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Targeting protein quality control pathways
in breast cancer
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Abstract

The efficient production, folding, and secretion of
proteins is critical for cancer cell survival. However,
cancer cells thrive under stress conditions that
damage proteins, so many cancer cells overexpress
molecular chaperones that facilitate protein folding
and target misfolded proteins for degradation via
the ubiquitin-proteasome or autophagy pathway.
Stress response pathway induction is also important
for cancer cell survival. Indeed, validated targets for
anti-cancer treatments include molecular chaperones,
components of the unfolded protein response, the
ubiquitin-proteasome system, and autophagy. We
will focus on links between breast cancer and
these processes, as well as the development of
drug resistance, relapse, and treatment.
regulate the receptor, induce receptor degradation, or
Breast cancer subtypes and cellular protein
quality control pathways
Breast cancer is a complex and heterogeneous disease
that remains the most prevalent cancer diagnosed in
women and is responsible for the greatest proportion of
cancer-related deaths in women [1]. Breast cancers are
divided into different subtypes depending on the expres-
sion of hormone receptors, including estrogen receptor
(ER), progesterone receptor (PR), and epidermal growth
factor receptor 2 (HER2 or erbB2) [2, 3]. Luminal breast
cancers are characterized by ER overexpression and fall
into the luminal A or B class, in which, respectively,
either both ER and PR are overexpressed or ER is over-
expressed and HER2 may also be overexpressed. HER2-
positive breast cancer, in which HER2 is overexpressed,
represents another subtype, and can be diagnosed at a
younger age compared to the luminal A and luminal B
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cancers. Finally, triple negative breast cancers (TNBC)
are ER-, PR-, and HER2-negative [2, 3].
ER-positive breast cancer groups are especially preva-

lent and mainly afflict postmenopausal women because
luminal cells become more sensitive to estrogen (17β-es-
tradiol or E2) levels as a result of hormonal fluctuations
[4]. Activation of the ER signaling cascade stimulates cell
division, tumor growth, and metastasis. Therefore, ER-
positive patients are initially treated with anti-estrogen
therapies [5] (Table 1). Tamoxifen was one of the first
FDA approved drugs used to treat these patients, is a
non-steroid inhibitor of the receptor, and blocks down-
stream signaling [6, 7]. However, in many tamoxifen
treated patients, ER activation was still detected,
highlighting the demand for improved compounds and
new targets [8]. In fact, since tamoxifen was approved,
different ER-targeted drugs were introduced that down-

attenuate ER signaling (Table 1) [9–12]. Nevertheless,
endocrine-treatment resistance remains one of the
leading causes of breast cancer mortality [12, 13].
The HER2 amplified class represents 15–20% of all the

breast cancers and patients with this variant have bene-
fited from significant clinical successes [3, 14]. HER2
plays a key role in cellular hemostasis and tissue devel-
opment (such as during epithelial mammary gland
organization [15]). There are four members of the HER
tyrosine kinase family, HER, HER2, HER3, and HER4
(also known as EGFR, erbB2, erbB3, and erbB4, respect-
ively), and maintenance of proper receptor numbers at
the plasma membrane is critical for signal transduction
[15, 16]. Upon ligand binding, the receptors homo- or
hetero-dimerize, inducing an intracellular signaling
cascade [17]. Receptor endocytosis also represents a key
regulatory event [16]. While many ligands for EGRF,
HER3, and HER4 are known, no HER2 ligand has been
identified. Moreover, in contrast to the other family
members, HER2 is the preferred dimerization partner of
the other HERs, in particular HER3, which activates
downstream PI3K/Akt signaling [18–21]. Preclinical
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Table 1 Examples of drugs used in ER-positive breast cancer treatment

Drug name Notes Developmental stage References

Fulvestrant (Faslodex) Induces ER degradation, nonsteroidal selective
estrogen receptor degrader (SERD)

FDA approved [288–292]

Tamoxifen Nonsteroidal selective estrogen receptor
modulator (SERM)

FDA approved [6, 288, 293–295]

Raloxifene hydrochloride Nonsteroidal selective estrogen receptor
modulator (SERM)

FDA approved [296–301]

Toremifene (Fareston) Nonsteroidal selective estrogen receptor
modulator (SERM)

FDA approved [301, 302]

ARN-810 Nonsteroidal selective estrogen receptor
degrader (SERD)

Clinical trial [303, 304]

AZD9496 Nonsteroidal selective estrogen receptor
degrader (SERD)

Clinical trial [305, 306]

RAD1901 Nonsteroidal selective estrogen receptor
degrader (SERD)

Clinical trial [307–309]

Letrozole (Femara) Nonsteroidal inhibitor of estrogen synthesis
(aromatase inhibitor)

FDA approved [310–313]

Anastrozole (Arimidex) Nonsteroidal inhibitor of estrogen synthesis
(aromatase inhibitor)

FDA approved [314–317]

Exemestane (Aromasin) Nonsteroidal inhibitor of estrogen synthesis
(aromatase inhibitor)

FDA approved [318–321]

BEZ235 Dual inhibitor of PI3K and mTOR Clinical trial [322–325]

SAR245409 PI3K inhibitor Clinical trial [285, 313]

Taselisib Class I PI3K alpha inhibitor Clinical trial [326–328]

Buparlisib PI3K inhibitor, competes for the ATP binding Clinical trial [63, 326]

Venetoclax (ABT-199) Bcl-2 inhibitor Clinical trial [329, 330]

Everolimus (Afinitor) Inhibitor of mTORC1 used both in luminal A
and in HER2-positive tumors

FDA approved [277–279, 283]

Temsiroliums Inhibitors of mTORC1 used in luminal A, TNBC,
and HER2-positive tumors

Clinical trial [331]

Vorinostat (SAHA) Global inhibitor of HDAC Clinical trial [332–334]

Entinostat Inhibitor of HDAC1 and HDAC3 Clinical trial [335, 336]

Panobinostat Specific inhibitor of HDAC Clinical trial [337–339]

Rapamycin mTOR inhibitor HER- and ER-positive breast
cancer cells

[340–344]

