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Abstract

The need for high-throughput, precise, and meaningful methods for measuring behavior has been amplified by our
recent successes in measuring and manipulating neural circuitry. The largest challenges associated with moving in
this direction, however, are not technical but are instead conceptual: what numbers should one put on the
movements an animal is performing (or not performing)? In this review, I will describe how theoretical and data
analytical ideas are interfacing with recently-developed computational and experimental methodologies to answer
these questions across a variety of contexts, length scales, and time scales. I will attempt to highlight commonalities
between approaches and areas where further advances are necessary to place behavior on the same quantitative
footing as other scientific fields.

As modern techniques for recording and manipulating
neural circuits have expanded our toolbox for decon-
structing the molecular and cellular components of ani-
mals’ nervous systems, an accompanying realization has
gradually developed: to more fully comprehend the func-
tion of neural circuits and the computations underlying
them, we must understand their output in an accordingly
precise manner [1, 2]. Specifically, we need to measure
behavior. More careful measurements of the actions ani-
mals perform is key not just for advancing our basic
understanding of nervous system function, but also in
our assessment and categorization of psychiatric disorders
and the development of brain-machine interfaces [3, 4].
But what type of behavior do we want to measure, and
once we decide on this, how do we measure it?
Answering these questions has proven difficult, but

this is largely due to conceptual limitations rather than
technical ones. If watching an animal behave, what are
some precise, yet meaningful, numbers we should use to
describe its movements? Is it the center of mass motion of
the whole animal? The position and velocity of the organ-
ism’s body and limbs? The dynamics of individual myosin
motors withinmuscle tissue? Amore coarse-grainedmea-
sure related to the animal’s “intended” action? A collective
variable describing the combined dynamics of many ani-
mals? And how do we connect these scales to make
inferences from the cellular and the molecular up to the
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movement of a limb, a wing, a finger, or an eyebrow? This
is the dilemma that those of us who attempt to measure
behavior commonly face.
While selecting the proper representation for one’s mea-

surements is hardly a problem exclusive to the study of
animal behavior (e.g. “more is different” and not want-
ing to “model bulldozers with quarks” [5, 6]), it is felt
acutely by researchers in this field due to the multi-scale
and distributed dynamics inherent to almost any behav-
ioral process. Cognition or sensation acts to drive muscles
that drive joints that drive limbs that drive locomotion or
other motions, which then send feedback signals in the
reverse direction, and the cycle continues. Where in this
loop do we define behavior? Or is it the whole loop? And
what numbers should we use to describe the observed
dynamics? These are the questions that I will focus on
here, asking how to best represent behavioral data in a
manner that bridges length and time scales, highlighting
particularly fruitful approaches.
Before progressing, though, it should be noted that

there has been a recent proliferation of review articles
discussing behavior, detailing concepts ranging from com-
putational techniques for measuring behavior [7–10] to
finding simplicity in “big behavioral data” [11, 12] to the
advent of computational psychiatry and measuring emo-
tional states [3, 13–17] to the need for measuring behavior
in the first place [1, 2] to the reproducability and robust-
ness of said behavioral measures [18, 19]. While there will
inevitably be a great deal of overlap between this review
and those that have come before it, here I will focus less
on the practical aspects of behavioral quantification and
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more on the consequences of the representational choices
one makes, highlighting areas where further progress is
required.

Measuring behavior on the organismal scale
Beyond being a mere technical inconvenience, the relative
lack of a quantitative language for measuring behavior has
shaped the types of questions we have been able to ask.
In a laboratory setting, behavioral experiments have usu-
ally been designed to observe a restricted set of actions
within the scope of a restricted environment [20, 21].
To wit, the behavior measured in most of these experi-
ments is typically performed within a “paradigm” – with
the accompanying implication that we have tuned the ani-
mal to our quantification scheme rather than the other
way around. Examples of this approach would be plac-
ing an animal in a maze where it can only turn left or
right or head-fixing a rodent, where it is asked to lick
in a particular direction to obtain a reward. While this
reliance on non-naturalistic behavior sometimes emerges
from a culture of treating behavior as a read-out variable
of the neural hardware in question, more commonly it
is driven by an understandable desire to have a repeat-
ablemeasurement that can generate high-throughput data
while recording activity from neurons. Nevertheless, the
end result is to measure an over-constrained behavior
that likely lies outside of an animal’s typical repertoire of
actions.
To move forward with the analysis of more natural

