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Life behind the wall: sensing mechanical
cues in plants

Olivier Hamant1* and Elizabeth S. Haswell2*
Abstract

There is increasing evidence that all cells sense
mechanical forces in order to perform their functions. In
animals, mechanotransduction has been studied during
the establishment of cell polarity, fate, and division in
single cells, and increasingly is studied in the context of
a multicellular tissue. What about plant systems? Our
goal in this review is to summarize what is known
about the perception of mechanical cues in plants,
and to provide a brief comparison with animals.
under tension, peeled epidermises contract. Similarly,
Plants are pre-stressed structures
Where does mechanical stress come from in plants? The
intrinsic origin of mechanical stress in animals is multi-
fold, from blood hydrodynamics flow [1], muscle de-
formation [2], or contractile actomyosin cytoskeleton
[3]. In plants, if one excludes mechanical perturbations
coming from the environment, like the wind, the intrin-
sic cause of mechanical stress comes down to turgor
pressure only [4]. In particular, because plant cells re-
main glued to each other through their cell walls, they
do not migrate or change relative positions. Moreover,
in young, growing tissues, cell death does not usually
occur. This means that the pattern of stress will derive
from pressure stress (shape-derived stress, with cells and
tissues modeled as pressure vessels; Fig. 1) and growth-
derived stress (turgor pressure being the motor of
growth, differential growth and resulting mechanical
conflicts will in the end originate from turgor pressure
too). Altogether, this means that plant cell biomechanics
is much simpler to approach and to model than in ani-
mals, as it comes down to solid mechanics, with a bal-
ance between turgor pressure and cell wall tension.
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Interestingly, the balance between turgor pressure and
wall tension at the cell level also scales to the tissue
level. There is accumulating evidence that the epidermis
plays a load-bearing role in plant development [5], a bit
like the cell wall for cell growth. In particular, in the aer-
ial parts of plants, the epidermis often displays thicker
cell walls, arguably to provide higher resistance to ten-
sion, and in turn revealing where the maximum of ten-
sion is. Note that thicker walls may not always be stiffer,
as wall stiffness will mainly depend on the composition
and texture of the wall. Consistent with an epidermis

superficial cuts in organs usually lead to gap opening [6].
This was notably shown with cuts at the center of sun-
flower meristems [7] and in Arabidopsis cotyledons [8].
The ability of inner tissues to push on the epidermis has
also been nicely illustrated with the observation that ar-
tificially increasing cell proliferation and cell growth in
inner tissues in mutants can generate cracks in the epi-
dermis [9]. Conversely, compressing the shoot apical
meristem externally with an indenter results in an elastic
response that is more compatible with a pressurized
shell than an aggregate of cells [10]. Altogether, plant
systems at the cell or tissue level can be considered as
pre-stressed systems, with a balance between an enve-
lope (cell wall or epidermis) under tension surrounding
content under compression (Fig. 1). This makes the
plant system a very competitive model for tissue bio-
mechanics: not only are the mechanical bases of multi-
cellular growth much simpler than in animals, but also
the (epidermal) layer that channels morphogenesis is im-
mediately accessible to the microscope.
Here a word of caution needs to be put forward. In-

