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Abstract

Background: Cassava is an important food crop in tropical and sub-tropical regions worldwide. In Africa, cassava
production is widely affected by cassava mosaic disease (CMD), which is caused by the African cassava mosaic
geminivirus that is transmitted by whiteflies. Cassava breeders often use a single locus, CMD2, for introducing CMD
resistance into susceptible cultivars. The CMD2 locus has been genetically mapped to a 10-Mbp region, but its
organization and genes as well as their functions are unknown.

Results: We report haplotype-resolved de novo assemblies and annotations of the genomes for the African cassava
cultivar TME (tropical Manihot esculenta), which is the origin of CMD2, and the CMD-susceptible cultivar 60444. The
assemblies provide phased haplotype information for over 80% of the genomes. Haplotype comparison identified
novel features previously hidden in collapsed and fragmented cassava genomes, including thousands of allelic
variants, inter-haplotype diversity in coding regions, and patterns of diversification through allele-specific expression.
Reconstruction of the CMD2 locus revealed a highly complex region with nearly identical gene sets but limited

microsynteny between the two cultivars.

Conclusions: The genome maps of the CMD2 locus in both 60444 and TMES3, together with the newly annotated
genes, will help the identification of the causal genetic basis of CMD2 resistance to geminiviruses. Our de novo cassava
genome assemblies will also facilitate genetic mapping approaches to narrow the large CMD2 region to a few candidate
genes for better informed strategies to develop robust geminivirus resistance in susceptible cassava cultivars.
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Background

As a subsistence crop, cassava is valued for its starchy
storage roots, especially by small-holder farmers, because
the plant produces starch even under unfavorable environ-
mental conditions. Cassava is also becoming increasingly
important as an industrial crop and as livestock feed [1, 2].
But genetic gains from breeding in cassava have made little
progress over the last century compared to other crops [3].
The heterozygous genome, long breeding cycles, clonal
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propagation, and poor asynchronous male and female flow-
ering have limited substantial genetic improvement [4].

In Africa and India, cassava mosaic disease (CMD) is the
most important economic threat for cassava production.
The whitefly-transmitted virus is spreading and affecting
agricultural productivity as a result of substantial yield
losses in CMD-susceptible cultivars, in extreme cases up to
100% [5, 6]. An estimated 25 million tons of cassava stor-
age roots are lost to CMD annually, impacting food secur-
ity for more than 500 million people [7-9].

To date, only four geminivirus resistance genes (R-
genes) have been identified, mapped, cloned, and charac-
terized in crops [10-13], indicating that only a small
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proportion of the natural genetic diversity for gemini-
virus disease resistance has been exploited. For cassava,
only three known genetic resistance loci present in the
germplasm are currently providing relatively stable field
resistance to CMD. These are the polygenic, recessive
CMD1 locus that was introgressed from wild cassava
relatives [14], the single-dominant gene locus CMD?2 in
tropical Manihot esculenta (TME) cultivars that confers
resistance to all known CMVs [15, 16], and the resist-
ance source CMD3 that was distinguished from CMD2
recently based on a single marker [17].

Because a single-dominant gene greatly facilitates
breeding, the CMD?2 locus became the predominant re-
sistance source deployed in African cassava breeding
programs, although its underlying molecular mechanism
and robustness are currently unknown. CMD2 was dis-
covered in landraces collected from farmer fields in
Nigeria and other West African countries during the
1980s and 1990s, but the breeding pedigrees of these
landraces are unknown [15]. Recently, the breakdown of
the CMD2 resistance during tissue culture-induced em-
bryogenesis, which is an essential step in cassava trans-
formation, was reported for TME cultivars [18]. The fact
that many geminivirus resistance breeding programs rely
on the stability of the CMD2 locus makes it urgent to
understand its genome organization and function. This
can be achieved using high-quality de novo genome
sequences for African cassava cultivars to fully exploit
the importance of this resistance source.