SNIPER(ER) PROTAC-mediated ER degradation in breast
cancer cells

ER-positive breast cancer cells [98, 345]

BHPI Modulator of ER-dependent UPR response ER-positive breast cancer cells [168, 187, 188, 346]

MAb159 Monoclonal antibody against BiP ER-positive breast cancer cells [222]

Plumbagin BiP downregulator, induces BIK levels ER-positive breast cancer cells [220]

Epigallocatechin gallate (EGCG) Inhibits cellular oxidation and DNA methyltransferase
to block EGFR and HER2 activation and can induce
UPR response by binding BiP

TNBC, ER- and HER2-positive
breast cancer cells

[347–352]

Resveratrol Activates SIRT-1 and inhibits TNF-induced activation
of NFkB. Used in combination with bortezomib,
reduces cell viability through autophagy inhibition

ER- and HER2-positive breast
cancer cells

[353, 354]

Hydroxychloroquine Autophagy inhibitor, suppresses lysosomal
acidification

Clinical trial [167, 225]
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studies supported a key function for HER3 in promoting
the growth of HER2-positive breast cancer cells [22], and
these patients are now prime candidates for trastuzumab
(Herceptin, a monoclonal antibody against HER2),
perstuzumab (Perjeta, a HER2 and HER3 dimerization
inhibitor), and lapatinib (Tykerb, a tyrosine kinase inhibi-
tor), as well as for other compounds directed against
HER2 and/or downstream kinases (Table 2). Yet despite



Table 2 Examples of drugs used in HER2 breast cancer treatment

Drug name Notes Developmental stage References

Trastuzumab (Herceptin) Monoclonal antibody against HER2 FDA approved [355–360]

Ado trastuzumab emtansine (T-DM1) Bifunctional antibody-drug (trastuzumab linked
to ematansine, DM1). Binds HER2 and inhibits
microtubule assembly/disassembly

FDA approved [361–364]

Eetumaxomab Monoclonal antibody with CD3 and HER2
recognition sites

Clinical trial [365, 366]

Pertuzumab (Perjeta) Recombinant humanized antibody against
domain II of HER2

FDA approved [284, 367, 368]

MM-111 Antibody against HER2-HER3 dimers Clinical trial [369, 370]

Lapatinib (Tykerb) Irreversible tyrosine kinase inhibitor in luminal
B cancers

FDA approved [371, 372]

Afatinib Irreversible pan-HER tyrosine kinase inhibitor Clinical trial [373–375]

Canertinib Irreversible tyrosine kinase inhibitor Clinical trial [19, 376, 377]

Neratinib Irreversible pan-HER tyrosine kinase inhibitor,
effective against EGFR, HER2, and HER4

Clinical trial [378–381]

Gefitinib EGFR tyrosine kinase inhibitor Clinical trial [382, 383]

Erlotinib hydrochloride (Erlotinib) Reversibly binds to the intracellular catalytic
domain of EGFR; used also in TBNC cancers

Clinical trial [383–385]

Sapitinib Tyrosine kinase inhibitor effective in luminal
B resistant cells

Clinical trial [380, 386]

Sorafenib Blocks the enzyme RAF kinase, inhibiting cancer
cell proliferation and autophagy induction

Clinical trial [63, 387–389]

Sildenafil citrate Selectively inhibits cyclic guanosine monophosphate
(cGMP)-specific type 5 phosphodiesterase

Clinical trial [63]

MM-121 Human monoclonal antibody against HER3 Clinical trial [267, 390–392]

MM-302 Doxorubicin encapsulated within liposomes,
and conjugated to a monoclonal antibody
against HER2. Inhibits HER2 and topoisomerase II

Clinical trial [393, 394]

ARRAY-380 Reversible selective HER2 inhibitor Clinical trial [395]

TAK-285 HER2-EGFR tyrosine kinase inhibitor HER2-positive breast
cancer cells

[396–399]

Everolimus (Afinitor) Inhibitor of mTORC1 used both in luminal A
and in HER2-positive tumors

FDA approved [277–279, 283]

Temsiroliums Inhibitor of mTORC1 used in luminal A, TNBC,
and HER2-positive tumors

Clinical trial [331]

GDC-0941 PI3K inhibitor Clinical trial [400, 401]

SAR245408 PI3K inhibitor Clinical trial [402, 403]

17-AAG Hsp90 inhibitor Clinical trial [404–406]

Retaspinmycin (IPI-504) Hsp90 inhibitor Clinical trial [406–408]

Genetespib Hsp90 inhibitor used in metastatic HER2 breast
cancers

Clinical trial [409–412]

Pazopanib inhibitor of VEGFRs able to inhibit Hsp90 ATPase
activity

Clinical trial [63, 413, 414]

SNX-2112 Hsp90 inhibitor, effective in HER2 and luminal B
breast cancers

Clinical trial [83, 280, 415]

Geldanamycin Hsp90 inhibitor HER2-positive breast
cancer cells

[20, 109, 114–116]

KIN001-51 HER3 binder, impairs dimerization HER2-positive breast
cancer cells

[416, 417]

TX1-85-1 Induces HER3 degradation by covalent binding
to a residue in the receptor

HER2-positive breast
cancer cells

[100, 383]
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Table 2 Examples of drugs used in HER2 breast cancer treatment (Continued)

Drug name Notes Developmental stage References

TX2-121-1 Derivate of TX1-85-1 linked to adamantane
group. Induces HER3 degradation

HER2-positive breast
cancer cells

[100, 383]

Patritumab (AMG 888) Monoclonal antibody directed against the
ligand-binding pocket of HER3

Clinical trial [418]

MEHD7945A Monoclonal antibody directed against EGFR
and HER3

Clinical trial [419, 420]

Pilaralisib Pan-class I PI3K inhibitor HER2-positive breast
cancer cells

[224, 421]

liposomal paclitaxel Inhibits tubulin assembly/disassembly FDA approved [224, 421, 422]

hydroxychloroquine Autophagy inhibitor, suppresses lysosomal
acidification

Clinical trial [167, 225]

Eeyarestatins p97 inhibitor HER2-positive breast
cancer cells

[81, 85]

