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Classifying human promoters by
occupancy patterns identifies recurring
sequence elements, combinatorial binding,
and spatial interactions
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Abstract

Background: Characterizing recurring sequence patterns in human promoters has been a challenging undertaking
even nowadays where a near-complete overview of promoters exists. However, with the more recent availability of
genomic location (ChIP-seq) data, one can approach that question through the identification of characteristic
patterns of transcription factor occupancy and histone modifications.

Results: Based on the ENCODE annotation and integration of sequence motifs as well as three-dimensional
chromatin data, we have undertaken a re-analysis of occupancy and sequence patterns in human promoters. We
identify clear groups of CAAT-box and E-box sequence motif containing promoters, as well as a group of promoters
whose interaction with an enhancer appears to be mediated by CCCTC-binding factor (CTCF) binding on the
promoter. We also extend our analysis to inactive promoters, showing that only a surprisingly small number of
inactive promoters is repressed by the polycomb complex. We also identify combinatorial patterns of transcription
factor interactions indicated by the ChIP-seq signals.

Conclusion: Our analysis defines subgroups of promoters characterized by stereotypic patterns of transcription
factor occupancy, and combinations of specific sequence patterns which are required for their binding. This grouping
provides new hypotheses concerning the assembly and dynamics of transcription factor complexes at their
respective promoter groups, as well as questions on the evolutionary origin of these groups.
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Background
The sequence patterns which characterize mammalian
promoters have been the object of intense study for many
years (see, e.g., [1] for review). A number of sequence pat-
terns, most prominently the TATA-Box, have been associ-
ated to promoters. At the same time, the wish to recognize
promoters from sequence alone has prompted the search
for further characteristic patterns. In the fruit fly, such
patterns could indeed be delineated (see [2] and [3]). For
mammalian promoters, a number of sequence patterns
were identified as enriched based on careful sequence
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analysis (see, e.g., Bucher [4] and FitzGerald et al. [5, 6]).
From amongst those patterns, the TATA-box used to be
considered a hallmark of mammalian transcription. How-
ever, the more promoters became known the fewer of
them actually contained a TATA-box. At the same time,
CpG islands have been identified as an important feature
of a human promoter (see [7] for review), even dividing
the human promoters into the ones that possess a CpG
island vs. the ones that lack it ([8, 9]).
The ENCODE project [10] has produced ample

data on human promoter occupancy using the chro-
matin immunoprecipitation with massively parallel DNA
sequencing (ChIP-seq) technology. It became clear that
active promoters show particular histone modification
patterns like an increased level of Histone 3 Lysine
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4 trimethylation (H3K4me3) and of H3K27ac. Sev-
eral papers exploited the data-set to improve on the
definition of transcription factor binding sequences
[11–13]. ENCODE data also comprises an extensive set
of genomic location data for transcription factors and
other chromatin-associated proteins, which do not bind
in a sequence-specific manner. The group of Zhiping
Weng and their collaborators already provided an in-
depth analysis of the binding sites and their co-occurences
in [14] and the associated factorbook-website [15]. How-
ever, their focus was on the binding sites in general and
not on the promoters and their activity status. With a
focus on the NF-Y transcription factor, Dolfini et al. stud-
ied the associated regulatory module [16]. Giannopoulou
et al. [17] and Gerstein et al. [18] compiled a regulatory
network and chromatin-bound protein complexes. Dan
et al. studied TF colocalization. The question remains
what can be learned from an integrated analysis of his-
tone modifications and transcription factor occupancy
patterns with respect to subgroups of promoters and their
characteristic sequence patterns.
In this paper, we focus on the human promoter regions

as defined in the RefSeq [19] database and integrate tran-
scription factor binding information, histone modifica-
tions, and chromatin-associated proteins for the purpose
of delineating subgroups of promoters. We collect pro-
moter activity information in the form of CAGE tags [20]
as reported by the FANTOM consortium. It is the Ref-
Seq annotation that provides the static information that a
chromosomal position can in principle act as a transcrip-
tion start site, and the CAGE information that provides
the dynamic information on promoter activity. As a con-
trol, we repeat the analysis with promoters identified from
CAGE peaks only and independent of RefSeq annotation.
From the ENCODE data, we process the ChIP-seq exper-
iments for the histone marks (HMs) and transcription
factors (TFs) for the two cell-lines with the largest avail-
able number of experiments (GM12878, K562). We will
also verify our generated hypotheses in HeLa-cell data.
For each cell-line, our input data constitutes a large matrix
where a promoter defines a column, and each row corre-
sponds to one ENCODE ChIP-seq experiment. For each
column, the number of CAGE tags indicates transcrip-
tional activity from this TSS and allows us to distinguish
active and inactive promoters. Using the computational
method of biclustering [21], we determine groups of pro-
moters and associated groups of ChIP-seq experiments,
where the promoters are occupied by just these TFs or
HMs and, vice versa, the TFs/HMs are characteristic
of these promoters. This information is visualized in a
heatmap depiction of the matrix with columns and rows
arranged in such a way that the groups become visible as
blocks in the matrix. Note that biclustering a matrix dif-
fers from combining two hierarchical clusterings on either

dimension in that biclustering selects combinations of
groups of rows and groups of columns, together forming
a homogeneous bicluster [22].
Analysis of the heatmap that results from bicluster-

ing uncovers several classes of promoters that are dis-
tinguished by the combinations of bound TFs. We will
back up this information by motif analysis and, where
meaningful, with chromatin 3D information. We analyze
both active promoters and inactive promoters. Cluster-
ing information will be further supported by statistical
tests for enrichment of occupancy and of motif occur-
rence. Taken together, our results demonstrate distinct
subgroups of promoters defined by TF occupancy with the
existence of the sequence patterns a prerequisite for the
binding of the respective proteins.