ternal layers also contribute to morphogenesis, obvi-
ously. For instance, vasculature and leaf development
are highly coordinated [11] and the contributions of the
different epidermal domains in making leaves flat can
vary, the marginal meristems being particularly crucial
[12, 13]. Furthermore, in roots, the outermost and stiffer
layer would be the endodermis, which is located deep
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Fig. 1. Plants are pre-stressed structures and, in turn, plant cells respond to mechanical cues. a Pre-stressed structures are more resilient to mechanical
fluctuations and are also energy efficient: a suspension bridge, in which beams are under compression and threads under tension, provides a response
to the weak ability of concrete to resist compression, while better allowing swinging and dilatation than an arched bridge. A balloon, with an envelope
under tension and a gas under compression, is a pre-stressed structure. When exhibiting a cylindrical shape, such an inflated balloon would display an
anisotropic stress pattern, with tension being twice as high in the circumferential direction as in the axial direction. b The epidermis of plant aerial
organs is under tension, while inner tissues are under compression. Therefore, in the cylindrical stem, tensile stress is predicted to be twice higher
transversely than axially. At the apex of the stem, the hemispherical shape of shoot meristem prescribes isotropic tensile stress patterns. Local
mechanical conflicts thus arise from cell shape or local differences in growth between adjacent cells. c At the shoot apical meristem, as cells
are advected away from the meristem center, cells become exposed to varying degrees and direction of mechanical stresses; in turn, such
cues can affect cell division plane orientation, gene expression (for example, STM expression in green) or cell polarity (for example, PIN1 recruitment to
the plasma membrane in red)
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inside the tissue and likely plays a role similar to the epi-
dermis in the aerial organs for shaping the root, together
with the vasculature [14, 15]. Last, while many molecular
regulators of growth are only expressed in the epidermis
(for example, the auxin efflux carrier PIN1 is expressed in
the epidermis at the shoot apical meristem [16] or the ex-
pression of brassinosteroid receptor BRI1 only in the epi-
dermis can rescue the bri1 mutant [5]), many of these
factors can diffuse at the protein or mRNA level, or affect
inner layers. There is, for instance, evidence that, while
the cytokinin synthesis gene LOG4 is expressed in the epi-
dermis of the meristem, cytokinin can diffuse inward from
that layer, thus impacting other layers [17]. The question
one thus needs to address is whether inner layers are fol-
lowing inputs from the epidermis, and whether they can
counteract or resist that input. In the case of the cytokinin
gradient, it seems that internal layers use this cue to
modulate the expression pattern of key regulators of the
stem cell niche (CLV3 and WUS) and scale their expres-
sion to meristem size [18].
Another word of caution relates to the observation

that intrinsic and external mechanical stress cannot be
uncoupled so easily in plants. Plants are constantly
under mechanical stimulation from their environment,
and plants’ final shape is the result of their responses to
both internal turgor pressure and external mechanical
perturbations [19]. For instance, stem bending can
induce a long distance hydraulic pulse that can in turn
slow down growth systemically [20].

Plant cells respond to mechanical signals
One of the first pieces of evidence that plant cells can
respond to mechanical stress relates to cell division
plane orientation. Several studies have convincingly
shown that patterns of cell divisions in plant tissues can
be recapitulated with cells dividing along one of the
shortest paths [21–23]. When Léo Errera originally
stated that plant cells divide along their shortest path
(like Oscar Hertwig for animal cells at the same time,
[24]), he was using an analogy with soap bubbles [22,
25]. While this rule is often restricted to its geometric
terms, the analogy of soap bubbles has mechanical im-
plications, in the form of patterns of surface tension.
Following up on those, several studies using mechanical
deformations showed that cell division plane orienta-
tions could indeed be modified following a change in
tensile stress pattern (for example, [26]). By analyzing
cell divisions in tissues experiencing mechanical conflicts
due to differential growth (the boundary between shoot
meristem and organ) and due to tissue shape (circumfer-
ential stress being higher in stems because of their cylin-
drical shape, assuming an epidermis under tension), it
was found that cells actually divide along maximal ten-
sion, or in other words plant cells build a new wall in
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the orientation that best resists maximal tensile stress
[27] (Fig. 1). Note that mechanical signals may also
affect the cell cycle dynamics. This is the subject of
many studies in animals, notably in relation to cancer
(for example, [28]). While this remains to be investigated
in plants, there is some indirect evidence that similar ef-
fects could be present. For instance, the highly tensed
boundary domain between meristem and organ is also a
site of decreased division rate [29], and artificial com-
pression of shoot meristems leads to a transient arrest of
cell division [30].
As in animals, the cytoskeleton is also a central feature

of the plant cell’s response to mechanical stress. Only a
few years after microtubules were discovered (in plants,
[31, 32]), Paul Green and colleagues proposed that cortical
microtubules align with maximal stress [33]. Conceptually,
this is consistent with the alignment of the cell division
plane with tensile stress: the cell would reinforce its struc-
ture to resist stress, while the tissue would orient its new
walls to resist maximal stress. Indeed, by aligning their
cortical microtubules with stress, plant cells would guide
the trajectory of plasma membrane-localized cellulose
synthase complexes, thus reinforcing the wall with cellu-
lose microfibrils in the orientation of maximal stress [33,
34]. Mechanical tests in sunflower hypocotyls [35] and
Arabidopsis shoot meristems [30] later formally validated
that hypothesis. Although actin seems to orient along
maximal tensile stress too, this remains poorly docu-
mented in plants [36].
Gene expression has also long been known to be