NMS-873 p97 inhibitor HER2-positive breast
cancer cells

[81]

HA15 Inhibitor of BiP ATPase activity HER2-positive breast
cancer cells

[173]
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the apparent specificity of these drugs, some patients re-
main resistant to these treatments [23], mainly due to me-
tastasis and receptor mutations, which reduces patient
survival and increases tumor relapse [24]. Moreover, ~
10% of metastatic luminal breast cancers metastasize to
the brain, and in this case the only treatment options in-
clude chemotherapy, radiation, and/or surgery [12].
Therefore, the identification of markers during early stage
therapy is also of fundamental importance.
Over the past several years, alternative approaches

to treat breast cancer have been pursued, focusing on
the regulation of protein homeostasis (“proteostasis”) and
stress response pathways [25–30]. These approaches
include modulation of protein degradation pathways
mediated by the proteasome and autophagy, and the regu-
lation of cellular stress responses, with particular attention
paid to the unfolded protein response (UPR).
The ubiquitin-proteasome pathway utilizes a cascade

of E1 ubiquitin-activating enzymes, E2 ubiquitin-
conjugating enzymes, and E3 ubiquitin ligases [31–34].
Once a protein substrate has acquired at least four
ubiquitin species, the substrate is delivered to the 26S
proteasome, which houses three unique protease activ-
ities to destroy protein substrates. Protein ubiquityla-
tion can be reverted by a family of proteins called
deubiquitylating enzymes (DUBs) that are involved in
removing mono- and poly-ubiquitin chains from
proteins, thereby changing the fates of their targets and
maintaining the pool of free ubiquitin [35–37]. In con-
trast, autophagy is a process in which damaged proteins
are encapsulated and degraded in double-membrane
structures, called autophagolysosomes [38–42]. During
canonical autophagy (formally called macroautophagy),
an isolation membrane encloses a portion of the
cytoplasm containing misfolded proteins, protein ag-
gregates, and even organelles to form a vesicle called
the autophagosome. The contents of the autophago-
somes are degraded upon subsequent fusion with
lysosomes [2, 38–41, 43, 44].
The proteasome pathway has been effectively targeted

in select cancers, primarily because protein folding is an
inherently slow, energy expensive, and inefficient path-
way. Therefore, each cellular compartment is equipped
with a variety of molecular chaperones and folding
enzymes that coordinate protein folding; however, if
protein folding is delayed or compromised, aberrant pro-
teins are instead targeted to the ubiquitin-proteasome
system [45–48]. Proteasome inhibitors such as carfilzo-
mib (Kyprolis) and bortezomib (Velcade) are especially
effective for the treatment of multiple myeloma [49, 50]
because myeloma cells produce high levels of misfolded
or unassembled immunoglobulin subunits [51–55]. Also,
due to their higher proliferation rate, cancer cells require
increased levels of ATP for enhanced protein production
and there is a heightened demand on cellular protein
folding pathways. Cancer cells can also become
hypoxic, hypoglycemic, and acidic, which perturbs
cellular hemostasis and—in particular—secretory pro-
tein folding in the endoplasmic reticulum [28, 56, 57].
Moreover, most cancer cells contain DNA duplica-
tions, deletions, inversions, and translocations, as well
as altered chromosome numbers (aneuploidy) [58],
which alters the stoichiometries of protein complexes.
Consequently, many proteins become “orphaned” and
misfold [59, 60]. To overcome the ensuing onslaught
of these misfolded proteins, cancer cells also overex-
press multiple chaperones to maintain cellular
homeostasis [33, 48, 61–63].
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In the remainder of this review, we will discuss the links
between protein folding, degradation, and transport and
breast cancer survival with an emphasis on the different
mechanisms involved in controlling secretory protein fold-
ing. The highlighted mechanisms include the endoplasmic
reticulum-associated degradation (ERAD) pathway, the un-
folded protein response (UPR), and the autophagy pathway
(Fig. 1). Finally, we will emphasize critical areas for further
research that may improve breast cancer treatments.

Proteasome-mediated degradation as a possible
therapeutic target
Approximately one-third of all proteins in eukaryotes are
targeted to the endoplasmic reticulum [45, 46, 64].
Nevertheless, proteins entering this compartment—which
represents the first step in the secretory pathway—may
misfold due to stochastic errors in the folding pathway or
as a result of cellular stress. Cellular attempts to temper
protein toxicity in the secretory pathway are based on two
different mechanisms: first, the UPR can be induced, which
increases the chaperone reservoir in the endoplasmic
reticulum and induces endoplasmic reticulum expan-
sion, and second, misfolded proteins can be targeted
for degradation to either the lysosome (via autoph-
agy) or to the proteasome [31, 65, 66]. The process
that targets unfolded proteins in the endoplasmic
reticulum to the proteasome is known as endoplas-
mic reticulum-associated degradation, or ERAD.
ERAD is a multistep pathway, and many of the

components required for this event are induced by
the UPR [66, 67]. ERAD substrates are selected by a
pool of chaperones and lectins and, in the case of
soluble luminal substrates, are partially transported
across the membrane to expose their cytoplasmic do-
mains, which allows for ubiquitylation [34, 36, 68,
69]. The acquisition of a poly-ubiquitin chain recruits
the AAA+ ATPase p97, which “retrotranslocates”
ERAD substrates from the endoplasmic reticulum
[70–73]. Once retrotranslocated, ubiquitylated sub-
strates are degraded by the 26S proteasome. p97 is
not only involved in ERAD substrate retrotransloca-
tion but also modulates protein trafficking in the
secretory pathway, mitochondrial-associated protein
degradation, the degradation of aberrant ribosome-
associated proteins, chromatin remodeling, and
autophagy, each of which is also associated with can-
cer [74–80]. Recently, HER2-positive breast cancer
cells were shown to have elevated levels of p97, sug-
gesting in one study that ERAD contributes to cancer
cell survival [81]. Based on these data and the
importance of p97 during the disposal of misfolded
proteins, p97 inhibitors are being examined for
possible therapeutic applications in cancer cells. The
eeyrestatins (Eer I and II) were the first generation of
p97 inhibitors and in several studies were shown to
reduce ERAD efficiency [82–85]. HER2-positive cells
are more sensitive to both eeyarestatin and NMS-873,
a refined p97 inhibitor, compared to other breast
cancer cells that did not overexpress HER2 [81].
Recently a new p97 inhibitor was characterized (CB-
5083) as a potential anti-cancer drug both in multiple
myeloma and in various solid tumors, including lung
and colorectal carcinoma [86]. Thus far, clinical trials
using this compound in breast cancer patients have
not yet begun.
Human epidermal growth factor receptors, or HER