Results
Sorting heatmaps for active and inactive promoters using
biclustering
For each of the two cell-lines, GM12878 and K562, we
study active and inactive promoters separately, dividing
them based on the number of CAGE tags mapping to the
promoters as proposed by FANTOM ([20], for details on
this and the following steps see the “Methods” section).
GM12878 yielded 6030 active genes and 6854 inactive
genes, while K562 has 4172 active genes and 9588 inactive
genes. For each promoter, we collected from the ENCODE
data [10] the ChIP-seq read-counts for these promoter
regions in the respective cell-lines, see the “Methods”
section for processing of read-counts.
We implemented a robust biclustering procedure

(described in the “Methods” section) in order to cluster
the columns and rows of a matrix in such a way that
blocks of promoters co-occupied by a group of TFs or
HMs become visible. Not the entire data matrix can be
structured in this way and the algorithm yields a result
only in as far as this is meaningful. For example, the
matrix of promoter activity in GM12878 contains 6030
columns (promoters) and 60 rows (ChIP-seq experiments)
altogether. From this data-set, the biclustering algorithm
computed a structured heatmap with 1957 columns and
41 rows which is shown in the upper left of the complete
matrix given in Additional file 1: Figures S1A zoom into
the indicated structured submatrix for active promoters
in GM12878 is shown in Fig. 1. The subsequent analy-
sis will focus on this figure, while the analogous and very
similar matrices for promoters active in K562 are in the
Additional file 1: Figure S2).
The same procedure was applied to inactive promot-

ers such that altogether four heatmaps were computed:
For each of the two cell-lines, one heatmap for active
promoters and one for inactive promoters. The struc-
tured submatrix of the inactive promoters in GM12878
is shown Fig. 2, while the analogous figure for K562
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Fig. 1. Visualization of the biclustering result for active promoters in GM12878 cell-line a ChIP-seq tracks (rows) and promoters (columns) are
ordered according to the biclustering and displayed as a heatmap. The heatmap color corresponds to normalized peak height (see the “Methods”
section) b Result of t test measuring cluster association for each row. The bars extend to the right to a height of the negative logarithm base 10 of
the p value. A high t test value for a row and a certain cluster indicates that this row’s HM/TF is enriched in the respective cluster

is in Additional file 1: Figure S3. For both active and
inactive promoters, the clusters of columns (promot-
ers) are color-coded at the top of the figure, while the
row (ChIP-seq experiment) clusters are delineated by
thin lines.
Besides using an algorithm that is robust in the sense

that it does not report results that might be due to par-
ticular parameter settings (see the “Methods” section),
two further precautions were taken against possible over-
interpretation of computational results. First, an alter-
native biclustering algorithm based on a very different
algorithmic paradigm was employed and found to yield
highly similar results (see the “Methods” section and
Additional file 1). Second, based on the reported clusters
of promoters, we further test the association of individ-
ual rows with respect to the column clusters using a
t test obtaining a measure how well a row fits into a
bicluster. The resulting significance, measured as nega-
tive logarithm of the t test p value, is plotted towards the
right adjacent to the matrix and grouped by the clusters

to which membership is tested. Thus, each bar aligns to
its respective row in the matrix, extending to the right
and providing evidence in how far this row belongs to
the respective cluster. As an example, consider the TF
SP1 in Fig. 1 which associates also with promoters in
cluster II, although the main affiliation of this TF is in
cluster I. This way of associating a probability to the
association of a row with a cluster further qualifies the
information from the biclustering in an effort to prevent
over-interpretation.
Similar biclustering results were obtained for promoters

identified from CAGE peaks rather than RefSeq promot-
ers. The corresponding heatmaps are shown in Additional
file 1: Figures S4 and display the same division into a struc-
tured submatrix and an unstructured part. Note that the
number of inactive TSSs in this CAGE-based definition is
much larger than in the RefSeq-based definition, because
whenever a CAGE cluster was observed in some other cell
line, its absence in K562 or GM12878 is interpreted as an
inactive TSS.
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Fig. 2. Visualization of the biclustering result for inactive promoters in GM12878 cell-line. a ChIP-seq tracks (rows) and promoters (columns) are
ordered according to the biclustering and displayed as a heatmap. The heatmap color corresponds to normalized peak height (see the “Methods”
section). b Result of t test measuring cluster association for each row. The bars extend to the right to a height of the negative logarithm base 10 of
the p value. A high t-test value for a row and a certain cluster indicates that this row’s HM/TF is enriched in the respective cluster

Classes of active promoters
Based on occupancy patterns depicted by blocks in the
heatmap, we have identified five groups of active pro-
moters in GM12878 cell-line. Additional file 1: Figure S5
shows a bar plot of number of promoters in each of the
cluster in both of the cell lines. We proceed to introduce
these clusters based on the heatmap.
In the heatmap for the active promoters (Fig. 1), the

activity-related histone marks H3K4me3, H3K27ac, and
H3K9ac are clearly visible across the top rows, together
with the rows for PolII and TAF. TATA-binding-protein
(TBP) was sorted into another cluster, although visually
TBP could be easily joined to these activity related marks.
The t test supports this view in that testing TBP for cluster
Ia versus the rest shows high significance. In GM12878,
we named the first three clusters Ia, Ib, and Ic to indicate
that visually they might easily be merged into one cluster.

This cluster I further comprises a large group of transcrip-
tion factors including, e.g., CREB,MYC, ETS1, and others.
We observed a similar pattern for K562, where TBP is
included in this activity-related cluster I, too.
Subdividing cluster I emphasizes some differences in the

binding preferences of the transcription factors. In cluster
Ia, several of the activity-related histone modification sig-
nals appear to be particularly high. This goes along with
high activity of these promoters in terms of number of
CAGE tags (Fig. 3a for GM12878 and Additional file 1:
Figure S6 for K562). Cluster Ib is delineated especially
by some of the basic helix-loop-helix (bHLH) transcrip-
tion factors, although these also bind to the promoters
of cluster III discussed below. Cluster Ic is characterized
by promoters bound by SIX5, ETS1, and NRF1. Although
included in Ia, ZNF143 binds to those promoters, too, as
indicated by the t test.
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Fig. 3. Expression measures and possible covariates associated to the individual clusters in GM12878 cell line box plots of values of a logarithm of
number of CAGE tags. This is the criterion that served to determine active and silent promoters. b FPKM of RNA-seq for the target genes of the promoters
in the cluster. c CpG contents in promoter region. The dashed line is the cutoff for defining high/low CpG contents human promoter. d Height of
DNase accessibility peak in the promoters for each cluster. Cluster identifiers given at the bottom of the figure refer to all parts of the figure