under mechanical control in plants. In particular, the de-
velopmental response to touch, or thigmomorphogen-
esis, involves a complete reprogramming of growth, and
thus of gene expression. The most famous genes have
even been called the TOUCH (TCH) genes, being in-
duced within minutes after touch [37, 38]. Some of these
genes may be involved in signaling. For instance, TCH3
encodes a calmodulin-related protein, which interacts
with the PINOID S/T kinase [39]. Others may also con-
trol wall properties, like TCH4, which encodes a xyloglu-
can endotransglucosylase/hydrolase [40]. Yet, most tch
mutants display wild-type phenotypes, leaving their
exact role in the plant response to touch an open ques-
tion. Two transcription factors associated with mechan-
ical stress have attracted more attention in recent years.
In poplar, the expression level of the zinc finger protein
PtaZFP2 has been shown to scale to the extent of stem
bending, and thus its expression may in principle be in-
volved in the perception of tissue deformation [41]. At
the shoot apical meristem, the promoter activity of the
homeobox gene SHOOT MERISTEMLESS is enhanced
in the boundary domain of the meristem, which is a re-
gion of high mechanical stress [42] (Fig. 1). Note that,
unlike Twist in Drosophila [43–45], STM is not
expressed ectopically following mechanical perturba-
tions, suggesting that mechanical forces are not the trig-
ger for expression, but rather an additional factor adding
robustness to previously established expression patterns.
Last, as in animals, cell polarity is also in part under

mechanical control in plants. The recruitment of the
auxin efflux carrier PIN1 to the plasma membrane de-
pends on membrane tension in the shoot apical meri-
stem [46], and PIN1 localization to one side of the cell
may involve, at least to a certain degree, local differences
in tension emerging from differential growth between
adjacent cells [47] (Fig. 1). Note, however, that the exact
contribution of membrane tension to PIN1 polarity re-
mains to be assessed quantitatively. In particular, the re-
markable regularity of organ positions along the stem,
despite the presence of cell ablations or microtubule
depolymerization at the shoot apical meristem where
new organs are initiated, would suggest that PIN1 can
become correctly polarized even when the stress pattern
is strongly affected. Recently, mechanical forces have
also been shown to affect the global pattern of polarity
of the BRXL2 protein in leaves [48], showing that planar
cell polarity in leaves also include a mechanical contri-
bution, as in the Drosophila wing disc for instance [49].
The finding that mechanical forces play an instructive

role in cell and developmental biology across kingdoms
provides a strong incentive to identify and compare the
corresponding mechanotransduction pathways. In plants,
the molecular mechanism by which mechanical force in-
forms developing morphology is not yet known. However,
a recent accumulation of discoveries regarding mechano-
receptors that perceive internal stimuli such as osmotic
swelling or external stimuli such as touch demonstrates
that plant mechanoperception can occur at multiple
scales. We suspect that at least some of these same
mechanisms will be used for developmental purposes
as well.

Plant mechanoperception: the molecular scale
How molecular mechanoreceptors change conformation
in response to force is an intriguing but extremely
poorly understood biophysical and cell biological prob-
lem. Our lack of knowledge is particularly obvious when
compared to what we know about the ligand- or light-
induced conformational changes that activate photore-
ceptors or hormone receptors in plants. While the cell
wall or the cytoskeleton can be deformed, or deform
proteins that are linked to them in response to mechan-
ical force, the complexity of composition and topology
of either network makes it difficult to model successfully.
Prediction is much simpler at the plasma membrane,
where force can act in two constrained dimensions on the
membrane in which a protein is embedded. Not coinci-
dentally, the membrane is where our knowledge of
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mechanosensing in plants is (at the moment) the most
advanced.

Mechanosensitive ion channels
The most conceptually straightforward membrane-bound
mechanosensory molecules are mechanosensitive (MS)
ion channels (Fig. 2). MS ion channels provide a gated
conduit for the passage of ions across a membrane in re-
sponse to mechanical stimuli. Overviews of MS channel
structure, function, and regulation across species can be
found in several recent reviews [50–52]. Intrinsically
mechanosensitive ion channels are directly opened by in-
creased lateral membrane tension (Fig. 3a); other MS
channels may be opened via connections to extracellular
or intracellular structures. Once opened, a channel allows
ions and other osmolytes to pass across the membrane
down their electrochemical gradient. While to some de-
gree all ion channels (and really, all membrane proteins)
are mechanosensitive, MS ion channels are distinguished
by the fact that their primary gating stimulus is force.
Many diverse and evolutionarily unrelated families of