family members, are selected for endosomal sorting and
lysosomal degradation from the plasma membrane, and
as noted above the regulation of receptor numbers at
the plasma membrane is crucial for cell survival [87, 88].
However, the levels of HER3 that ultimately reside at the
plasma membrane are also regulated in the endoplasmic
reticulum by ERAD in a p97-dependent manner. In fact,
HER3 is ubiquitylated by an E3 ubiquitin ligase known
as Nrdp1 in the endoplasmic reticulum [88, 89]. Nrdp1
also ubiquitylates HER3 at the plasma membrane, which
is required for endocytosis and lysosomal sorting/deg-
radation [88, 90, 91]. Consistent with the importance of
properly regulating the levels of HER3-containing
heterodimers, Nrdp1 is suppressed in 57% of breast can-
cer tissues [92–94]. This E3 ubiquitin ligase also inter-
acts with HER4 in breast cancer cells [95]. One study
suggested that, after endoplasmic reticulum stress and
UPR induction, Nrdp1 becomes trapped in tubular
structures, which impairs HER3 degradation [96]. These
data highlight how ERAD, plasma membrane protein
degradation, and stress may be linked to signal transduc-
tion pathways and proteostasis in cancer cells.
Based on its central role in protein quality control,

compromising other early steps in the proteasome-
dependent degradation pathway might deplete cancer
cells of their oncogenic signaling potential and pro-
vide another therapeutic route. To this end, PRO-
TACs were developed, which are heterobifunctional
molecules that contain a binding motif for the target
of interest and for an E3 ubiquitin ligase. Addition of
the molecule induces selective degradation of a target
via the proteasome or, less frequently, via chaperone-
mediated autophagy [8, 97]. For example, a PROTAC
was used to downregulate ER levels in breast cancer
cells. Here, the PROTAC was composed of a methyl-
ester of bestatin, which binds the cellular inhibitor of
apoptosis protein-1 (IAP) and is linked to 4-hydroxy
tamoxifen (4-OHT), which binds ER [98]. Under
normal conditions, estrogen binding to ER leads to
receptor translocation to the nucleus where it acti-
vates transcription [99]. However, the PROTAC in-
duced cIAP1-mediated ubiquitylation and proteasomal
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Fig. 1. Schematic representation of secretory protein folding and quality control, the unfolded protein response pathway, and the heat shock response.
In the endoplasmic reticulum, unfolded proteins (black lines) can be recognized and bound by chaperones, such as BiP (yellow circles). The increase in the
concentration of BiP-unfolded protein complexes in the endoplasmic reticulum favors induction of the unfolded protein response (UPR). The
UPR is regulated by ATF6 (light blue rectangle), PERK (green dimers), and IRE1 (orange dimers), which reside in the endoplasmic reticulum membrane.
Upon activation, the UPR can increase cellular folding capacity by increasing chaperone synthesis, inducing endoplasmic reticulum expansion,
and increasing the concentration of components of the endoplasmic reticulum associated degradation (ERAD) machinery. During ERAD,
unfolded proteins in the endoplasmic reticulum are recognized, ubiquitylated by E3 ubiquitin ligases, and retrotranslocated via the action
of p97 (blue circle), an AAA-ATPase, to the cytosol where they are degraded by the proteasome. Misfolded, aggregation-prone proteins,
protein aggresomes, and damaged organelles can alternatively be targeted for autophagy via encapsulation in double membrane vesicles
known as autophagosomes (light brown vesicles). LC3BII is an established marker of cellular autophagy and is associated with autophagosome membranes
(light green circles), and proteins can be directed to autophagy degradation via HDAC6 (purple hexagon). Upon fusion with lysosomes (red vesicles), the ma-
terial incorporated in the autophagolysosome is degraded (orange vesicles). In the absence of stress, HSF1, HSP90, HSP70, and HDAC6 can form a complex
in the cytoplasm. During stress (for example, an increase in the concentration of unfolded protein or heat), HSF1 (orange rectangle) can translocate to the
nucleus and induce the transcription of other proteins, like chaperones, to increase the cellular folding capacity. This is known as the heat shock response.
At the same time, Hsp90 and Hsp70 (green and white rounded rectangles, respectively) are involved in cytoplasmic protein folding, dictating the fate of their
clients. If the client fails to attain its final conformation, it will be ubiquitylated and degraded by the proteasome
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degradation of ER in MCF7 cells, triggering necrotic
cell death [98]. PROTAC technology also successfully
decreased HER3 levels in breast cancer cells [100]. In
the immediate future, it will be exciting to observe
the effects of PROTACs in other cancer models and
in animal models. Even with recent successes, the de-
livery and bioavailability of PROTACs remain the lar-
gest hurdles prior to clinical trials.