Cluster II promoters (hereafter called “NF-Y-cluster”)
are characterized by binding of NFYA and/or NFYB.
The NF-Y transcription factors bind to the CAAT-box, a

classical promoter motif [23]. It is clearly visible and sup-
ported by the t test, which the NF-Y-cluster includes FOS,
as observed earlier by Struhl [24]. The t test also links
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SP1 to the NF-Y-cluster, although SP1 is visible both on
cluster Ib and NF-Y-cluster promoters. In GM12878, SP1
has been assigned to cluster Ib by the algorithm, while in
K562 data SP1 is assigned to the NF-Y cluster. Although
cooperative binding of NF-Y and FOS, as well as NF-Y and
SP1, have been reported in other studies [25], our anal-
ysis indicates a three-way synergy. For additional aspects
including the corresponding sequence motifs see section
“TF combinatorics in USF and NF-Y clusters”. Promot-
ers in the NF-Y cluster show the standard activity-related
marks but are notably devoid of signal from the other
studied transcription factors.
In K562 cells, the algorithm groups together NF-Y, SP1,

and FOS, too, and the t test supports this clustering
(Additional file 1: Figure S2B). Additional file 1: Figures S7
and S8 shows the promoter occupancy with these three
factors and demonstrates that many SP1 bound promoters
indeed are also occupied by NF-Y and FOS. At the same
time, SP1 binds to many more promoters, in line with
observing SP1 occupancy also on cluster Ib promoters in
the ChIP-seq biclustering matrix.
The USF family (USF1, USF2) transcription factors

dominate cluster III (“USF cluster”). The USF binding
motif is CACGTG [26], which is an instance of the clas-
sical E-box motif [27], known, e.g., from the regulation
of clock genes [28]. Like many of the cluster I transcrip-
tion factors, USF is also a bHLH factor. Interestingly,
while there are reports of cooperative binding of USF
and NF-Y in particular promoters [29, 30], we observe an
anti-correlation in that promoters bind either the one or
the other. This is further supported by the motif analy-
sis which shows that the binding motifs of USF (E-box)
and NF-Y (CAAT-box) tend not to co-occur in the same
promoter (see section “Sequence motifs and enrichment
analysis” and Additional file 1: Figures S9 and S10). Typ-
ical basic helix-loop-helix transcription factors like MAX
and BHLHE40 also bind to the USF promoters, which
hints at different dimers binding to the E-box. Although in
K562 the biclustering algorithm did not assign USF2, the
transcription factors USF1, USF2 and ATF3 are clustered
together in GM12878, with MYC joined to that cluster
in K562. MAX and BHLHE40 are also associated to this
cluster by the t test.
Cluster IV (in K562 Cluster V, “CTCF cluster”) is dom-

inated by CTCF/cohesin comprising CTCF itself together
with cohesin components RAD21 and SMC3. Again, the
group of promoters displaying this binding signal is largely
devoid of binding of either NF-Y or USF. While CTCF
is not considered a transcription factor, these promoters
are at the same time occupied by Pol II, TBP, and TAF1.
K562 also shows clustering of CTCF and SMC3, together
delineating a particular albeit smaller group of promot-
ers. The structural implications of this observation will be
discussed further below.

The lower right corner shows another small cluster
(cluster V in GM12878, cluster IV in K562) that is mainly
characterized by ELK1 (binding site consensus CCG-
GAAGT) and SRF binding. These two proteins are known
to interact and bind DNA jointly [31]. The t test analy-
sis indicates that from the other clusters GABPA, SIX5,
and ETS1 show similar binding behavior as ELK1 and
SRF. ELK1 and GABPA are both members of the ETS
transcription factor family [32].
Similar results for promoters identified from CAGE

peaks only are shown in Additional file 1: Figures S11A
(GM12878) and S11C (K562). Clusters are numbered as
they are output by the algorithm. Clusters I, II, and III in
S11A correspond to Ia-Ic from before comprising largely
the same TFs and histone modifications. The NF-Y cluster
from before corresponds to CAGE-based cluster IV. The
RefSeq-based CTCF cluster from before becomes clus-
ter VI in S11A. Only the USF cluster does not have a
direct counterpart in the CAGE-based clustering, whereas
the RefSeq-based SRF-elk cluster (V) gets combined with
two additional TFs and is denoted V in S11A. For the
active K562 TSSs in S23C, the correspondence between
the biclusterings is comparable.
The two cell-lines under study, K562 and GM12878,

were chosen based on the availability of many TF ChIP-
seq experiments. While reproducing the entire analysis in
another cell-line is therefore difficult, we did test for the
existence of the proposed NFY, USF, and CTCF clusters
in HeLa cells. ENCODE data for HeLa comprise ChIP-
seq experiments for NFYA, NFYB, USF2, and CTCF, such
that we could test our hypothesis there. Additional file 1:
Figure S12 shows the promoter coverage patterns by these
factors in HeLa cells after applying k-means (k = 4)
clustering to the data. This analysis confirms the exis-
tence of the NFY, USF, and CTCF clusters. Increasing the
cluster number beyond 4 did not lead to new patterns.
We also validated these clusters based on the CAGE-
based TSS definition by showing their coverage pattern
in GM12878 (Additional file 1: Figure S13) and K562
(Additional file 1: Figure S14). In both cases, the groups
are again visible in the k-means sorting of the coverage
patterns. Even the USF cluster on CAGE-TSSs becomes
visible here, although it was not found in the CAGE-based
biclustering.

Classes of inactive promoters
In search for patterns associated with silent promoters we
also applied the same data analysis strategy to those pro-
moters which showed no CAGE tags (see the “Methods”
section). Like for the active promoters, in the complete
biclustering matrix for promoters inactive in GM12878
(Additional file 1: Figure S1), we home in on the rows and
columns that are assigned to clusters (Fig. 2). The analo-
gousmatrix for K562 can be found in the (Additional file 1:
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Figures S1 and S3). The t test showing the membership of
rows in a particular cluster is again printed to the right.
The first mechanism of repression that one would look

for is by polycomb combined with H3K27me3. This can
be found as part of cluster IV (cluster III in K562), where
EZH2 and H3K27me3 mark around half of the promoters
that are grouped into this cluster of around 400 pro-
moters. These signals are hardly visible in any promoter
outside this cluster.
Like among the active promoters, here too there is a

cluster (cluster II) of promoters that is characterized by
CTCF/cohesin. We inspected the RNA-seq data (Fig. 3b
for GM12878 and Additional file 1: Figure S6B) and it
shows that these promoters are clearly inactive. ZNF143
displays a very similar pattern, in line with the observa-
tion that it is a sequence specific chromatin-looping factor
[33]. This is also supported by the K562 data. These obser-
vations will be discussed below in conjunction with the
active CTCF-bound promoters.
There is a large cluster I that is characterized by