behavior, we can try to imagine the best-case scenario,
ignoring all of the technical worries. If we have an arbi-
trarily large amount of high quality data from an animal
behaving with minimal artificial constraints, how should
we describe it quantitatively? To an extent, the answer
here is the same as in most other scientific measurements:
we desire consistency (repeatable results), fidelity (describ-
ing the system as accurately and completely as possible),
interpretability (ease of relating the found numbers to
their biological underpinnings), and scalability (requiring
minimal manual labor or scoring without impractically
taxing computational or human resources).
While consistency and scalability can be theoretically

obtained independently of the other two, fidelity and
interpretability are, by definition, in tension, with mea-
surements typically being more understandable but less
accurate as we remove details. Our goal for measuring
behavior, then, is to find descriptive representations of
these multi-scale processes that are as parsimonious
as possible. This trade-off naturally suggests a contin-
uum of solutions, and in the rest of this article we
will see how researchers have represented behavioral
data in varying ways, tying-together the length and
time scales of naturalistic behavior at many levels of
abstraction.

Selecting a representation
A good place to start investigating behavioral represen-
tations is to note the options available to researchers a
decade ago if they wished to measure ethological behav-
ior at the organismal scale. One option would have been
the previously mentioned paradigmatic approach, where
the quantification is ingrained into the experimental appa-
ratus itself. Quantifying behavior in this manner has
the advantages of high-throughput and consistent mea-
surements, but it captures a very low-dimensional and
potentially unnatural measurement [22].
Another approach would be to measure a coarse, yet

non-paradigmatic, variable such as mean velocity or the
fraction of time moving (including the laser-crossing
experiments that are typical in circadian rhythm stud-
ies [23]). These measurements are more naturalistic than
paradigmatic ones, while allowing for a similar level of
throughput, however they only capture dynamics at a sin-
gle scale. This is a plausible approach when studying the
effects of genetic manipulations on sleep-wake cycles, but
it may not be able to capture, say, the precise grooming
patterns of an animal or othermovements that are unlikely
to be apparent by treating the animal as a point moving
through space.
Alternatively, if a researcher desired a richer descrip-

tion of an animal’s behavior, they could have developed
a human-defined classification system for an animal’s
behavior that was then scored by a trained observer.While
providing a great deal more description, this approach
is extremely labor-intensive, often requiring significant
effort to devise the scoring scheme, followed by poten-
tially months of researcher-hours to apply it. More-
over, although the scheme one uses can be elaborated
in detail, there will inevitably be user-specific variabil-
ity in its application. More problematic, since behaviors
are defined and delineated intuitively, it is difficult to
quantitatively argue that one individual’s or group’s rep-
resentation of the behavior is more accurate or appropri-
ate than another’s, further limiting reproducibility. Lastly,
this approach implicitly assumes that behavior can be
described in terms of hopping between discrete states
without showing, from the data, that such a model is
indeed a reasonable representation in the first place.
Skipping ahead to the present, all three of these options

are still frequently used, often generating novel insights
into behavior and the mechanisms driving it. Automa-
tion has greatly increased the throughput of the first
two described options, especially in small organisms like
worms [24, 25], flies [26, 27], and zebrafish larvae [28–30].
Moreover, supervised machine learning techniques have
greatly improved the repeatability and decreased theman-
ual effort required to analyze behavioral data with user-
defined classification of behavior [31–35]. That being
said, the fundamental difficulties with these approaches
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remain - the level of behavioral description is either
coarse-grained or behaviors are intuitively defined, explic-
itly encoding a human observer’s underlying assump-
tions about an animal’s behavior. Thus, we come to a
fundamental query: how can we leverage modern data-
collection techniques to extract complex behavioral rep-
resentations in manner that is transparent and repeatable,
with explicitly-stated and testable assumptions that shed
light onto particular biological questions? As we will see,
the answer to this requires thinking about the general
principles.