MS ion channels have been found in all branches of the
tree of life. In plants, MS channels have been proposed
to underlie a range of physiological events, including the
perception of gravity, vibration, touch, hyper-osmotic
and hypo-osmotic stress, pathogenic invasion, inter-
action with commensal microbes, and pollen tube
growth [51, 53–55]. Indeed, Ca2+ fluxes and changes in
pH have long been correlated with mechanical stimuli
[56–58], and recent gene expression analyses reveal the
upregulation of predicted MS ion channel genes in re-
sponse to mechanical signals [59, 60].
Since their initial discovery in plant membranes almost

30 years ago [61–63], over 20 different MS ion channel ac-
tivities in plant membranes have been identified and char-
acterized to varying degrees (summarized in [50]). It is
now clear that MS ion channel activities are widespread in
Fig. 2. Families of likely plant mechanosensitive ion channels. From left to
Potassium (TPK), Reduced hyperosmolality-induced [Ca2+] increase (OSCA), an
The presence of homologs in bacterial, plant, and/or animal genomes is indic
channel, but for simplicity no directionality nor specificity is shown
plants from green algae to rice, that MS channels can be
expressed in specific cells like leaf mesophyll, guard cells,
root cells, and pollen tubes. They also localize to diverse
cellular membranes, from the plasma membrane to the
vacuolar membrane to the inner membrane of endosym-
biotic organelles. Over the past decade, remarkable pro-
gress has been made in assigning molecular identity and
physiological function to this list of mechanosensitive ion
channel activities. At present, five families of MS ion
channels or good candidates have been identified in plants
(Fig. 2); however, we note that this is unlikely to be an ex-
haustive list.
The MscS-like, or MSL, channels are homologs of the

bacterial MS channel MscS: slightly anion-preferring, in-
trinsically mechanosensitive channels localized to the
mitochondria, plastids, and plasma membrane of a var-
iety of plant tissues. In general, MSL proteins appear to
serve as tension-regulated osmotic safety valves [64, 65],
although more complex roles have also been suggested
[66–68]. The Mid1-complementing activity (MCA) pro-
teins were identified by virtue of their ability to rescue a
yeast Δmid1 phenotype. MCA gene overexpression is as-
sociated with the increased stretch- and hypo-osmotic
shock activated Ca2+ influx [69–71] and in Arabidopsis
MCA1 and MCA2 are redundantly required for root
penetration of hard agar [69]. Plant genomes also encode
several vacuolar two-pore potassium (TPK) channels
that can be mechanically gated during patch clamping
[72]. Other likely candidates include the reduced
hyperosmolality-induced [Ca2+] increase (OSCA)/Cal-
cium-permeable Stress-gated cation Channel (CSC) fam-
ily, which mediates Ca2+ influx in response to increased
osmolarity of the extracellular media. Mutants lacking
functional OSCA1 exhibit osmotic-stress related defects
[73–75]. Finally, the MS channel Piezo has emerged as a
central regulator of many physiological and developmen-
tal functions in animals (for example, [76–80]), but
right: MscS-like (MSL), Mid1-Complementing Activity (MCA), Two Pore
d Piezo channel families, with their proposed primary ion permeability.
ated with a checkmark. The predominant ion flux is shown for each



Fig. 3. Mechanoreceptors can operate at several distinct scales. a Mechanosensitive ion channels provide a clever mechanism to transduce physical
force (in the form of lateral membrane tension, red arrows) into a change in cellular state (in the form of ion flux). b Trichomes, uniquely shaped cells
of the plant leaf and stem epidermis, serve as cellular mechanoreceptors by focusing force applied anywhere along the length (red arrows) into a
buckling movement only at the base (shown in purple). c Utricularia suction traps may be triggered through a purely mechanical mechanism that
relies on a biomechanically bistable structure. Displacement of hairs on the trapdoor leads to rapid opening and closing (not shown) of the trapdoor
and any nearby prey is aspirated into the trap
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nothing has yet been reported for any plant Piezo
homologs.
Solid proof that a protein encodes an intrinsically MS