H3K4me2, H3K4me3, and H2AZ. Yet, the other activity-
related mark H3K27ac is weak in these promoters.
The transcription-elongation-related mark H3K36me3
is mostly absent, while some of the promoters show
H3K79me2. Given that the promoters for this partic-
ular analysis were selected to have almost no CAGE
tags, these are contradictory signals. We are not look-
ing at bivalent promoters because H3K27me3 is absent.
The RNA-seq data shows extremely low signals for this
cluster I Fig. 3b for GM12878 and Additional file 1:
Figure S6B). However, the presence of H3K79me2 is
an indicator of transcription, suggesting that we may
be looking at unused alternative promoters. Indeed, for
many of these promoters, we found an active alter-
native promoter further upstream (Additional file 1:
Figure S15A). A similar explanation applies to cluster III
(cluster IV in K562). Many promoters in this cluster dis-
play a combination of H3K36me3 and H3K79me2, again
strongly indicating that in the cell type under study these
genomic regions are part of a transcribed unit (Additional
file 1: Figure S15B). Thus, in this cell type, transcrip-
tion is not actually starting from these promoters but
rather they are run over by transcription that had started
elsewhere.
The clustering based on CAGE-defined TSSs lead to

similar results. Additional file 1: Figures S11B and S11D
show the two heatmaps for GM12878 and K562, respec-
tively. The CTCF cluster (number II in Additional file 1:
Figures S11B and S11D) and the polycomb-associated
cluster (number IV in Additional file 1: Figure S11B and
V in Additional file 1: Figure S11D) are clearly identifi-
able. There also exist the analogs to former cluster I (some
active marks) and the H3K36me3 cluster (number V and
III, respectively). The plots appear less succinct than for

the RefSeq-based promoters due to the very large number
of inactive CAGE-based TSSs.

Differences in promoter occupancy patterns between
cell-lines
The occupancy pattern and/or activity status of a gene’s
promoter may differ between the two cell-lines that we
have at hand for study. According to our criteria for active
vs. inactive, 3751 genes are active in both cell-lines, while
4966 genes are inactive in both (Fig. 4a and b). Gener-
ally, fewer genes are categorized as active in K562 than
in GM12878. Although comparison of the heatmaps for
the two cell lines has shown similar clusters of active
and inactive promoters, the actual genes making up the
clusters differ. The confusion matrix of the shared genes
across different clusters of the two cell-lines is shown in
Fig. 4c, i.e., how many genes remain in the same cluster
as opposed to switching between clusters. As an exam-
ple, the row “Active – USF cluster” in GM12878 contains
a cell with 70 genes which in the other cell-line are also
in the USF cluster. On the other hand, the adjacent matrix
cell indicates that 7 promoters from this GM12878 clus-
ter show the occupancy pattern of the active NF-Y cluster
in K562. One of these seven genes is Lmtk2, for which
the promoter occupancy pattern is shown in Additional
file 1: Figure S16: the promoter is occupied by USF in
GM12878 and by NF-Y in K562. Further to the right in
that row of the confusion matrix are the promoters that
turn inactive in K562, e.g., three promoters which do so
by moving to the (inactive) polycomb cluster. Among the
promoters that are active in both cell lines, there is a
tendency to stay within their clusters, while more of the
inactive promoters change clusters. At the same time, one
observes that the NSF-Y-cluster appears more stable than
the USF cluster.

Other covariates and functional categories
An interesting question concerns possible covariates asso-
ciated to the individual clusters as well as possible func-
tional characteristics. We have already discussed that
genes in cluster I are generally more highly expressed than
those from the other clusters. Figure 3a, b (Additional
file 1: Figures S6A and B for K562 cell line) shows the levels
of CAGE tags and RNA-seq expression levels across the
clusters. It is apparent that the active promoters are target-
ing active genes and that cluster I is more active than the
other clusters. The inactive promoters were chosen based
on the lack of CAGE tags and accordingly also are very
lowly or not at all expressed. We also find a strong enrich-
ment of house-keeping genes [34] in this cluster (χ2 test
p value = 1.26e−05, Additional file 1: Figure S17).
Another important covariate that could be linked to

expression and the clustering of promoters is the CpG
content of a promoter. Indeed, the vast majority of
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a b

Fig. 4. Comparison of promoter assignments between GM12878 and K562 cell-lines. a, b Overlap of active a and inactive b promoters between
GM12878 and K562 cell lines shown as Venn diagrams. c Confusion matrix for overlapping TSS across different clusters in two cell lines. Entry in a
matrix cell indicates the number of genes that belonging to that row (cluster) in the one cell line and that column (cluster) in the other cell line.
“Active/inactive unassigned” TSS denotes ones that are not clustered by the biclustering algorithm (see the “Methods” section and Additional file 1:
Figure S1). “Intergenic region” denotes TSSs without peaks in any ChIP-seq experiment (see the “Methods” section). “Low CAGE reads” denotes TSSs
where the number of CAGE tags is positive but remains below the robust cutoff. Coloring reflects the counts in the matrix
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the active promoters is CpG rich, as shown in Fig. 3c
(Additional file 1: Figure S6C for K562 cell line). Among
the inactive promoters, clusters vary with respect to the
CpG content of their promoters, with only the polycomb-
repressed promoters comprising mostly high-CpG pro-
moters. This is in line with the general assumption that
the polycomb complex PCG2 gets recruited to CpG
islands [35].
The DNase accessibility of a promoter is another indi-

cator of its activity. Figure 3d (Additional file 1: Figures
S6D for K562 cell line) shows the distribution of acces-
sibility among the cluster promoters. Among the active
clusters, cluster I together with the NF-Y cluster display
a higher accessibility than the remaining clusters. The
DNase accessibility signal for the inactive cluster is gener-
ally low, with the somewhat ambiguous inactive cluster I
slightly higher than the others, although still much lower
than any of the active clusters.
To further understand which histone modifications of