Stereotypy as a general principle
One area of organismal-scale research where the chal-
lenges inmeasuring behavior have become predominantly
technical is biolocomotion, the study of how animals
move through their environments [36–39]. Here, while
many deep questions regarding the performance, control,
and evolution of these behaviors remain to be answered,
there is a generally-agreed-upon framework for measur-
ing behavior: most researchers study dynamic trajecto-
ries of motion, typically center-of-mass, body bending,
and/or limb trajectories. What is it about biolocomotion
that has made it amenable to this type of agreed-upon
representation?
Part of the reason for this advantage is the clear etho-

logical context of the actions studied – moving from one
place to another quickly, efficiently, and robustly. Thus,
there is a natural mathematical formalism to translate
between scales, namely Newtonian mechanics, and the
behaviors in question are clearly separable from other
actions that the animal performs. Even in cases where
the mathematics underlying this translation are unten-
ably difficult to analyze directly, robots can serve as the
physical equivalent of generative models to bridge this
gap [40–42]. Moreover, concepts such as optimal con-
trol or energy-efficiency provide a theoretical basis for
providing meaning to the investigations [43–45]. Another
factor is that these behaviors are highly stereotyped, with
physical constraints typically allowing for only a small
number of movement patterns or gaits [46]. Although ani-
mals are capable of moving their limbs in an extremely
large number of ways [47], during locomotion, their typ-
ical dynamics only explore a minute fraction of this vast
space. Small perturbations off of these trajectories can be
either corrected for or used to actuate control [48–50].
Inspired by these studies, much of the recent progress

in developing tools for data-driven and unsupervised (i.e.
without the aid of human-labeled examples) analysis of
animal behavior has resulted from this observation that a
large fraction of animal movements are low-dimensional
compared to the animal’s total capacity for movement
and are often repeated in a similar manner (Fig. 1)
[11, 51–53]. However, in order to proceed, we must have
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Fig. 1. Approaches for identifying stereotyped movements.
a Representation of all of the movements an animal could
theoretically make. For instance, each line could be the dynamics of
two joint angles, say, the bending of a knee and an ankle, or another
set of postural variables over time. Although an animal could
potentially move with any of these postural trajectories, many of the
motions here would be only rarely performed. b How we observe
most animals to move. Specifically, they use a relatively small portion
of their potential behavioral repertoire (stereotyped behaviors,
colored lines) along with a few instances of less-commonly-observed
ones (non-stereotyped behaviors, black lines). c One way to isolate
stereotyped behaviors is to break-up the observed trajectories into
clusters (denoted by dashed lines). d An alternate means of
identifying stereotyped behaviors is to transform the dynamics in
such a way that, for instance, each time one of the trajectories in b is
performed, a dot is placed using a low-dimensional embedding to a
different space. Similar trajectories are mapped near each other
(dots), and stereotyped behaviors could be identified as peaks in the
density contours (lines) of this map

a more precise mathematical description of stereotypy
(i.e. defining what we mean by “low-dimensional,” “simi-
lar,” and “movement”). The goal here is to put the human
at the beginning of the analysis process (defining stereo-
typy) as well as at the end (interpreting behavioral outputs
of the analysis process), rather than in the middle (intu-
itively defining behaviors), as is the case for label-based,
or supervised, methods for behavioral analysis.
Several recent studies have developed tools for find-

ing these stereotyped behaviors across a range of model
organisms during (relatively) free behavior, from worms
to rodents [53–59]. Although these researchers have all
taken widely-differing technical approaches, there are key
similarities that join their efforts together. The common
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logic between these methods points toward a shared def-
inition of stereotyped behavior and forces us to ask a
pair of fundamental questions: what does it mean for
two behaviors to be similar or different, and how do we
place a number on this difference? One important note,
though, is that none of the approaches described below are
strictly unbiased, despite the term being often brandished
when describing their advantages. The implication in call-
ing these unsupervised approaches unbiased is typically
that the analyzer is removing themselves fully from the
loop. Each choice a researcher makes, though, has conse-
quences, regardless of how explicit those choices are, but
the key to all of these approaches is that the consequences
of these options are readily apparent.

Finding stereotypedmovements in behavioral data
Although superficially distinct, there are surprising sim-
ilarities in the underlying bases of different approaches
for automatically identifying stereotyped behavior from
videos (we will ignore other modalities for the moment)
of freely-behaving animals. The general framework has
been to first extract a low-dimensional postural time series
from a data set, followed by a translation of these postures
into a dynamical representation that is used to create a
behavioral representation that isolates individual stereo-
typed actions. If desired, an animal’s dynamics within
this behavioral representation can be observed over time,
finding patterns and sequences of behavior (Fig. 2).