Targeting the Hsp70 and Hsp90 molecular
chaperones in breast cancer
The Hsp70 and Hsp90 heat shock proteins are among the
most abundant and important house-keeping chaperones
and are overexpressed in many cancers [61, 101–103].
These chaperones bind and release protein substrates via
a complex ATP-regulated cycle and play central roles in
multi-protein assemblies that mediate each event dur-
ing protein folding, degradation, and activation (Fig. 1).
Based on the fact that cancers amass misfolded pro-
teins, and because they are over-expressed in some
breast cancers, Hsp70 and Hsp90 have been targeted
in breast cancer [104–107].
Hsp90 helps fold several oncogenic proteins, such as

BRAF, HER2, AKT, and CREF [108–110], and elevated
Hsp90 correlates with decreased survival in breast cancer
patients [111]. Therefore, inhibition or knock down of
Hsp90 is a viable target for cancer therapy, especially in
HER2-positive breast cancers. Normally, HER2 is de-
graded after ligand-induced endocytosis [112, 113] and
after binding select drugs [19].
A class of compounds developed to treat HER2-positive

breast cancers includes derivatives of the benzoquinoid
ansamycin antibiotic geldanamycin (GA; Table 2), which
bind and inactivate Hsp90 and, in turn, induce HER2
degradation [20, 114, 115]. Hsp90 interacts with HER2 at
the plasma membrane [109], and GA treatment leads to
rapid HER2 downregulation by mediating ubiquitiylation
and degradation [19, 115, 116]. It is unclear whether
Hsp90 stabilizes HER2-containing heterodimers or if
Hsp90-HER2 binding favors faster recycling to the plasma
membrane in breast cancer cells. However, lapatinib, a
tyrosine kinase inhibitor used to treat HER2-positive
breast cancers, binds inactive HER2 and inhibits Hsp90–
HER2 association to the same extent as GA and another
analog, 17-AAG (Table 2). These data suggest that Hsp90
may be directly involved in dimer stabilization. On the
contrary, lapatinib treatment does not induce HER2
degradation after ubiquitylation, which can occur via the
action of another E3 ligase, CHIP; therefore, Hsp90
prevents CHIP recruitment [117, 118]. Recently, it was
reported that kinase inhibitors, such as sorafenib
(Nexavarand) and pazopanib (Votrient) (Table 2), were
linked to the inhibition of Hsp90 activity in HER2-positive
breast cancer cells [63]. Together, these results suggest
that modulating HER tyrosine kinase activity, in conjunc-
tion with Hsp90, may become a valuable, new therapeutic
strategy in breast cancer.
Even though promising pre-clinical data have emerged

in HER2-positive breast cancers after treatment with
Hsp90 inhibitors, in clinical trials no clear efficacy was
detected. In fact, Hsp90 inhibition usually induces
compensatory effects, such as increased expression of
other heat shock proteins (Hsp70 and Hsp27) and
activation of an anti-apoptotic response [61, 119–122]. In
particular, upon Hsp90 inhibition, overexpression of
Hsp27 was reported to modulate the oxidative stress
response in cancer cells, and higher levels of Hsp70 were
also detected, which helps block apoptosis induction and
reduces the efficacy of Hsp90 inhibitors [120, 121]. More-
over, in patients Hsp90 inhibitor exposure is limited due
to poor drug solubility and liver toxicity [25, 123].
One cellular Hsp90 partner is HSF1, a transcription

factor involved in the cytoplasmic stress response
(Fig. 1) [124, 125]. In the absence of stress, Hsp90
and other chaperones form a complex with HSF1
[125, 126]. However, Hsp90 inhibitors alter the com-
position of the HSF1-containing complex, which
releases HSF1 and stimulates HSF1-activated tran-
scription of heat shock proteins [125, 127]. As might
be expected, then, HSF1 is associated with cancer
progression [128]. To date, specific inhibitors of HSF1
have not been identified, but this represents an active
area of research.
Cytosolic Hsp70 as well an ER lumenal Hsp70

homolog, BiP (or GRP78; see below), also play im-
portant roles in breast cancer, as well as in many
other cancers. Hsp70 upregulation has been detected
in different types of cancers, including endometrial
cancer, osteosarcoma, and renal carcinoma [129, 130],
and higher levels of Hsp70 are associated with metastasis
and resistance to chemotherapy in glioblastoma and
breast, endometrial, and cervical cancers [45, 131–133].
Hsp70 overexpression correlates with TNBC metastasis in
murine models and human breast cancer patients [24],
but knock down of cytosolic Hsc70 (a constitutive Hsp70)
or Hsp70 (the inducible Hsp70) in breast cancer lines
exhibits distinct responses, probably due to the relative
expression levels of the two chaperones [61, 134]. How-
ever, dual knock down of the chaperones increased Hsp90
client ubiquitylation, that is, HER2, in ovarian cancer, sug-
gesting a role for Hsp70 inhibitors in the treatment of
HER2-positive breast cancer. Moreover, Hsp70 inhibition
induces caspase-3 and PARP cleavage as well as sustained
apoptosis in breast cancer cells [135]. The proposed
mechanism by which Hsp70 inhibition triggers cancer cell
death involves lysosomal membrane permeabilization
[136–138]. Notably, Hsp70 binds bis-monoacylglycerol-
phosphate, a membrane-bound anionic phospholipid that
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predominantly localizes to the inner lysosomal membrane,
which maintains lysosomal membrane stability and cell
survival. In rhabdomyosarcoma, on the other hand, cancer
cell death mediated by Hsp70 inhibition was linked to
UPR induction [139].

The unfolded protein response in breast cancer: a
protective pathway and a potential therapeutic
target
As described above, the UPR is an adaptive mechan-
ism that restores endoplasmic reticulum homeostasis
[28, 30, 65]. There are three UPR branches that are
coordinately activated in mammalian cells: the inositol-
requiring enzyme 1 (IRE1), PKR-like endoplasmic reticulum
kinase (PERK), and activating transcription factor 6 (ATF6)
branches [28, 140] (Fig. 1). Under normal conditions,
PERK, IRE1, and ATF6 are maintained in an inactive form
in the endoplasmic reticulum membrane by binding to BiP
(also known as glucose-regulated protein 78 (GRP78)),
which also recognizes unfolded secretory proteins with
exposed hydrophobic patches and helps target misfolded
proteins for proteasomal degradation via the ERAD
pathway [141–143]. As described later, BiP is also an
important therapeutic target in cancer. During endoplasmic
reticulum stress, BiP is released from PERK, IRE1, and
ATF6 and binds misfolded proteins that begin to accumu-
late [144]. As a result, PERK phosphorylates eIF2α, inhibit-
ing protein translation and leading to the expression of
activating transcription factor 4 (ATF4) [145]. Higher levels
of ATF4 in turn increase the levels of CHOP, a pro-
apoptotic transcription factor (also known as DDIT3) and
growth arrest and DNA damage-inducible protein 34
(GADD34). Both ATF4 and CHOP also upregulate the
transcription of autophagy-related genes (ATGs) [146] and,
after a prolonged response, induce cell death [147, 148]. In
contrast, ATF6 is transported to the Golgi during endoplas-
mic reticulum stress and is cleaved to liberate a soluble, ac-
tive transcription factor that induces the production of
chaperones and redox related proteins, including BiP,
GRP94, PDIA4, and PDIA6 [149–151]. Finally, the release
of BiP from IRE1 favors receptor oligomerization and auto-
phosphorylation. In addition to its kinase activity, IRE1 is
an endonuclease that catalyzes splicing of the X-box bind-
ing protein 1 (XBP1) message. Once the message is spliced
and translated, the resulting Xbp1 transcription factor acti-
vates the synthesis of chaperones, ERAD components, and
inflammatory responsive genes [151–153].
UPR induction can be either protective or deleterious

