the experiment (blue curve). (b) The software
implements a predictor that aids resolving animals following collisions. The
colors/numbers correspond to the number of animals resolved following
collision of two animals: 2 – both animals resolved; 1 – only one animal
resolved; 0 – none. (c) An example of six fully-extracted tracks of six
individual worms during 10 minutes of tracking. Overall, approximately 100
worms were loaded on the plate, and the tracker software can often keep
track of individual animals despite frequent collisions. (TIF 1660 kb)

Additional file 7: Figure S2. Employing both the machine learning
(ML) algorithm and the Kalman-type predictor significantly improves
accurate animal detection and tracking. This is true even when analyzing
a fairly easy movie with clear contrast between animals and background.
We analyzed a crowded arena of swimming zebrafish in three different
ways: (a) disabling both ML segmentation and the predictor; (b) applying
ML segmentation but disabling the predictor; and (c) applying both ML
segmentation and the predictor in the segmentation and tracking
algorithm. To provide a quantitative measure for the advantage using
both the ML and the predictor we calculated tracks’ length (in seconds)
as extracted throughout the movie. Each point (i,j) in the heat map
represents the average track length between time i (y-axis) and time j
(x-axis). We then identified the segments with the longest tracks in each
of these three-way analyses, and averaged them: (a) 0.6 ± 0.02 [s]; (b)
1.15 ± 0.14 [s]; (c) 2.2 ± 0.3 [s]. Thus, employing both the ML and the
predictor improves track length by more than three-fold. The movies
corresponding to these three-way analyses are provided as Additional file 8:
Movie S5, Additional file 9: Movie S6, and Additional file 10: Movie S7,
corresponding to (a), (b), and (c), respectively. Note, in Additional file 8:
Movie S5 (neither ML nor predictor), the many background entities that are
being tracked and the tiny insect that was crawling on the left, which would
have been part of the statistics unless ML was used. (TIF 979 kb)

Additional file 8: Movie S5. An exemplary movie extracting tracks of
swimming zebrafish that does not implement neither the machine
learning (ML) algorithms nor the Kalman predictor. Without using these
features, trajectory extraction is poor despite the fact that animals are
easily detected due to a high contrast with the background. (MP4 39899 kb)

Additional file 9: Movie S6. An exemplary movie extracting tracks of
swimming zebrafish analyzed by implementing ML algorithms only (the
Kalman predictor is not used in these analyses). While segmentation and
trajectory extraction is improved when compared to analyses that use
neither of them, the results still fall short if compared to analyses that use
both (the ML and Kalman predictor). (MP4 33474 kb)

Additional file 10: Movie S7. An exemplary movie extracting tracks of
swimming zebrafish analyzed by implementing both ML algorithms and
the Kalman predictor. Using both features significantly improves
segmentation and trajectory extraction. (MP4 35674 kb)

Additional file 11: Figure S3. Various chemotaxis parameters are
dose dependent. Histograms of (a) probability for a pirouette, (b)
probability for reversal/sharp-turn, (c) run lengths (time between
reversals). (TIF 670 kb)

Additional file 12: Figure S4. Worms integrate environmental cues
and enhance chemotaxis towards richer environments. When presented
with a mixture of cues (c, d), worms are more likely to maintain their
general direction following a pirouette (ΔB < Π/2), as compared to worms
presented with each of the components separately (a, b, d; P < 0.005).

We could not detect a significant increase in the probability for a larger
directional change for worms that were presented with a mixture,
compared to worms that were presented with single components of the
mixture (P > 0.2). (TIF 943 kb)

Additional file 13: Table S1. The raw data of the individual replicates
used to produce Fig. 7a, c, d. (XLSX 208 kb)
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