Extracting postural time series
The first step in almost any of these analyses is to iso-
late the animal’s posture from the raw video data. Here,
by posture, I mean a measure that describes the config-
uration of an animal’s body and limbs at a given point
in time (describing how they move will come in the next

section). Usually, we prefer to describe this configuration
in a manner that is in the body frame of the animal so that
behavior is measured independently from spatial position
or orientation. It is from this snapshot that further analy-
ses will be devised, and it is here where organism-specific
practicalities are most apparent.
This latter point can be readily seen in the difference

between describing a nematode like C. elegans and a fly
like D. melanogaster (Fig. 3). While almost all of the
dynamics of worm behavior could be described by the
motion of its centerline, a fly’s movement is the combi-
nation of six legs (each with two joints), two wings (each
capable of moving with three degrees of freedom), and
other body movements such as abdomen bending. These
body plans clearly require different representations, even
if we expect both to be relatively low-dimensional over
the course of typical activities the animals perform. A
rodent, with a more flexible body, or a human, with its
typical bipedal walking gait, would require different rep-
resentations still. In all cases, though, the aim is to take a
high-dimensional measurement – say, thousands to mil-
lions of pixel values – and reduce it to a low-dimensional
set of numbers describing the animal’s posture.
The traditional, and in some senses optimal due to

its interpretability, manner to achieve a set of low-
dimensional time series has been to track the positions
of individual body parts such as joints, leg tips, the tail,
or the head. Outside of animals with relatively simple
morphologies like C. elegans, this is an extremely diffi-
cult computer vision problem that has been the subject
of comprehensive discussions elsewhere [7–9]. Even in
the case of worms, new image analysis methods have
been necessary to account for events where the worm
crosses itself [60–62]. For legged animals, most automated
methods typically require either attaching markers to the
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Fig. 3. Examples of postural representations. a A schematic for how posture is typically represented by assigning body frame coordinates, here for a
fruit fly. This assignment is usually created from manual tracking or machine vision techniques. b Using variations in the tracked centerline of the
nematode C. elegans (left) to find a set of postural modes (right). Here, principal components analysis is used to find a set of postural modes, or
“eigenworms,” where the original centerline can be largely reconstructed through a linear combination of these centerline variations (adapted from
[54]). c In cases where tracking is not feasible due to occlusions, high-dimensionality, and/or large data sets, an alternative approach has been to use
image compression to find postural modes, such as those seen in the fly images here (adapted from [53]). Here, red and blue represent positive and
negative eigenvector magnitudes, respectively, that are the result of concentrating as much of the data’s variance in as few directions as possible.
The original image can be reconstructed via a linear combination of all the modes plus an overall mean, and time series can be generated by
observing sequential images’ projections onto these postural modes

animal or large amounts of manual correction. Recent
advances in experimental design [34, 63, 64] and compu-
tational algorithms [7, 65–67] provide hope for improving
the state-of-the-art moving forward, but for large data
sets containing up to billions of images, tracking individ-
ual body parts is not currently practical, especially for
2-dimensional images.
Instead of directly tracking, a common approach has

been to think about postural decomposition as an image
compression problem. After doing some image process-
ing to isolate the animal from the background and align
it translationally and rotationally to a template image, the
tactic taken by work in flies [53] and mice [56] has been to
perform a dimensionality reduction operation like Princi-
pal Components Analysis (PCA) on the raw image pixel
data. This process allows for images of an animal with
complexmorphology to be reproducibly and continuously
mapped into a relatively small set of time series, much
like direct tracking of joint angles would do, but with
vastly fewer errors and no need for manual inspection
(Fig. 3c). This process has the disadvantage, however, of
creating relatively uninterpretable time series, a fact we
need take into account when moving toward a dynamical
representation.

Building representations of dynamical behavior
When defining stereotyped behavior, we typically think
of movements, not postures. For example, we wouldn’t
describe walking as bending the right knee at 73.1°, the
right ankle at 15.23°, and so on, but rather as a trajectory of
these angles through time. As a result, to measure stereo-
typed behaviors, we need to create a dynamical repre-
sentation that describes how the measured postural time

series are changing. Building such a representation can be
achieved by either directly fitting a differential equation
to the postural data or through attributing features that
incorporate dynamics such as temporal motifs or time-
frequency features to individual segments of the data. We
will see examples of each of these approaches momen-
tarily. From here, one would like to create a behavioral
representation, which can be thought of as longer-time
scale changes in the underlying postural movements that
generate the observed postural motions. For instance, giv-
ing the relative velocities of each of an insect’s six legs
might be a dynamical representation, but saying that the
animal is walking with an alternating tripod gait would be
a behavioral representation. Of course, we need to make
this idea more precise, and we will see how several differ-
ent studies have done this, each with associated strengths
and challenges.
The most straight-forward process for building a