transcription factors contribute the most to the gene
expression value, we use a linear model to regress CAGE
reads on the normalized ChIP-seq signals [36]. Overall,
the Pearson correlation coefficient of all ChIP-seq sig-
nals and expression is r_all = 0.878 and 0.879 in both
of the two cell lines, respectively. Following the feature
selection procedure used in [36], we further test all the
combinations of 4 ChIP-seq experiments (487635 com-
binations) and record their Pearson correlation between
the model predictions and the CAGE tags. We define
the “good sets” as those yielding a correlation better than
95% of the maximal achievable 0.878 (resp. 0.879) corre-
lation and then apply a hypergeometric test to determine
those variables that are highly represented among the
good sets. We found that TAF1, POlII, and TBP are the
top three epigenetic marks that contribute the most to
the gene expression (Additional file 1: Figure S18). Among
the histone modifications, the most significant ones are
H3K27ac, H3K9ac, and H3K79me2.
In search for possible functional implications of the

clusters, we systematically tested the target genes of the
promoters in the clusters for Gene Ontology enrich-
ment using DAVID [37]. The five most significant cate-
gories with a p value better than 10−5 are summarized
in Additional file 1: Table S3, while Additional file 2:
(full_GO.xlsx) reproduces the entire DAVID output. For
cluster I, this analysis yielded as the most significant hit
the category “translational elongation,” which is in line
with the prominence of house-keeping genes in this clus-
ter. For the NF-Y and USF clusters, several categories
relate to transcriptional control. The NF-Y clusters for the
two cell lines largely overlap in terms of the content and
accordingly the GO enrichment results are similar. In con-
trast hereto, the USF clusters contain different genes in the
two cell-lines and the enrichment results are accordingly

dissimilar. From the presented statistics no clear conclu-
sion as to functional implications of the promoter clusters
can be made.

Sequence motifs associated to clusters
A key question in our analysis of promoter clusters con-
cerns the difference between TF occupancy and existence
of TF binding motifs. We therefore investigated whether
promoter clusters are supported by sequence motifs and
whether there are further sequence motifs beyond the
known ones for the ChIP-seq TFs. To this end, we con-
ducted motif-search in promoter clusters using all motifs
from the Jaspar database (Jaspar 2014) using the MAST
tool from the MEME suite ([38], see the “Methods”
section for details). This analysis recovered the binding
motifs of the ChIP-seq transcription factors but no further
motifs beyond that (data not shown). We conclude that
the observed clustering is not a product of binding of fur-
ther transcription factors, in as far as the binding motifs
are contained in Jaspar.
We further asked whether in the ChIP-seq experiments

the TFs bind all promoters containing that TF’s binding
site, or whether they only bind a subset of available bind-
ing sites. To this end, we computed the motif hits for the
binding sites in all the promoters and depict the resulting
motif match scores as rows of a matrix whose columns are
ordered like in the biclustering matrix (Additional file 1:
Figures S9 and S10). Some motifs occur in many pro-
moters and across all clusters, like, e.g., the SP1 motif.
This is in stark contrast to the clearly defined subset of
SP1-bound promoters according to the ChIP-seq heatmap
(Fig. 1 and Additional file 1: Figure S2). On the other
hand, the motif hits for the NF-Y binding CAAT-box and
the USF binding motif, the E-box, are remarkably concen-
trated in their respective cluster of TF-bound promoters.
This suggests that the existence of the respective motif
in the promoter is in itself sufficient for TF binding and
possible activation of that gene.

TF combinatorics in USF and NF-Y clusters
As pointed out above, the hallmark of the USF cluster pro-
moters is the E-box motif, which is shared by many bHLH
proteins. To study possible combinatorial TF binding, we
focus on five proteins from this family [39] available in
our data-set: USF1/2, BHLHE40, MYC, and MAX. We
use MAST (see the “Methods” section) to find promot-
ers motif hits in a [−200, 200] promoter window with a
p -value cutoff 0.001. Discarding those promoters without
ChIP-seq peaks for all five proteins, we are left with 880
promoters in both the GM12878 and K562 cell line. The
normalized ChIP-seq read coverage pattern in the pro-
moter region is shown in Fig. 5. (see also Additional file 1:
Figure S19 for K562). The promoters (rows) are sorted by
k-means clustering.
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Fig. 5. Binding combinatorics in E-box containing promoter density plots and coverage patterns for ChIP-seq signals of TFs recognizing the E-box
(USF1/2, BHLHE40, MYC, MAX) in ±1 Kbp window of the selected TSSs in GM12878 cell line. Promoters are ordered in columns and grouped
according to k-means clustering
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USF1 and USF2 most of the time bind together with
BHLHE40 and MAX (Fig. 5 k-means groups 1, 2, and 3,
Additional file 1: Figure S19 k-means groups 2–4). MYC
displays a strong ChIP-seq signal only when it binds
together with MAX, apparently in the well-known MYC-
MAX complex (Fig. 5 k-means group 5, Additional file 1:
Figure S19 k-means group 6). In GM12878, we observe
a group of BHLHE40-specific promoters (Fig. 5 k-means
group 4) and K562 has a group of MAX-specific pro-
moter (Additional file 1: Figure S19 k-means group 1).
This appears to be the only promoter set that is differ-
ent between the two cell lines. Thus, the similarity of TF
occupancy pattern in different cell lines suggests a con-
servation of binding combinatorics across cell types and is
consistent with observed importance of bases flanking the
core E-box [40] for specific binding.
The NFY-cluster contains many promoters that, besides

NF-Y, also bind FOS and SP1 (see Additional file 1: Figures
S7 and S8. All of these TFs bind to different sequence
motifs: While NF-Y binds to the CAAT element, SP1
binds to the GC-box (GGGCGG, [41]), and the reported
FOS binding site consensus is TGACTCA [42]. Taken
together, this leads to the question where the binding sites
of the three TFs are located with respect to the motifs,
to each other and to the TSS. To study this, we selected
711 active promoters based on their ChIP-seq peaks for
NFYA, FOS, and SP1 (Fig. 6a). Figure 6b shows the motif
position (if the motif exists in the promoter) in each TSS
window according to MAST in the GM12878 cell line
(Additional file 1: Figure S20 for K562 cell line). TheNFYA
motifs align almost precisely on the TSS, while the SP1
motif also aligns around the TSS, although with larger
variation. However, in spite of the FOS ChIP-seq signal,
only few promoters contain a FOS bindingmotif, and even
if they do, the position of the predicted motif hit seems
not to coincide with the location of the ChIP-seq peak,
which lies close to the TSS. A possible explanation would
be that, on these promoters, NFYA, FOS, and SP1 form a
complex within which FOS does not directly interact with
the DNA, or at least not through its normal binding motif.
Such a complex might also be formed through chromoso-
mal looping as recently suggested, e.g., for the interaction
of glucocorticoid receptor and AP-1 [43].