ion channel can be elusive. Increased ion flux in response
to cell swelling or shrinking is often described as evidence
of a mechanosensitive channel at work. However, the
timescale of cell volume changes is relatively slow, changes
in ionic and osmotic conditions introduce complexity to
the interpretation of current, and the channel could still
be associated with the cytoskeleton or cell wall. As a re-
sult, ion flux in response to swelling/shrinking is not
strong evidence for the involvement of an intrinsically
mechanosensitive ion channel [52]. Further, linking chan-
nel conductance of a candidate mechanosensor to physio-
logical effects requires a range of approaches (not to
mention serendipity) and so far has been accomplished
for only a few channels in bacteria (MscS, MscL), animals
(NOMPC), and plants (MSL8) [81–85].
Arabidopsis MSL8 is expressed exclusively in pollen,

which harbors the male gametes; and while it is not re-
quired for pollen development, it is required for the full
survival of pollen grain rehydration and pollen tube
growth [65]. Several lines of evidence suggest that the
right level of MSL8 activity is crucial: too little and the
pollen will not survive swelling during dehydration; too
much and the pollen cannot germinate. Presumably
MSL8 serves as a release valve for ions, supporting os-
motic balance during the extreme challenges of rehydra-
tion and germination. Single point mutations in the
presumptive pore-lining domain of MSL8 alter both its
electrophysiological characteristics and its ability to pro-
tect pollen during rehydration and prevent germination
when overexpressed, supporting the proposal that the
MSL8 channel serves directly as a mechanotransducer.

Secondary molecular mechanoreceptors
Direct perception through conformational change is only
one way for mechanical force to be perceived; it is also pos-
sible to perceive the downstream products of mechanical
events. For example, several classes of receptor-like kinases
(RLKs) may participate indirectly in mechanoperception by
detecting cell wall damage. These include, among others,
the wall-associated kinases (WAKS) and the Catharanthus
roseus RLK family (crRLKs) [86, 87]. WAKs possess an
extracellular domain capable of binding the pectin back-
bone and pectin fragments in the cell wall. Genetic
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evidence indicates they are required for cell expansion dur-
ing normal development and contribute to pathogen re-
sponse signaling [88]. Mutations in the crRLK FERONIA
result in mechanosensing defects in roots, including an in-
crease in skewing, a defect in penetrating hard agar, and an
alteration in the rapid touch-induced cytoplasmic Ca2+ sig-
nature [89]. FER and other crRLKs such as THESEUS,
ANXUR1, and ANXUR2 may sense cell wall integrity via
extracellular maltose-binding domains [81, 90]. However, a
recent report argues that FER serves as a scaffold to
organize other receptors [91]. The latter proposal may ex-
plain the observations that the FER kinase activity is not
required for mechanosensory or reproductive functions
[89, 92], as well as the wide range of pleiotropic pheno-
types in the feronia mutant [90]. More generally, wall sens-
ing through RLK often goes beyond mechanosensing, and
also involves metabolism, biotic and abiotic stresses (for
example, [93]). We also note that RLKs could act in syn-
ergy with mechanosensitive channels, adding additional
complexity to mechanotransduction pathways.
The mechanism by which mechanical signals, both in-

ternally and externally derived, are initially perceived at
the molecular level is an exciting area of current research
at the intersection between physics, cell biology, and en-
gineering [94]. Accordingly, and as can be seen in the re-
search descriptions above, research in this area requires
diverse approaches. Molecular genetics in Arabidopsis
thaliana and Populus trichocarpa, live cell imaging, whole
cell and excised patch clamp electrophysiology, and math-
ematical modeling have been used to study mechanobiol-
ogy. Novel engineering approaches are already helping to
overcome the difficulty of controlling mechanical forces,
which cannot be manipulated as simply as molecules, and
to address the problem of surveying or stimulating the
membrane through the thick pectocellulosic plant cell
wall. For example, genetically encoded biosensors devel-
oped for ions, pH, and small molecules have revolution-
ized the study of plant cell biology and signal transduction
[95–97], and one way to maintain endogenous conditions
during mechanobiology experimentation may be the fu-
ture development of fluorescent biosensors that quantita-
tively report on physical parameters such as turgor or
membrane tension [51, 98].

