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Knowing where the nose is
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Abstract

Improvements in imaging technology and the
development of powerful machine learning
algorithms are revolutionizing the study of animal
behavior in the laboratory. These innovations promise
to reveal both global and local features of action
relevant to understanding how the brain functions.
A study in BMC Biology describes one such tool called
OptiMouse, which is an open source platform that
uses video to capture key features of mouse behavior,
including information relevant to olfactory investigation.
parameters are hidden so far under the hood that it is not
Commentary
Traditionally, studies of rodent behavior have been
performed using focused lenses: for conceptual and/or
technical reasons high-dimensional behavior is collapsed
into a much smaller number of dimensions, which are
usually hand-selected based upon the hypothesis the
researcher wishes to test [1]. For example, the locomotory
exploration of an open field by a mouse—a simple yet
incredibly rich pattern of behavior—is typically reduced
into a single metric capturing the number of times the
mouse enters the center of the arena [2]. The recent
availability of cheap and high-resolution video cameras,
powerful computing hardware, and sophisticated statis-
tical techniques, adapted from fields such as machine
vision and machine learning, is enabling a dramatic shift
towards more quantitative and objective methods of
behavioral analysis. Significant improvements have been
made over the past 5 years in camera resolution, feature
extraction, animal tracking, supervised behavioral identifi-
cation, and unsupervised identification of behavioral
modes or motifs, for example, and many of these methods
have been packaged into end-to-end pipelines in which
rodents are imaged on the front end and a dizzying
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array of parameters describing behavior are spit out
the back end [3–6].
However, these pipelines have two important constraints

that often limit their usefulness. First, there is limited
generalization. The code that converts video images into
data relies upon a set of parameters that typically are
specific to a particular camera, lighting condition, and
arena. If these parameters are hard-coded (as they often
are), analysis of video obtained under experimental condi-
tions that differ from those used to build the analytical
pipeline can fail, limiting the types of hypotheses one can
test. Second, there is a lack of transparency: often these

clear why some videos are easily handled while others
remain refractory to analysis. Addressing these problems
is crucial given the parallel advances being made in
methods for probing the structure and function of the
nervous system, including gene editing, pharmaco- and
optogenetics, and high-density neural recordings; under-
standing how manipulating a gene or neural circuit influ-
ences behavior—or how patterns of neural activity might
be correlated with patterns of action—will necessarily
require the generation and analysis of large-scale behavioral
data, largely in the form of video.
Work published this month in BMC Biology from

Yoram Ben-Shaul and colleagues adds significantly to the
field by providing an open-source MATLAB-based toolkit
(called OptiMouse) to identify a mouse’s spatial features
within a given experiment [7]. Although there are
available methods that provide some of its functionality,
OptiMouse is explicitly built for configurability, and hence
generalization. Users input video into the pipeline, and
then are able to toggle through different sets of parame-
ters to observe how each affects the extraction process,
eliminating errors for any measured variable (like the
mouse centroid, or the position of the nose; Fig. 1). If the
multiple image processing algorithms that are supplied
with OptiMouse are unsuitable, the user can supply his
own algorithm for mouse detection. OptiMouse allows
explicit comparisons to be made between parameter sets
and addresses non-stationarities in the video (a common
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Fig. 1. OptiMouse enables a configurable and interactive workflow to minimize mouse feature errors within a video recording. Multiple parameter
sets can be defined for mouse extraction (left panels), then the best detection algorithm is picked to minimize detection errors (middle panels).
Different parameters and algorithms can be used on different blocks of the same video for optimal detection. The whole process can be repeated
until the desired detection performance is reached (right panels). Figure adapted from [7]. ROI Region of interest
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problem in real-world experimental scenarios) by enabling
distinct parameter sets to be applied to different segments
of any behavioral video. This capacity is particularly
powerful, as in effect OptiMouse represents not one
solution to the problem of behavioral image analysis, but
many. Coupled to this is the ability to quickly review
extracted data to get a sense of the number and nature of
errors that remain after applying the parameter sets,
enabling fast correction. Thus, human supervision plays
an essential role in using OptiMouse, but the “pain” of
reviewing videos is minimized with rational interface
design and automation.
Fig. 2. A cartoon dataset illustrating how measuring where the nose is ma
explore and exploit resources in their environment. In this cartoon, high fre
with local exploitation, whereas low frequency movements are used to inte
In addition to developing a platform for rapid and trans-
parent behavioral analysis, OptiMouse explicitly measures
the position of the mouse’s nose with respect to the mouse’s
body and arena. Olfaction is an essential sense used to
forage for food in the wild, to avoid potentially deadly
conflicts with conspecifics or predators, and to obtain
suitable mates [5]. Because olfaction is an active
sense—optimal sensory interrogation requires the nose to
be actively positioned by the mouse, followed by rapid
inhalation to facilitate odor sampling—understanding the
position of a mouse’s nose is crucial for understanding
how the mouse processes odor information [8]. Indeed, a
y lead to insight into the underlying strategies used by mice to
quency nose movements reflect investigatory strategies associated
rrogate space as part of exploratory strategies
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large subset of the mouse’s behavior in a given arena
appears to be some sort of rearing or sniffing behavior, as
if their body dynamics are disproportionately devoted to
probing the olfactory world [9]. However, nose tracking is
notoriously difficult for most automated behavioral
classification software, in part because the context in which
the nose is found in the video is constantly evolving. As a
consequence of this limitation, we lack an understanding
of both how basic odor sampling is accomplished by
rodents and how neural activity in olfactory centers might
be altered as a consequence of active sampling.
The development of OptiMouse therefore raises the

possibility of building assays in the lab explicitly
designed to probe different strategies for olfactory
sampling. For example, foraging animals could engage in
exploratory or exploitative strategies depending upon
internal and external factors [10]. By better defining the
dynamics of nose position in relation to odor objects in
an arena, OptiMouse may be useful for revealing how
neural representations for odors are modulated as a
function of position, and lead to sensible behavioral
decisions in response to a given cue. For instance, one
could imagine that sweeping low frequency head move-
ments employed during exploration are optimized to
sample a broader region of space, in order to sample a
novel environment more quickly, while short high
frequency head movements employed during exploitation
are optimized to facilitate short travel times to a known
target such as a food patch (Fig. 2).
Given the robustness of the image processing frame-

work within OptiMouse, one could even imagine using
this tool in the future to explore olfactory sampling in
complex environments such as those including multiple
mice. By design, OptiMouse is meant to be modular, and
can integrate with Matlab data processing code seam-
lessly, allowing it to be updated by a user community
over time. While machine vision approaches to charac-
terizing behaviors are currently challenged by complex
or dynamic environments, as tools for segmenting
objects in video data improve, the capability of
OptiMouse can be augmented to enable ever-more
sophisticated measurements of mouse behavior.
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