dynamic representation is to eliminate the step of finding
postural time series and instead create a manually-curated
set of dynamical features that are later used as the input
to either a supervised classifier or a clustering/embedding
algorithm [32, 68–72]. While relatively easy to imple-
ment, this approach risks missing elements of behavioral
dynamics not captured in the list, and each of the mea-
surements potentially has different units (e.g. velocity,
angular velocity, acceleration, distance from another ani-
mal), requiring additional conversion factors or assump-
tions about equal variance that could affect any analysis’
outcome in subtle ways.
Ideally, an appropriate dynamical representation would

emerge naturally from postural dynamics. To date, the
clearest example of using postural data to explicitly
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generate a dynamical system that provides a natural
behavioral representation is the work on C. elegans from
Stephens et al. [52, 54]. Here, the authors found that the
majority of a worm’s motion can be described by the pro-
gression of a single phase variable that can be thought of
as the advance of a traveling wave moving up or down
the animal’s body. Fitting the observed dynamics of this
variable to a model with a deterministic and a stochastic
component (Fig. 4a-b), they find that the worm’s behav-
ior can be described as a set of dynamic attractors with
switching times that are predictable from the statistics of
the underlying noise. Although applying such methods
directly to higher-dimensional data sets like those gen-
erated from legged animals can be challenging, recent
advances in finding dynamical models that best describe

a continuous time series provide future avenues for
exploration [73–75].
Another approach to building a dynamical system rep-

resentation is to fit a statistical model to the data. A
prominent example of this can be seen in the work of
Wiltschko et al. [56], who collected postural time series
data of mice and fit an Autoregressive Hidden Markov
Model (AR-HMM) to their data (Fig. 4e-g). One can think
of this approach as fitting small segments (less than 1 s) to
linear dynamical systems, and that the animal is switching
between these systems with time scales that are signifi-
cantly longer than those of the dynamics within a given
system. This method creates a dynamical representation
(bottom row of Fig. 4e) at the same time as it creates a
behavioral representation (top row of Fig. 4e).

b e g

j

f

h i

a

c

d

Fig. 4. Examples of dynamical and behavioral representations. a For C. elegans, a histogram of projections onto the first two postural modes, or
“eigenworms” (the left two curves in Fig. 3b) shows a low-dimensional structure that can be parameterized by a single phase variable, φ. b Fitting
the dynamics of this variable to a deterministic dynamical system yields this phase map, with forward and backward locomotion naturally emerging
as traveling wave trajectories at the top and bottom, respectively, and two fixed points in the middle corresponding to two different pause states
(a and b are adapted from [54]). c An alternative approach to represent C. elegans behavior is via motif-finding. Here, time-series of projections onto
the eigenworms are scoured for repeated patterns (e.g. the blue and red curves here). These patterns are then catalogued and used as the basis for
a behavioral representation (adapted from [55]). d Instead of using dynamical motifs directly, the worm’s behavior can be captured as a sequence of
postures, as seen in this example from [77]. e The approach taken by [56] was to fit an autoregressive hidden markov model (AR-HMM) to postural
data of mouse movements, generated in a similar, but not identical, manner to that seen in Fig. 3c. Here, each Pt is a vector of the animal’s postural
mode values at time t, and St is an underlying state that affects the dynamics of postural outputs. Here, arrows imply direct dependence (i.e. Pt is a
stochastic function of St , Pt−1, and Pt−2, and so on). It is assumed that the time scale for changes in P is much faster than that for changes in S. This
latter time scale, a parameter in the model, sets the distribution for the length of time that an animal stays within a particular behavioral state.
f Average behavioral usage frequencies using an AR-HMM for four different mouse genotypes: Wild type, C57/BL6, as well as homozygous (Mut) and
heterozygous (Het) mutations in the retinoid-related orphan receptor 1β (Ror1β) gene. g Distinct walking gaits found in theMut (top) and C57/BL6
(bottom) mice (e-g adapted from [56]. Neuron 88(6), Alexander B. Wiltschko, Matthew J. Johnson, Giuliano Iurilli, Ralph E. Peterson, Jesse M. Katon,
Stan L. Pashkovski, Victoria E. Abraira, Ryan P. Adams, Sandeep Robert Datta, Mapping Sub-Second Structure in Mouse Behavior, 1121-1135.,
Copyright 2015, reprinted with permission from Elsevier.) h An example of a time-frequency analysis representation from freely-moving fruitflies,
where each set of axes represents a mode, and the colormap values indicate the continuous wavelet transform amplitudes for at each point in time.
This approach allows for multiple time scales to enter the dynamical representation. i Probability density resulting from embedding points into 2-d
such that two instances when a fruit fly is moving similar parts of its body at similar speeds are mapped nearby. Note the peaks and valleys. Here, the
peaks represent stereotyped behaviors. j Break-down of the behavioral representation in i, with names for the behaviors within each of these
regions manually labelled. Black lines are proportional to the transition probability between moving from one coarse region to another, with
right-handedness implying the direction of transmission. (h-j adapted from [53, 76])
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While the ability to simultaneously represent dynamics
and behavior is a distinctive advantage of the AR-HMM
approach, it is also a limitation since it requires a parame-
ter that sets the overall time scale of staying in a particular
behavioral state. One could imagine amending this lim-
itation by adding additional time scale parameters when
fitting the model, but this still requires a hand-tuning of
the time scales available to the system, as well as a corol-
lary assumption that the amount of time an animal spends
in a particular behavior must follow an exponential distri-
bution. The time spent performing a behavior, however,
can range over orders of magnitude – from a reflex last-
ing tens of milliseconds to a night’s sleep – and long
time-scale dynamics are often observed in behavioral data
[52, 76]. Moreover, if one wishes to directly measure the
time scales evident in a particular data set, the fact that
the approach used relies on this type of structure as an
assumption can be confounding.
A complementary approach is to create a multi-scale