for cell survival, depending on the cancer. In fact, the
UPR can even act as a pro-tumorigenic signal, increasing
tumor cell protein folding capacity and drug resistance
[154]. However, prolonged endoplasmic reticulum stress
activates cell death pathways, such as mitochondrial-
associated apoptosis [155, 156] and CHOP-dependent
cell death (see above) [144, 157, 158]. Examples of these
disparate functions include the fact that high levels of
Xbp1 are present in some breast cancer tissues, and a
greater amount of the spliced XBP1-message correlates
with poor prognosis in TNBCs [159, 160]. It is also
known that HIF1α, the hypoxia-inducing factor 1α, is
hyperactive in TNBCs [161, 162]. A genome-wide map
of the Xbp1 regulatory network in TNBCs suggested
that Xbp1 tumorigenicity is assisted by the formation of
a complex with HIF1α [162]. Moreover, an analysis of
independent cohorts of patients with TNBC revealed
that a spliced XBP1 signature correlated with HIF1α and
hypoxia-associated signatures, underlying the import-
ance of the IRE1/Xbp1 signaling pathway in TNBC. In
addition, depletion of Xbp1 in TNBC cell lines inhibits
tumor growth and relapse [162].
Another example in which the UPR can be either a

pro-survival or a cell death signal is in the epithelial to
mesenchymal transition (EMT). The EMT favors
tumorigenesis and drug resistance in mammary gland
tumors [163, 164]. In human tumor tissues, EMT gene
expression correlates with PERK–eIF2α responsive
genes, but not with other branches of the UPR [163].
Endocrine therapies (such as tamoxifen and fulves-

trant; Table 1) remain a mainstay for the treatment of
ER-positive breast cancer patients. Although there is
an initial positive response of a ~ 70% reduction in
tumor volume (in treated patients), acquired resist-
ance is ultimately evident in about half of all patients
[28]. Interestingly, a rapid “anticipatory” UPR that is
independent of endoplasmic reticulum stress is
induced upon ligand binding to ER. By contrast, long-
term treatments with tamoxifen and fulvestrant cause
endoplasmic reticulum stress and induce the UPR,
promoting cancer survival and drug resistance in ER-
positive breast cancers [165–169].
Anti-estrogen-resistant breast cancer cell lines express

elevated levels of BiP and Xbp1 [170–172], suggesting
that UPR induction contributes to therapy resistance.
One compound, HA15, targets BiP, which is one of the
most highly induced targets of the UPR and plays a
central role in UPR signaling (see above; Fig. 1).
HA15 is effective in a breast cancer cell line and in
other tumors, such as melanomas, and kills these
cells after inducting an endoplasmic reticulum stress
response [173]. These and other studies indicate that
modulation of BiP activity and the UPR should be
further coopted as therapeutic targets.
As mentioned above, the initiation factor eIF2α is

phosphorylated by PERK, which attenuates the synthesis
of new proteins and reduces the concentration of un-
folded proteins in the endoplasmic reticulum [145, 174].
However, eIF2α can also be phosphorylated by other
kinases, such as GCN2 (general control non-depressible
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2), PKR (interferon-inducible dsRNA-activated protein
kinase), and HRI (heme-regulated inhibitory) [175–178].
During induction of the integrate stress response
(ISR)—which is a specialized form of the UPR—GCN2-
dependent eIF2α phosphorylation occurs after amino
acid starvation, which also induces ATF4 [179]. In this
case, ATF4 enhances the expression of autophagy-
requiring genes (for example ATG5, 7, and 10) that
facilitate cellular recovery after starvation. Consistent
with these data, GCN2 silencing decreases cancer cell
survival after amino acid starvation and attenuates
tumor growth in murine models [180]. Elevated levels of
ATF4 also correlate with resistance to chemotherapeutic
agents, including DNA damaging agents (ionizing
radiation, aphidicolin, hydroxyurea, cytarabine, etoposide,
doxorubicin, and mafosfamide), celecoxib (a nonsteroidal
anti-inflammatory drug), and bortezomib, in different
cancers [181–186]. These data suggest that differential
sensitivities to proteasome inhibitors, like bortezomib, in
breast cancer and multiple myeloma could be due to
selective activation/upregulation of UPR components.
Together, the UPR and ISR enable cancer cells to inte-
grate multiple stress stimuli into a common control
mechanism, centering on eIF2α phosphorylation and,
depending on the duration and magnitude of the stress,
acting as either a pro- or anti-tumorigenic signal [30].
Consequently, studies on UPR modulation are ongoing
in breast cancer cells as well as in other cancers. For
example, a small molecule, BHPI, was used to demon-
strate that hyperactivation of the PERK branch of the
UPR blocks proliferation of ER-positive breast, ovarian,
and endometrial cancer cells due to persistent inhib-
ition of protein synthesis [168, 187, 188].