CTCF and spatial promoter-enhancer interaction
The fact that we find a distinct cluster of CTCF binding
promoters that is characterized by the combined ChIP-
seq signals of CTCF, RAD21, and SMC3, prompts the
question whether CTCF/cohesin might mediate the inter-
action to enhancers which loop to these promoters. To
answer this, we integrated a ChIA-PET data-set on spa-
tial chromosomal interactions mediated by CTCF [44]
into our analysis. In this data-set, one CTCF-bound pro-
moter will typically show spatial interaction with several

genomic regions. Almost all promoters from the active
CTCF cluster (98.03%) and 84.67% of promoters from the
inactive CTCF cluster show a spatial interaction. For com-
parison, in cluster Ia, which contains highly expressed
genes, roughly only 48.35% the promoters interact spa-
tially with some other genomic region according to the
ChIA-PET data (Fig. 7).
The existence of spatial interactions suggests that the

distal regions of these interactions might overlap with
enhancers targeting the respective promoters. To test
this, we downloaded from ENCODE the ChromHMM-
generated enhancer annotation (GSM936082) [45] to
compare to the distal ChIA-PET regions. For the pur-
pose of counting overlapping regions, we extend the distal
region by 500 bp at either side and check for overlap with
a ChromHMM strong or weak enhancer. The respective
figures are integrated into the bars in Fig. 7: 91.11% of
promoters in the active CTCF cluster loop to at least one
region predicted to be an enhancer, with 65.04% loop-
ing to what is predicted as a strong enhancer. Promoters
from the inactive CTCF cluster loop to a strong predicted
enhancer in 32.13% of cases.
The difference between active and inactive CTCF clus-

ters can be further explored by inspecting the his-
tone modifications for the respective promoters and
their interacting regions. Coverage patterns for CTCF,
H3K27ac, H3K4me3, H3K4me1, and P300 for the active
promoter regions (upper row), for their interacting
regions (second row), for inactive promoters (third row)
and their interacting regions (bottom row) are shown
in Fig. 8. The promoter regions are centered on their
TSS. While in the active promoters the CTCF signal also
focuses on the TSS, this signal is dispersed in the inactive
promoters. In the interacting regions—recall that there
are more interacting regions than promoters due to the
multiplicity in the ChIA-PET assignments—the regions
were centered on the summit of the CTCF ChIP-seq peak
which leads to the visual impression of a peak alignment.
The H3K27ac mark is clearly visible for the active pro-
moters and absent in the inactive promoters. Many of the
regions interacting with active promoters also show the
H3K27ac signal, confirming the ChromHMM designa-
tion as an enhancer. Likewise, H3K4me3 is strong on the
active promoters, while their interacting regions rather
show H3K4me1. H3K4me1 appears much weaker in inac-
tive promoters. The acetylase P300, a major marker of
enhancers [46], is clearly visible on the putative enhancers,
as well as on the promoters

Discussion
There has for a long time been a keen interest in deter-
mining principles of human promoter architecture. Since
sequence motifs have not sufficed to achieve this, we
turned to analyzing transcription factor occupancy in
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a b

Fig. 6. Binding patterns of NFYA, FOS, and SP1 compared to motif occurrence. a Coverage patterns for ChIP-seq signals of NFYA, FOS, and SP1 in a
±1Kbp window of selected TSSs in GM12878. b Estimated motif position for the same TFs and TSS windows as a. While motif locations for NFYA
and SP1 are concordant with the ChIP-seq signal, the FOS motif locations cannot explain the FOS ChIP-seq signal

promoters as determined in the ENCODE project, in
conjunction with sequence. We proceed in a top-down
manner starting from the entirety of promoters with
their ENCODE ChIP-seq signals and apply biclustering
to delineate subgroups of promoters that share particular
histone modifications and/or transcription factors. Our

study fills a gap between sequence-based promoter stud-
ies (e.g., [5]) and the global occupancy analysis, like, e.g., in
[14]. Other authors have studied the global regulatory net-
work [47] or focused on NF-Y and its co-factors [6]. Our
goal was the delineation of subsets of stereotypical human
promoter architectures.
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Fig. 7. Number of cohesin loops and putative enhancers Barplot for proportion of TSSs that form cohesin loops in the active CTCF cluster, the
inactive CTCF cluster and the active cluster Ia. Bars contain the proportion of remote interacting sites of TSSs, which overlap with strong enhancers
(black), weak enhancers (gray) or no enhancers (white) based on ChromHMM-predicted enhancers. If remote sites of a TSS overlap with both strong
enhancers and weak enhancers, it is shown in the Figure as a strong enhancer (black)

Among the active promoters, we identified the NF-Y
binding promoters, containing the CAAT-box motif, as
one distinct promoter cluster. Like other authors before
us [24], we observe that NF-Y binding frequently goes
along with binding of FOS and Sp1. While Sp1 bind-
ing sites occur ubiquitously, we have shown that this

combination is highly characteristic of a subgroup of
promoters.
Another subgroup is characterized by the basic helix-

loop-helix factor USF binding to its binding site, the
E-box. The NF-Y cluster and the USF cluster appear
almost mutually exclusive, reinforcing the view that
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Fig. 8. Histone modifications in promoters in active and inactive CTCF clusters shown together with their ChIA-PET-derived interacting regions The
row “Active CTCF cluster” shows coverage patterns of the active promoters in the CTCF cluster. These are characterized by activity signals (H3K27ac,
H3K4me3). The row “Interacting regions of active CTCF cluster” shows the coverage patterns for the ChIA-PET derived interacting regions, the
putative enhancers. They display activity marks as well as the enhancer marks H3K4me1 and p300. The row “Inactive CTCF cluster” displays the
promoters from the inactive CTCF cluster. These promoters lack the activity marks. Via CTCF/cohesin they link to interacting regions (bottom row),
which likewise lack activity marks. The top of the figure shows density plots for the histone marks discussed. All data for GM12878 cell line
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these two groups constitute two characteristic promoter
architectures.
In the cell types studied, there is also a small cluster