dynamical representation that forms the basis for a behav-
ioral representation. This can be achieved through finding
motifs of varied lengths in a data set [55, 77, 78] or using a
time-frequency analysis approach like a wavelet transform
[53, 59, 79] to represent postural dynamics across a variety
of time scales. For the case ofmotif-finding (Fig. 4c-d), one
finds postural patterns that commonly occur throughout
a data set and looks for when the animal exhibits simi-
lar dynamics. The relative frequency and patterns of use
for these motifs can be used to create “behavioral finger-
prints” for individuals or collections of animals differing
in genotypes, neural manipulations, or other conditions
of interest. The resulting behavioral representation is thus
the set, frequency, and ordering of motifs that an animal
performs. A difficulty of this approach, however, is that
results may not always be robust to slight changes in pos-
tural dynamics such as changes in frequency or relative
phasing between limbs.
An alternative approach to capture behavioral dynam-

ics across multiple time scales is to use time-frequency
analysis (Fig. 4h). Here, one takes the set of postural
time series, determines a wide range of frequencies that
are present in each time series and measures the rela-
tive importance of each of these frequencies as a func-
tion of time. This importance is often quantified via a
wavelet transform [80], which uses a trade-off between
accurate temporal resolution and poor frequency reso-
lution at high frequencies and poor temporal resolution
and accurate frequency resolution at low frequencies to
generate a multi-scale representation of the animal’s pos-
tural movements. The resulting dynamical representation
for a single point in time is thus a set of wavelet ampli-
tudes for a collection of frequencies from each of the
observed postural time series. Despite the fact that the
wavelet transform contains both amplitude and phase

information, it is typical to use only the amplitude infor-
mation, as this eliminates many of the robustness issues
experienced in the motif-finding case. Behavioral repre-
sentations can then be obtained from either clustering
[58, 79] or low-dimensional embedding (Fig. 4i-j) [53, 59]
of the resulting vector of amplitudes. Typically, when
embedding these feature vectors, an anisotropic density
across this space emerges, with local peaks correspond-
ing to particular stereotyped behaviors. Accordingly, one
could treat the behavioral representation as either the
density itself or the sequence of peaks that an animal
visits.

Discrete vs. continuous behavioral representations
Note how we now have seen that behavioral represen-
tations can either be discrete (e.g. clusters or motifs)
or continuous (e.g. densities or non-piecewise dynami-
cal models) and that discrete representations can often be
derived from continuous ones (e.g. fixed points or peaks).
So which is better? Ideally, one is able to identify a discrete
representation through the fixed points of a dynamical
model, but this is not currently practicable for animal
morphologies more complicated than a worm’s. For other
systems, though, like most methodological questions, the
answer depends on the experimental exigencies at play,
and performing both often provides additional context
and information.
On one hand, in favor of continuous representations,