BiP upregulation is a marker for drug resistance
in breast cancer
The endoplasmic reticulum folding capacity is in part
limited by the chaperone reservoir. The expression of
chaperones like BiP, GRP94, and calreticulin are tightly
regulated [45, 47, 189, 190]. BiP was first discovered as a
glucose responsive protein (hence the alternative name,
GRP78) as well as via its association with immunoglobu-
lin heavy chain [191–193]. In addition, as described
above, BiP plays a crucial role during UPR induction
[144, 194, 195]. BiP protein levels are normally main-
tained at moderate levels in adult tissues such as brain,
lung, and heart, but this chaperone is strongly induced
in breast, melanoma, colon, and adenocarcinoma cancer
cells [196–200]. In many cases, BiP expression is associ-
ated with poor prognosis and chemotherapy resistance
[201–205]. A retrospective study also examined if BiP
can be used as a marker of chemotherapy resistance in
tumors. As hypothesized, one-third of breast cancer
patients have high levels of BiP before treatment, and
the risk of recurrence was greater in chemotherapy-
treated patients with moderate to high BiP levels [202].
Even though BiP is an endoplasmic reticulum resident,

where it regulates the UPR and catalyzes protein folding
and ERAD, recent studies demonstrate that this chaperone
can also reside at the cell surface, as well as in the cytosol,
mitochondria, and nucleus; these data and other results
suggest that BiP performs a novel function to regulate cell
proliferation, invasion, and apoptosis [206–208]. More
generally, a cell surface proteomic analysis of tumor cells
confirmed that several cytosolic heat shock proteins and
endoplasmic reticulum chaperones, like BiP, reside on the
extracellular surface of the plasma membrane, suggesting
that chaperone relocation may be an adaptive response to
stress induced by perturbations in proteostasis [38, 208].
Moreover, cell surface-resident BiP is more abundant in
pancreatic and breast cancers [208].
The extracellular pool of BiP is associated with specific

membrane glycoproteins and its amount is enriched
after ER stress [209, 210]. As anticipated for a bona fide
chaperone-based interaction, the substrate-binding site
in BiP is required to interact with these partners [208].
However, the mechanism by which BiP translocates to
the extracellular face of the plasma membrane is un-
clear. Nevertheless, UPR induction favors BiP secretion,
possibly due to its overexpression, which in turn may
overwhelm the machinery that retains proteins in the
secretory pathway [211].
Several studies have demonstrated that BiP also binds

BIK, a pro-apoptotic member of the Bcl2 family, impair-
ing apoptotic cell death in ER-positive tumors [212]. The
pro-apoptotic Bcl2 family members facilitate the
release of cytochrome c from the mitochondrial mem-
brane to the cytosol, which induces the apoptotic
cascade [213–215]. In contrast to other pro-apoptotic
Bcl2 members that reside in the mitochondria, BIK is
an endoplasmic reticulum membrane protein and
does not interact directly with pro-apoptotic family
members, such as BAX and BAK [214, 216]. BIK
plays a critical role in promoting estrogen starvation
or anti-estrogen-mediated cell death in human breast
cancer cells [217], and BIK knock down impairs
estrogen starvation-induced cell death in MCF7 cells
[212]. Recent studies suggest that BiP upregulation
suppresses BIK activity by inhibiting the apoptotic
response after anti-estrogen therapies in ER-positive
breast cancer [212, 218]. For this reason, the development
of specific BiP inhibitors represents an important goal. In
fact, a natural product of the naphthoquinone family,
plumbagin, was identified that initiates cell death in ER-
positive breast cancer cells by upregulating BIK levels
[219, 220]. Plumbagin-mediated BiP inhibition also sensi-
tized breast cancer cells to tamoxifen-mediated cell death.
In addition, BiP knock down impaired the plumbagin-
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mediated increase in Bik, suggesting an inhibitory role
of this compound on BiP-mediated downregulation of
BIK in breast cancers [220]. Overall, BiP is emerging
as a novel target to predict cancer outcomes and
therapeutic options [209, 221–223].

The role of autophagy in breast cancer
As outlined in the preceding sections, the autophagy
pathway degrades misfolded and aggregating proteins in
the cytoplasm, thereby helping to maintain cellular
homeostasis after cellular stress. Autophagy also pro-
vides a mechanism to replenish cellular energy stores
during starvation [38–44, 224]. The autophagy pathway
is associated with a variety of processes such as tumor
suppression, aging, development, and microorganism
elimination [41, 45]. The dependence of cancer cells on
autophagy is dictated in part by the nature and the
length of the stress [225]. For example, UPR induction
together with autophagy upregulation are linked to
endocrine tumor therapy resistance [158, 170, 226–228].
More specifically, autophagy inhibition increases the
anti-estrogen response in tumors [166, 167, 229–233],
and UPR induction promotes autophagy [146, 234, 235].
In addition, UPR induction, and in particular PERK
activation, increases eIF2α phosphorylation and the
translation of select mRNAs, like ATF4 [236–238].
ATF4 then triggers the expression of genes involved
in the ISR as well as those required for autophagy
[178, 184, 239–241] (also see above).
Several studies have demonstrated that lapatinib- or

trastuzumab-resistant HER2-positive cancer cell lines
can be obtained by upregulating the autophagy pathway
[242, 243]. Interestingly, ATG12, a protein required for
autophagosome elongation, was induced in HER2-
positive resistant cells and its downregulation compro-
mised acquired resistance [243, 244]. Up-regulation of
ATG5, which is covalently attached to ATG12 during
autophagy, also facilitated lapatinib resistance in HER2-
positive cells [245]. Therefore, inhibition of these
autophagic components might sensitize HER2-positive
cancer cells to established treatments.
Autophagy also plays an important role during

metastases in neoplastic breast cancer [246, 247].
Chloroquine and chloroquine derivatives (which
inhibit autophagolysosome formation), as well as
Bcl2 inhibitors (which inhibit early steps in the
autophagy pathway), are currently in clinical trials to
treat metastatic/invasive breast cancer, ductal carcin-
omas, and HER2-positive cancers [248–250].
Recently, a correlation between autophagy and the

expression of Runx2, a Runt-related transcription factor
involved in cell survival during metabolic stress and
breast cancer progression, was uncovered [247]. Runx2
promotes the metastatic spread of mammary tumors to
the bone, which is a recurrent location for TNBC and
luminal breast cancer metastasis [251]. Indeed, aberrant
Runx2 expression in metastatic breast cancers altered
the activity of PI3K, mTORC1, and AMPK, which func-
tion as upstream modulators of autophagy [251–255].
Misregulation of PI3K/Akt/mTOR pathways is often as-
sociated with endocrine resistance in ER-positive breast
cancers [3]. As might be anticipated, then, Runx2 knock
down in a breast cancer cell line reduced metastatic
dissemination, suggesting a link between Runx2 and
autophagy [247].
A microtubule associated deacetylase, known as