Plant mechanoperception at the cellular and
organ scales
Cellular mechanoreceptors
Cells can also serve as mechanoreceptors. As described
in Section 2, it is likely that most cells are capable of
sensing mechanical signals to coordinate development
and maintain shape. “Cellular mechanoreceptors” is thus
used here to indicate cells whose primary function is to
sense a mechanical force. One of the most well-known
examples is the trigger hairs of the Venus flytrap.
Specialized for touch perception and located on the
inner surface of the trap lobes, they sense the presence
of an insect or spider, and if the stimulus is repeated, will
trigger the closing of the trap [99, 100].
The common trichomes of the Arabidopsis leaf surface

(shown in Fig. 3b) have recently been shown to serve as
unicellular force-focusing mechanoreceptors. Finite elem-
ent modeling supports a model wherein force applied any-
where along the length of the stiff trichome preferentially
results in folding at the base of the trichome (called the
“pliant zone”), creating a mechanically sensitive switch.
This effect may require a gradient of cell wall thickness,
thinnest towards the base [101, 102]. Deformation or
brushing of the distal part of a trichome leads to an in-
crease in apoplastic pH and cytosolic Ca2+ oscillations in
the cells at the base of the trichome, where it joins the epi-
dermis [101]. It is proposed that trichomes may be capable
of triggering toxin production or release in response to
mechanical signals produced by herbivorous insects; they
may also serve as touch receptors during thigmomorpho-
genesis—the altered developmental program many plants
initiate in response to repeated mechanical disturbance
[103]. Although trichomes are structurally very different
from cilia, their cell geometry serves to amplify the re-
sponse to external mechanical cues, echoing the function
of cilia in response to shear stress or hydrodynamic flow
in animal systems (for example, [1]).

Mechanoreceptor organs
The formation of bistable structures capable of rapid
and reversible transition from one state to another
(snap-buckling) may allow multicellular structures to
serve as mechanoreceptors. While each state is stable, a
small input of force sufficient to tip the balance towards
the other state will result in a large structural change,
often organ movement [104–106]. The trapping mech-
anism of the aquatic carnivorous bladderwort Utricu-
laria spp. may be such a system [107]. The opening of
tiny (~1 mm) suction traps of Utricularia inflata may be
the fastest movement in the plant kingdom, on the order
of a millisecond [108].
Under calm conditions, the Utricularia suction trap is

maintained under negative water pressure, most likely
through the pumping action of specialized glands [107,
109]. When prey come into contact with hairs at the
mouth of the trap, the door instantly opens, sucking
prey along with water into the chamber, and then just as
rapidly closes. Modeling experiments as well as observed
spontaneous firing events suggest that, due to buckling
instability in the trapdoor, only a small disruption of its
seal is required to trigger buckling and then full opening
of the trapdoor [110–112]. These data support the pro-
posal made by Lloyd in 1929 [113] that the trigger hairs
serve only as levers that are pushed by the prey. It
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remains possible, however, that the hairs instead serve as
physiological sensors capable of inducing the propaga-
tion of an electrical signal and the closing of a bistable
trap (as do the trigger hairs of the Venus flytrap [97])
but few data exist to support this proposal [107, 111].
Plants and animal mechanoperception—similar
but different
To conclude, while both plants and animals respond to
mechanical stimuli for their development and physiology,
their mechanosensing pathways are only partially homolo-
gous. The differences may be due to substantial quantita-
tive difference in stress levels: osmotic pressure in animal
cells is in the kPa range while plant cells experience turgor
pressure in the MPa range. Divergence in mechanosensing
pathways may also relate to qualitative differences in the
growth and deformation strategies of plants and animals:
because of the presence of a stiff cell wall in plants, de-
formation in plants is triggered either by growth or by
(potentially rapid) changes in turgor pressure. In contrast,
deformation and the corresponding changes in stress pat-
terns in animals usually comes down to contractility-
related mechanisms. This idea is supported by the appar-
ent absence of focal adhesion proteins such as vinculin
and actinin, and Yap/Taz proteins in plants. On the other
hand, the ownership of a plasma membrane is a funda-
mental characteristic of a cell, and correspondingly MS
channels may provide a universal approach to force per-
ception [114].
Yet, the questions of how endogenous mechanical

forces are sensed and the threshold beyond which a re-
sponse to mechanical signals is triggered largely remain
unanswered, notably because of the lack of quantitative
approaches to measure stress levels at subcellular scales.
The current development of FRET-based tension sensors
is an important step in that direction. In the future, it
might be possible to determine the threshold beyond
which channels and mechanosensors are activated, and
the threshold beyond which the cell response to such
signals is amplified. This may very well help us under-
stand how cells discriminate between mechanical noise
and mechanical signals, an important question both for
signals that originate inside and for those that originate
outside the cell wall.
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