Efficient crop plant genome sequencing is often
constrained by genome size and heterozygosity as well
as the excessive proportion of repetitive DNA elements
(RE). The cassava genome has a haploid genome size of
approximately 750 Mb [19], but its heterozygosity is
among the highest found in sequenced plant genomes
[20] and it is rich in REs. Thus, cassava genomes have
proven difficult to assemble and to date only highly frag-
mented and incomplete genome assemblies are available
[19-21]. The first cassava draft genome from the partly
inbred South American genotype AM560 [21] was re-
leased in 2012, followed by draft genomes of an Asian
cassava cultivar KU50 and the cassava wild relative W14
(Manihot esculenta ssp. flabellifolia) [20]. These genetic
resources enabled first population genomic studies [16,
22-24], transcriptome characterization [25-27], and
whole methylome profiling [28]. However, the current
versions of the draft cassava genomes are represented as
linear, haploid DNA sequences. Such a representation
for highly heterozygous genomes can cause misleading
results when using read mapping-sensitive applications
that rely on accurate read placement [29]. For example,
whole-transcriptome sequencing reads can align falsely
or even fail to map when they span challenging regions
with structural variations (SVs). Misplaced reads do in
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turn result in both missed true variants or incorrectly re-
ported false variants and bias subsequent results.

Here we report the long read-based de novo assembled
genomes of CMD-susceptible and CMD2-resistant Afri-
can cassava cultivars as diploid-nature, haplotype-resolved
chromosome assemblies. They were generated using
single-molecule, real-time sequencing (SMRT; Pacific Bio-
Sciences) to assemble long haplotypes that cover multiple
heterozygous regions. The continuity of the long-read
genome assemblies was subsequently improved by contig
scaffolding using long-range linking information from op-
tical maps (BioNano) [30] and chromosomal conform-
ation capture (Hi-C) [31, 32]. Furthermore, we generated
full-length mRNA sequencing (Iso-Seq) to correct and im-
prove predicted gene models. The two African cassava
genome assemblies will facilitate the development of new
heterozygous, haplotype-phased cassava reference-ready
genomes and serve as a resource for the identification of
causal CMD2 resistance genes.

Results and discussion

Cassava genome sequencing, assembly, and
chromosome-scale scaffolding

We achieved a nearly complete de novo diploid assembly
and annotation of the genomes for the African cassava
cultivars 60444, which is CMD susceptible, and TME3
that carries the dominant CMD?2 resistance (Fig. 1).
Using 70x PacBio whole genome shotgun long reads
with N50 read length of 12,813 bp (60444) and 12,424 bp
(TME3), we assembled the TME3 genome into 12,971
contigs with a N50 of 98kb (i.e, 50% of the assembly
consists of 98 kb or longer contigs). The 60444 genome
was assembled into 11,459 contigs with a N50 of 117 kb
(Table 1) (Additional file 1: Figure S1, Additional file 2:
Table S1). We evaluated the performance of three differ-
ent long-read assemblers (CANU-MHAP [34], FALCON
v0.5 [35] and PBcR-MHAP [36]) by aligning Illumina
paired-end (PE) reads to the corresponding long-read as-
semblies. This showed that the CANU assembler gener-
ated the most accurate assemblies, with the highest
proportion of mapped paired-end (PE) reads (98.4% for
60444 and 96.4% for TME3) and the lowest proportion
of discordant read-pair alignments (1.6% for TME3 and
1.2% for 60444) (Additional file 2: Table S2).

The total length of assembled contigs was above 900
Mb for both TME3 and 60444. This was higher than the
haploid genome size of approximately 750 Mb estimated
by flow cytometry (Additional file 1: Figure S2), indicat-
ing that haplotypes of the heterozygous genomes were
assembled independently into different contigs [37, 38].
Based on contig alignments against each other and read
depth of coverage, we reassigned allelic contigs as pri-
mary contigs and haplotigs using Purge Haplotigs [39].
The total size of the de-duplicated primary haploid
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Fig. 1 Assembly pipeline for the 60444 and TME3 African cassava genomes. a Overview of the processing pipeline used for the assemblies (see
Additional file 3 for details). b Pseudomolecule validation using the location of SNP markers on the physical map (x-axis) as compared to their
position on the composite cassava genetic map [33] (y-axis) for Chr.9, which is a single scaffold 176myg3. Each genetic marker is depicted as a dot
on the plot (937 data points). ¢ Graphical representation of mean local recombination frequencies between SNP markers along scaffold 1767yes.
The x-axis represents the physical positions of the means on Chr 9, and the y-axis indicates the recombination ratio (centiMorgan (cM)/Mb) in
each 1-Mb sliding window