it is more intellectually satisfying to show that a discrete
representation arises naturally out of a data set without
imposing such a structure a priori. Even in the case where
a discrete representation is appropriate, it may be that
the interesting measurements to note are the subtle dis-
tinctions on the edge of the peaks. Additionally, although
many of the movements an animal performs are stereo-
typed, not all of them need to be. An important aspect of
continuous representations is that they allow for the abil-
ity to have portions of time where the animal is perform-
ing non-stereotyped dynamics (i.e. they do not remain
stationary on the map in Fig. 4j). Results from fruit flies
show that the animals perform non-stereotyped behaviors
approximately half of the time [53, 59], implying that one
must be careful when interpreting a representation that
places all time points into a cluster.
On the other hand, though, if the data indeed has

clusters, one should perform clustering in the high-
dimensional space that retains all of the information in the
data and where partitioning algorithms are more likely to
succeed and one does not have to worry about the specific
form of the length-scale distortions that any nonlinear
embedding necessarily creates [58]. However, while for-
malisms such as AR-HMM allow for the building of a type
of dynamical model, they also rely on underlying assump-
tions about a single time scale that could over- or under-



Berman BMC Biology  (2018) 16:23 Page 8 of 11

partition the data. Accordingly, researchers need to think
carefully about the consequences of these choices of rep-
resentation and tailor their approach to the questions at
hand.

Future challenges
Many of the next steps in building representations for
measuring behavior involve building representations that
link postural dynamics to dynamics of other variables,
including space, other behavioral modalities, other indi-
viduals, and neural dynamics.

Joint representation of space and posture
An interesting observation about almost all of the rep-
resentations in the previous section is that the typical
quantities measured in coarse behavioral assays, namely
spatial position, orientation, and their derivatives, are the
first aspects to be eliminated. This is performed to ensure
that one measures motions in an animal’s own frame, but
there are numerous scenarios in neuroscience and social
behavior where we would like to look at the interactions
between location, movement, and behavioral patterns,
ideally generating a joint representation.
A natural question here is, why not simply add the

postural dynamics as an extra time series to be thrown
into one’s favorite behavioral mapper or classifier? The
difficulty here is that the variables describing dynami-
cal representation – derivatives or spectral transforms of
joint angles or postural modes – all have the same units,
and these units differ from those of the spatial variables.
Thus, a unit conversion must occur, requiring at least one
arbitrarily-chosen parameter.
Current solutions have been to measure behavior con-

ditioned on position or position conditioned on behavior
[56, 59, 81] or to measure a response field averaged across
individuals [82], but this does not provide a true joint rep-
resentation. As an example, if one animal performs the
exact same motion twice, but in slightly different loca-
tions, are those two behaviors closer or further away
than the animal performing two slightly different motions
but at the exact same position? Finding systematic and
precise quantifications to answer this question (and the
answer might change depending on the precise scien-
tific investigation at hand) will be key to building joint
positional-postural representations.

Collective and social behavior
Similar to the difficulty of representing space and posture
simultaneously, we face a problem when attempting to
describe the collective dynamics of many individuals mov-
ing together. This is often achieved through measuring an
order parameter that is related to the proportion of indi-
vidual velocities pointed in the same direction [83–85].
Ideally, though, one would like to capture metrics that

describe the collective dynamics of many individuals in
a manner as rich as the previously-described approaches
for single animals. Particularly fruitful ideas here bor-
row techniques from fluid dynamics, including the use of
Lagrangian coherent structures [86] and dynamic mode
decomposition [87] to generate continuum-based models
of many organisms moving collectively.
An additional challenge arising in social behavior is

that much of the research described previously focuses
on the physical motion of an animal’s limbs and body,
but in the case of social interactions, capturing other
aspects of behavior such as the production of audio and
substrate-borne signals will be necessary to fully describe
the animals’ dynamics. There have been many recent suc-
cesses relating behavioral dynamics to, for example, audio
dynamics through asking what behavioral features predict
the performance of a particular song or song type using
methods such as general linear models (GLMs) [88–90],
and improvements in automated methods have increased
the throughput of audio data analysis [91–94]. Ideally,
though, we would be able to create a joint representation
of the alternative behavioral modalities and the postural
movements occurring at the same time that more fully
links the dynamics of these processes.