characterized by binding of the ETS TF. At the same time,
there is a large group of promoters that apparently lack any
characteristic TFs or TF-combinations, but clearly show
the activating histone modifications. While the groups
discussed are the result of a clearly visible clustering
pattern, there are many more promoters for which—
at least with the available transcription factor ChIP-seq
experiments, no cluster structure is visible. We conclude
that certain characteristic promoter types exist, but only a
part of all promoters falls into any of these subgroups.
A further promoter cluster is characterized by bind-

ing of CTCF in the promoter region. For this group, we
presented evidence suggesting that CTCF and cohesin
are responsible for the interaction between the bound
promoter and one or more enhancers. This putative
arrangement differs from the one where, within a TAD
(topologically associated domain [48, 49]), promoters and
enhancers can cluster in space without direct involvement
of CTCF/cohesin. It remains to be seen whether the two
arrangements have different functional consequences.
On the side of the inactive promoters, we were sur-

prised to see that the number of promoters repressed
by polycomb is fairly small, thus raising the question
whether there are other “mechanisms of repression,” or
whether repression is just the absence of activation. We
also had expected to see a stronger role for the repres-
sive mark H3K9me3. However, the signal for this mark is
low across all experiments (see Additional file 1: Figure
S1) and it is unclear whether its absence actually con-
stitutes a biological signal or is due to some technical
issues.
Other authors [6, 16] investigated the question whether

genes with promoters bound by NF-Y belong to particu-
lar functional classes of genes as given, e.g., in the Gene
Ontology database. We also tested our derived promoter
clusters for such target categories but the results remain
rather generic and unconvincing. Although each study,
including our own, finds some enriched GO term, those
functions are either not consistent within a cluster or
they are so generic that they are hardly informative. Thus,
we suspect that TF combinatorics might actually lack a
systematic link to functional categories.

Conclusion
In summary, basing this analysis on a combination of TF
occupancy andmotif analysis, we have defined stereotypic
patterns delineating a novel grouping of promoters. This
grouping opens up interesting new questions concerning
the transcription factor complexes at the respective pro-
moter groups, as well as questions on the evolutionary
origin of these groups.

Methods
Data-sets and preprocessing
Potential transcription start sites
We downloaded coordinates of potential transcription
start sites (TSSs) listed in the RefSeq annotation (hg19,
release from December 10, 2014, from UCSC database).
Cases where two or more TSSs lie within a 1 Kbp window
are ignored altogether. This leaves 22164 annotated TSSs.

Cell type-specific activity status of TSS
TSS activity information is obtained from the CAGE (Cap
Analysis of Gene Expression) analysis in the FANTOM
5 project [20]. CAGE measures RNA expression level
by capturing and sequencing the initial 20 nucleotides
from the 5′ end of an RNA. We downloaded CAGE data
for the GM12878 and K562 cell lines [50]. CAGE peaks
are called following the method of FANTOM consor-
tium (decomposition peak identification (DPI) [51]). TSSs
are divided into active and inactive ones. We define a
TSS which has robust peaks in its [−500,+500] win-
dow around the TSS as active, whereas an inactive TSS
is defined as not even having a FANTOM-defined per-
missive peak in that window. This process yields 6030
active and 14390 inactive TSSs in GM12878 and 4173
active and 15494 inactive TSSs in K562 cell line. We
further discard inactive TSSs when located in an inter-
genic region. In the end, we are left with 6854 inac-
tive genes in GM12878 and 9588 inactive promoters
in K562.
We also download RNA-seq from ENCODE/Caltech

(GSM958730,GSM958731). We apply cufflinks [52] with
default parameters using RefSeq annotation described
before on all the replicates. FPKM values of each TSS
are used.

ENCODE ChIP-seq data
We downloaded ChIP-seq data and DNase-seq data
(GSM736496/GSM736629) for the GM12878 and K562
cell lines from the ENCODE project [10]. This data-set
comprises ChIP-seq data for 11 histone modifications
and 49 TFs or chromatin-associated proteins. A detailed
list is given in Additional file 1: Table S1 and S2. After
merging the replicate bam files for each ChIP-seq and
DNase-seq experiment, we use MACS [53] to call peaks
with default parameter and the “–call-subpeaks” option.
Then, for each TSS the height of the peak closest to the
TSS from within a [−1000,+1000] bp window around it
is recorded. This value we normalize within each ChIP-
seq experiment by linearly mapping the peak heights to
the interval [0,1]. We reduce the influence of outliers by
holding out the top 0.05% of values before the linear trans-
formation and subsequently setting these values to 1. For
depicting the ChIP signals in the promoter regions as cov-
erage patterns, we use deeptools [54] and normalize the
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ChIP-seq signal against its input using the “bamCompare”
function under default parameters.
To validate our observation in GM12878/K562 cell line,

we download four ChIP-seq (NFYA, NFYB, CTCF, and
USF2) together with their Input in HeLa from ENCODE
(see Additional file 1: Table S1 and S2).

CTCF and ChIA-PET data
We downloaded the genomic coordinates of interacting
genomic regions as determined by ChIA-PET for CTCF in
GM12878 [44] (GSM1872886). For each promoter in the
CTCF cluster in active and inactive biclustering results,
we looked for CTCF loops which have one side mapped
to these promoter regions, and record the genomic loci
for the other side of the loop (we call it the “interacting
region”). If more than one loop is found interacting with a
promoter region, the loop with the highest H3K27ac sig-
nal at the remote CTCF binding region is chosen. Since
the remote CTCF binding regions differ in size, we choose
the site which has the highest CTCF ChIP-seq read cov-
erage as the center of the region and extend ±1 Kbp for
depiction of the coverage patterns.

Transcription factor bindingmotifs
As a resource for TF binding motifs, we used the Jas-
par database [26]. To calculate the motif match score,
we use the program MAST [38] from the MEME suite
[55], using its default parameters and reporting all hits.
If there is more than one hit in a promoter region,
we take the hit with the smallest p value for further
analysis.

