CORRECTION

Open Access

Correction to: The introduction history of invasive garden ants in Europe: integrating genetic, chemical and behavioural approaches

Line V. Ugelvig^{1,2}, Falko P. Drijfhout³, Daniel J. C. Kronauer¹, Jacobus J. Boomsma¹, Jes S. Pedersen¹ and Sylvia Cremer^{1,2*}

Correction

Reinvestigation of the raw data revealed an unfortunate error in Ugelvig et al. 2008 [1]. Our estimates of the area over which ant populations occurred erroneously entered diameters rather than radii in the ellipse area equation, which implied that population sizes were 4-fold overestimated except for one case (Warsaw) where we used a direct record of estimated area.

We here provide the corrected estimates in a new version of Table 1 and a new version of Fig. 5 in which relative population sizes were presented as diameters of the circles plotted. Moreover, we report the corrected statistical outcomes of the Pearson correlation tests between population size and age, chemical variation and allelic richness of populations. None of the conclusions in our paper is affected by this mistake, but correcting a 4-fold estimation error is important for future use of our data, because the new areas, for example, indicate that invasive populations of *Lasius neglectus* are detectable at smaller sizes than our previous estimates suggested.

Please see the correct figure (Fig. 5: Genetic diversity as a function of population age) and table (Table 1: Age and diversity of European Lasius neglectus populations) below.

Furthermore, three sentences in the Result section "Age and diversity of populations" read as follows in the original manuscript:

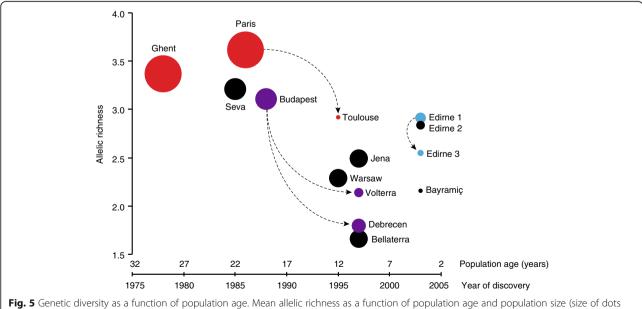
"As all populations were assumed to have started with a small founder group of a single or very few nests, the present size of a population was also expected to be an

¹Centre for Social Evolution, Department of Biology, University of

Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark ²Evolution, Genetics and Behaviour, Biology I, Institute of Zoology, University indicator of age and both were indeed highly correlated (Pearson correlation, n = 14, r = -0.838, P = 0.0002; see Table 1 for details). We determined the chemical variation within populations (that is, the mean chemical distance of nests to their group centroid; Table 1) and found that the chemical variation was significantly negatively correlated with the discovery date of the populations (Pearson correlation, n = 14, r = -0.513, P = 0.060) and positively correlated with present population size (r = 0.688, P = 0.006). We found similar results for correlations of the allelic richness for each population based on the microsatellite analysis, with both year of detection (Fig. 5; Pearson correlation, n = 14, r = -0.600, P = 0.023) and population size (r = 0.632, P = 0.0154), as well as a high correlation between allelic richness and chemical within-population variation (r = 0.745, P = 0.002)."

After correction, the paragraph reads as follows. It contains the correlation results based on the corrected population sizes with population age, chemical variation and allelic richness. Moreover, we removed the word 'significantly' in one of the sentences because one of correlations (P = 0.06) is only marginally significant, whilst the other speaks for itself, remaining highly significant after recalculation.

"As all populations were assumed to have started with a small founder group of a single or very few nests, the present size of a population was also expected to be an indicator of age and both were indeed highly correlated (Pearson correlation, n = 14, r = -0.849, P = 0.0001; see Table 1 for details). We determined the chemical variation within populations (that is, the mean chemical distance of nests to their group centroid; Table 1) and found that the chemical variation was negatively correlated with the discovery date of the populations (Pearson correlation, n = 14, r = -0.513, P = 0.060) and positively


© The Author(s). 2018 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

^{*} Correspondence: sylvia.cremer@ist.ac.at

of Regensburg, 93040 Regensburg, Germany

crosatellite loci); k', average allelic richness across all loci; DH/sd, standardised difference between the expected heterozygosity	
size in square kilometres; CHC var., within-population variation of cuticular hydrocarbon profiles; P, number of polymorphic loci (out	
of six microsatellite loci); k', average allelic richness across all loci; DH/sd, standardised difference between the expected heterozygosity	
under mutation-drift equilibrium and observed heterozygosity; <i>M</i> , ratio between allele number and range. The latter two estimates are	
averages across polymorphic loci. Bold figures indicate significances in individual tests, whereas asterisks indicate significance levels after	
sequential Bonferroni correction for multiple tests: $*P < 0.05$; $**P < 0.01$	

	Year	A	CHC var	Р	$k' \pm SE$	$DH/sd \pm SE$	М
Ghent, Belgium	1978	0.143	10.797	4	3.37 ± 1.02	-0.23 ± 0.39	0.576
Seva, Spain	1985	0.050	8.413	4	3.21 ± 1.15	-0.23 ± 0.36	0.625
Paris, France	1986	0.141	12.538	5	3.62 ± 1.09	0.45 ± 0.37	0.742
Budapest, Hungary	1988	0.049	4.777	5	3.11 ± 0.77	-1.88 ± 0.71	0.603
Toulouse, France	1995	0.002	5.566	3	2.92 ± 0.97	-0.28 ± 0.81	0.560
Warsaw, Poland	1995	0.035	4.691	3	2.29 ± 0.64	0.43 ± 0.35	0.694
Bellaterra, Spain	1997	0.034	3.498	3	1.66 ± 0.33	0.34 ± 0.73	0.756
Debrecen, Hungary	1997	0.021	3.338	2	1.80 ± 0.52	-0.94 ± 1.33	0.563
Jena, Germany	1997	0.035	5.796	5	2.49 ± 0.42	1.06*±0.15	0.503*
Volterra, Italy	1997	0.009	3.141	3	2.14 ± 0.58	-0.86 ± 0.43	0.720
Bayramiç, Turkey	2003	0.002	7.730	3	2.16 ± 0.54	0.35 ± 0.20	0.338**
Edirne1, Turkey	2003	0.012	8.545	4	2.91 ± 0.83	0.19 ± 0.51	0.600
Edirne2, Turkey	2003	0.008	2.405	3	2.84 ± 0.94	-1.28 ± 1.36	0.551
Edirne3, Turkey	2003	0.004	7.100	3	2.55 ± 0.77	-0.25 ± 0.60	0.419*

correlated with present population size (r = 0.702, P = 0.005). We found similar results for correlations of the allelic richness for each population based on the microsatellite analysis, with both year of detection (Fig. 5; Pearson correlation, n = 14, r = -0.600, P = 0.023) and population size (r = 0.616, P = 0.0190), as well as a high correlation between allelic richness and chemical within-population variation (r = 0.745, P = 0.002)."

The legends for Table 1 and Fig. 5 remain unchanged.

Author details

¹Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark. ²Evolution, Genetics and Behaviour, Biology I, Institute of Zoology, University of Regensburg, 93040 Regensburg, Germany. ³Chemical Ecology, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK.

Received: 16 October 2018 Accepted: 16 October 2018 Published online: 30 October 2018

Reference

 Ugelvig LV, Drijfhout FP, Kronauer DJC, Boomsma JJ, Pedersen JS, Cremer S. The introduction history of invasive garden ants in Europe: integrating genetic, chemical and behavioural approaches. BMC Biol. 2008;6:11.