HDAC6, has also been suggested to link Runx2 and
autophagosome formation/lysosomal fusion [247].
HDAC6 binds polyubiquitylated, misfolded proteins
and couples them to the dynein motor complex,
facilitating the trafficking of aggregated proteins to
autophagosomes [235, 256]. In the absence of stress,
HDAC6 is associated with p97, Hsp90, and HSF1
(Fig. 1) [126]. In turn, p97 function is associated with
HDAC6-dependent fusion of aggresomes—which are
microtubule-associated clusters of ubiquitylated and
aggregated proteins—with autophagosomes [257, 258].
Based on its protein “segragase” activity, p97 dissoci-
ates HDAC6 from polyubiquitylated proteins and
regulates HDAC6 shuttling, governing both proteasome-
and autophagy-dependent clearance of misfolded proteins
[259–261]. In solid tumors, such as breast cancer, the use
of a proteasome inhibitor has minimal effect [262, 263].
However, in other cancers, such as multiple myeloma,
inhibition of both proteasome activity and HDAC6 using
tubacin synergistically promote cell death through the
accumulation of toxic polyubiquitylated protein aggregates
[256, 264, 265]. These data suggest again that inhibition of
both proteasome and autophagy-mediated degradation
could be beneficial in some cancers.
Consistent with this view, treatment with the prote-

asome inhibitor bortezomib in a breast cancer cell line
increased the levels of LC3B, a marker of autophagy, at
both the protein and mRNA levels [235]. However,
ATF4 knock-down limited LC3B induction after borte-
zomib treatment, confirming the importance of ATF4 as
a mediator of the compensatory response in ER-positive
cancer cells. In turn, HDAC6 is also linked to bortezo-
mib resistance in MCF7 cells: Knock down of HDAC6
led to a synergistic effect on MCF7 cell death after
bortezomib treatment [164, 266]. These data indicate
that HDAC6 may be an important therapeutic target
when proteasome activity is impaired. As new and
improved inhibitors of the proteasome come on-line,
synergistic effects of these compounds with specific
HDAC6 inhibitors—and other autophagy inhibitors—
should be assessed for their efficacy in breast cancer
cells [267, 268].
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Open questions and new therapeutic approaches
in breast cancer
Based on emerging discoveries from basic research pro-
grams and from clinical trials, it is clear that protein
quality control and stress response pathways are crucial
for cancer cell survival. Therefore, the targeting of these
pathways will not only improve patient treatment but
also help answer fundamental questions related to
cancer biology. To this end, novel compounds that
modulate proteostasis pathways and cellular stress re-
sponses, such as the UPR, are currently being evaluated
in cell and rodent models [14, 27, 29, 30, 80, 269, 270].
Even with these recent developments, numerous ques-

tions remain. For example, the sensitivity of different
cancers (even within distinct cancer sub-types) to prote-
asome inhibitors is quite heterogeneous, and in some
cases the lack of a correlation between preclinical
models and patient outcomes remains mysterious [269].
Thus, it is vital that we define the factors and pathways
that give rise to these phenomena. It is also important to
identify novel biomarkers that predict drug efficacy, and
in particular the efficacy of proteasome inhibitors [29].
One such biomarker might be the extent of autophagy
induction, as discussed above, and studies with solid
tumors suggest that autophagy is a source of bortezomib
resistance [271, 272].
A second question relates to the dual role of UPR in-

duction as either a pro-survival or a pro-death signal in
cancer [146, 184, 241]. The recently discovered anticipa-
tory UPR, which can be induced by ER signaling in
breast cancer cells, is an intriguing candidate pathway to
treat ER-positive breast cancer patients. At the same
time, however, patients treated with endocrine therapies
might not benefit from this potential treatment.
Nevertheless, induction of the PERK branch of the

UPR is associated with increased autophagy [239–241].
These data suggest that a combination of proteasome
and PERK inhibitors, which place an increased burden
on the proteasome, may sensitize tumors to canonical
treatments. This would also allow for lower drug
dosages, which may help avoid potential side effects and
decrease the likelihood of drug-resistant point mutations
in HER and ER [30]. However, it is unknown if blocking
UPR-induced autophagy or inhibiting upstream UPR
effectors will prove more effective. Regardless, combina-
torial treatments remain the best option to avoid cancer
cell resistance and cancer relapse [273], especially since
most therapeutic treatments for HER2-positive breast
cancers (radiotherapy, chemotherapy and HER2 inhibi-
tors) activate autophagy [249, 250].
A third question is why markers to predict chemotherapy

or radiotherapy effectiveness have not been fully verified
[220]. However, as outlined in this review, cell surface BiP
is a prime candidate to predict chemotherapy effectiveness.
On the contrary, increased expression of BiP in
neuroblastoma patients correlates with longer survival
[274]. These contradictory findings in human clinical
samples highlight the necessity for further studies on
the role of BiP in different tumorigenic contexts. It is
also important to consider whether induction of intra-
versus extracellular BiP hint at different outcomes.
Another problem in identifying biomarkers is that
metastasis formation can occur at early stages or during
late stage tumor development [275, 276]. Metastases
arising from late stage primary tumors are more heteroge-
neous, which favors chemotherapeutic resistance.
Finally, it is worth noting that drug discovery efforts

and clinical trials to modulate the activity of distinct
components of the “proteostatis network”, including
components of the proteasome-ubiquitin machinery,
Hsp90, p97, and the autophagy pathway are in progress
[86, 267, 268, 270, 277–286]. When combined with
standard and emerging therapies for each breast cancer
cell sub-class, we envision that synergistic effects to
improve clinical outcomes for patients will then become
evident [8, 224, 287, 288].
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