Gene ontology enrichment analysis
We use DAVID functional annotation tool (version 6.7)
[37] to do gene ontology enrichment analysis. For enrich-
ment analysis on each active/inactive clusters, we use all
active/inactive genes in the cell line as the background, for
both of the cell lines. We present here enriched GOTerm
in three categories: biological process (BP), cellular com-
ponent (CC), and molecular function (MF). In Additional
file 2, we listed all the GO terms that with adjusted p
value cutoff = 0.05 and fold enrichment cutoff = 2 for all
clusters and both cell lines.

Sorting the heatmaps by biclustering
Our method for clustering the rows and columns of
the CHIP-seq data matrix into a visually understandable
heatmap is based on a robust version of the s4vd biclus-
tering algorithm [56], which is available as an R package.
s4vd solves the biclustering problemwith a procedure that
is based on the singular value decomposition. The result
of biclustering a matrix is a coupled set of column and
row clusters, where these cluster pairs are visible as sub-
rectangles of the matrix with rows and columns permuted

correspondingly. We use the default parameter settings
of s4vd.
Due to its use of a randomized selection step, s4vd

produces somewhat different results in different runs of
the program. We exploit this with the goal of obtaining
robust biclustering results by extracting the common clus-
ter assignments from many runs. To this end, we run
s4vd many times and determine the solution with the
largest number of column clusters (a tie gets broken ran-
domly). We call this the target clustering. Then, for each
of the other solutions obtained from the other runs of
s4vd, we determine an optimal assignment of its clusters
to the target clustering. This is done by solving a linear
assignment problem on the confusion matrix of the two
cluster systems. The linear assignment problem is solved
using lp.solve from R [57]. Once all the clusters from all
solutions are assigned to the target clustering, we deter-
mine the frequency at which a column gets mapped into
a target cluster. Finally, we only keep columns for which
there exists a target cluster to which it gets mapped with
a frequency of more than 0.5, i.e., more than half the
solutions would clusters this column consistently into a
similar looking target cluster (by virtue of the optimal
assignment).
In a biclustering result, there exists a connection

between a column and a row cluster. Thus, once the col-
umn clusters are fixed by the above procedure, one can
also determine how often a particular row gets associated
to a row cluster. Again, we keep those rows, which are
associated to one cluster in more than half of the solu-
tions, and assign this row accordingly. This also leads to
the t test p values reported next to our heatmaps: For one
row, the test compares the mean of the values among the
entries in the associated column cluster with the mean of
the values outside the column cluster. This visualization
is a further precaution against over-interpretation of the
biclustering results. We uploaded our original data matrix
and source code on the github [58].
To further ensure that the computational results which

we interpret are not due to the specifics of our algorithm,
we applied a second biclustering algorithm which is based
on a very different computational principle. Rather than
relying on the SVD, we first use k-means clustering on the
TSSs (columns) of the ChIP-seq matrix. Additional file 1:
Figure S21 shows how the value of k was selected. To then
determine the association of a row with a cluster, we test
each row with a t test. Like in the visualization procedure
described above, the t testmeasures in how far a particular
column cluster divides the row of active promotes into two
different regimes of high and low values, respectively. For
a given column cluster, the rows with a t test p value better
than 0.001 form the row cluster associated to that column
cluster. Both biclustering procedures are depicted graph-
ically in Additional file 1: Figure S22. Additional file 1:
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Figure S23 shows the confusion matrices between the
biclustering resulting from the two algorithms. It is appar-
ent that the clusters that we have interpreted are stably
reproduced also by the k-means t test-based algorithm.

Promoter definition based on CAGE tags
To not rely solely on the RefSeq promoter annotation, we
also alternatively use the same CAGE tag data as above to
define promoter location.
Here, we describe how promoters were derived from

FANTOM 5 CAGE data. The FANTOM consortium has
provided a CAGE-tag based TSS annotation which we
downloaded from their website [50] Here, we also choose
TSSs under the robust cutoff. There are 217572 TSSs
in this annotation. Note that this annotation comprises
CAGE tags from all the cell lines studied in FANTOM 5.
In particular, it includes all possible isoforms and a gene
might have several possible TSSs in a very short region,
see example Figure in Additional file 1: Figure S24.
In this example, we have 6 TSS for Nat10 within an inter-

val of 1000 bases. Although the annotation might be very
accurate (i.e., to base pair resolution), it is not helpful to
analyze all these TSS individually, because the resolution
of the ChIP-seq data with which we annotate the pro-
moters is much lower. Thus, we group CAGE TSS into
potential promoter regions before we apply our bicluster-
ing method. We first join together TSSs with a distance
shorter than 200 bp into a TSS cluster. We then exclude
TSS clusters which extend over a length of more than 1000
bps, or where there are CAGE TSSs on both plus and
minus strand in the same cluster, or when there are TSSs
from more than one annotated gene in a cluster, see illus-
tration in Additional file 1: Figure S25. After this step, we
have 43675 TSS clusters with 121129 TSSs.
In order to assign an activity status to such a potential

promoter, we extend 500 bps for each TSS cluster region
and search for robust or permissive CAGE peaks in the
K562/GM12878 cell lines. If there is one or more robust
peaks of a cell line in one TSS region, then the TSS clus-
ter is deemed active in this cell line. If there is not even a
permissive peak in this TSS cluster region, then the TSS
cluster is deemed inactive. Note that this step is strand
specific.
After this step, we have 6684 active TSS clusters com-

prising 22340 TSSs and 31969 inactive TSS clusters com-
prising 82957 TSSs in the GM12878 cell line. For K562,
we have 4375 active TSS clusters (13951 TSSs) and 35649
inactive TSS clusters (94654 TSSs). To save the expense of
computing, we exclude inactive TSSs without any ChIP-
seq signals in the ±1 Kbp TSS windows from the analysis.
In addition, since two very close TSSs usually have the
same ChIP-seq signals in their TSS windows, we keep only
one row in the input matrix if two or more TSSs in a TSS
cluster have exactly the same values of all ChIP-seqs.

The input matrix of active/inactive TSS of GM12878 for
biclustering contains 19316/30634 TSSs, the input matrix
of active/inactive TSS of K562 for biclustering contains
12861/41013 TSSs.
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36. Karlić R, Chung HR, Lasserre J, Vlahoviček K, Vingron M. Histone
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