Linking neurons to behavior
As our ability to record neurons in freely-behaving ani-
mals increases, the need to represent neural activity
jointly with behavior is becoming increasingly apparent.
As with multi-modal dynamics, most current approaches
to neuro-behavioral analysis [57, 68, 95–100] take a correl-
ative or decoding approach: given one knows something
about neural dynamics, what can one predict about behav-
ior, or vice versa? This could take the form of “given a
neural stimulation what did the animal do?” or “is it pos-
sible to predict an animal’s behavior from neural dynam-
ics?” While these are necessary first steps toward building
our understanding of how neural circuits drive behavior,
to more fully comprehend the interplay between these cir-
cuits and how behavior feeds back onto neural responses,
we need to devise methods to analyze the combined
dynamics of posture and neural activity simultaneously.
One potential avenue for achieving this aim is to

combine experimentally-tested computational models of
neural dynamics with high-resolution behavioral mea-
surements and perturbations. Ideas toward this end have
been put forward in the nascent field of computational
psychiatry, where neural models, ranging in scale from
small collections of neurons to individual brain nuclei to
whole brain dynamics [3, 16, 101, 102] are manipulated
or systematically controlled to see how system-wide out-
puts are affected. Although in these studies outputs are
usually measured in terms of neural activity alone, a joint
representation of behavioral outputs in model organisms
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or human patients and model-specific control dynamics
of the neural circuit present an intriguing path forward.
This would also allow ideas from control theory to inform
the discussion [43], building a framework where feed-
backs between neural activity and behavior could be more
thoroughly linked.

Toward theories of behavior
The previous point about the use of theory in gener-
ating behavioral representations brings us back to the
beginning of our discussion. Our fundamental chal-
lenges still remain at the conceptual rather than the
technical level. Despite the significant advances in mea-
suring behavior over the past few years, the ultimate
goal of these approaches – understanding how and why
animals control and generate particular sequences of
physical movements – requires developing theories and
models to serve as connective tissue, providing con-
text and justification for the measurements we make
and allowing us to make predictions that suggest future
experiments.
But what should these theories look like? Does this

mean we should turn behavior into particle physics?What
is the atom or proton or quark of behavior? Does it even
make sense to discuss behavior as if there is a set of under-
lying first principles from which all actions are derived?
Like most questions in biology, we can begin to make
progress by looking to evolution. Specifically, we cannot
forget that almost every behavior has a goal: to increase
an animal’s probability of passing its genes to subsequent
generations. Thus, all movements are placed in the con-
text of how they aid in the performance of one or many
tasks.
This viewpoint, shared by many of us who refer to our-

selves as “computational ethologists” [1] (whether this is
different than “ethologists with fancy computers” is a dis-
cussion for a different article), makes an argument to
engage in a parallel endeavor to the mapping and manip-
ulation of neural circuits. We should search for what
Richard Dawkins referred to as “software explanations of
behavior” [103]. The most famous example of this type of
analysis is Tinbergen’s hypothesis that animals’ behavioral
drives can be explained via a hierarchically-organized set
of competing impulses, based on both observations and
ideas about optimality and evolvability [104]. This idea,
independently developed by Herbert Simon in the con-
text of engineered systems [105, 106], provides testable
consequences that have lead to further investigations and
theories across a wide variety of systems [76, 107–109].
Similarly, ideas about optimizing feedback control and
energy-efficiency have shaped biolocomotion studies
[110], and concepts from reinforcement learning have
served as a starting point toward investigations into the
neural implementation of learning [13, 111].

In each of these examples, observations about behavior
have been used to make inferences about the brain’s func-
tioning that do not explicitly rely on detailed models or
knowledge of brain dynamics or morphology, potentially
providing general principles that apply across systems.
When deciding what type of behavior to measure and how
to measure it, we either intentionally or unintentionally
rely on theories such as these when we choose a behav-
ioral context, select length and time scales, or decide how
to analyze the data.
Only through consciously generating and interacting

with broad theoretical concepts can we create a fuller
understanding of how neural systems function to produce
movement and behavior. For example, the idea of using
stereotyped movements as a scale for behavioral measure-
ments builds upon observations about low-dimensionality
in movements and the commonality of neural circuitry
such as central pattern generators devoted to the per-
formance of periodic activities. Taking these assumptions
directly into account has allowed the methods discussed
in this review to be developed, and the identification
of further concepts will be essential to their expansion,
refinement, and application. At its core, “What type of
behavior do we want to measure?” is a question that relies
on theoretical insight for its answer, and future efforts
toward quantitatively linking behavior to its physiologi-
cal underpinnings will greatly benefit from approaching
experimental design and analysis accordingly.
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