assembly was 732 Mb for TME3 and 713 Mb for 60444  generated two high-coverage optical maps (150x for
(Table 1), which was close to the flow cytometry meas- 60444, 130x for TME3) using the BioNano Genomics
urement (Additional file 1: Figure S2). The secondary IrysView DNA imaging and analysis platform. The fluo-
haplotig assembly was more than 200 Mb. This reflects rescently labeled DNA molecules of the two cassava ge-
the high heterozygosity within the cassava genome, nomes assembled into similarly sized genomes of 1205
which is the consequence of interspecific admixture and ~Mb for TME3 and 1204 Mb for 60444. This indicates
past breeding, but short runs of homozygosity are also  that most of the parental chromosomes had been
present in the genome [19, 40]. In this case, optical map-  “phased” into haplotype segments by optical mapping
ping is useful to phase haplotypes, especially in genomes  (Additional file 2: Table S3). To further improve se-
with divergent homologous chromosomes [41]. We quence contiguity and haplotype phasing, the PacBio

Table 1 Assembly statistics for the cassava TME3 and 60444 genomes compared with previously published assemblies of cassava

genomes

Cultivar TME3 60444 KU50 [20] AMS560 [19]
Number contigs 12,971 11,459 99,509 39,574
Contig N50 (kb) 97.58 116.8 5.28 27.87
Total contig length (Mb) 947 975 NA NA
Total primary contig length (Mb) 732 713

Total haplotig length (Mb) 213 260

Optical map supported scaffolds 558 552 NA NA
Primary scaffolds 506 491

Optical Hybrid-scaffold N50 (Mb) 225 235 NA NA
Hi-C scaffolding N50 (Mb) 53.35 59.19 NA NA
Assembly size (Mb) 1225 1277 291.1% 582.3
TE proportion (%) 64.81 64.91 25.7 503
Annotated protein-coding genes 33,853 34,127 38,845 33,033

*The KU50 genome was reported to be 495 Mb in [20]; the number shown here was the published and downloadable DNA sequence available in 2014
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contigs were corrected, joined, ordered, and oriented
according to the optical mapping data. This generated a
set of 558 optical-map-supported scaffolds spanning
634.1 Mb with a scaffold N50 of 2.25 Mb for TME3. For
60444, we generated 552 scaffolds spanning 714.7 Mb
with an even higher scaffold N50 of 2.35 Mb.

The Portuguese introduced cassava from South-
America to Africa in the sixteenth and seventeenth cen-
tury, and since then the African germplasm diversity has
remained exceptionally narrow [42]. Previous diversity
studies relied on short-read mapping data only, but
genome-wide structural variants are challenging to
detect in heterozygous and complex plant genomes. The
diploid optical maps from the two African cassava culti-
vars were tested for genomic diversity. The vast majority
(81%) of the consensus optical maps from TME3 could
be aligned with those from 60444 via common label pat-
terns, indicating a very low level of structural diversity
between the two cassava genomes. We then screened
the alignments for TME3-specific insertions and dele-
tions (INDELs) and identified evidence for 1058 inser-
tions and 1021 deletions with average sizes of 57.4 kb
and 45.7 kb, respectively (Additional file 2: Table S4).

Genome completeness and haplotype phasing

Haplotype phasing, or identifying alleles that belong to
the same chromosome, is a fundamental problem in
genetics. Our assembly strategy using PacBio long reads
in combination with BioNano optical maps produced
haplotype-aware genomic scaffolds in which phase infor-
mation over long regions of homozygosity and even
across assembly gaps was resolved. To further assess the
completeness and quality of phased haplotypes in the
two cassava genomes, publicly available cassava coding
DNA sequences (CDSs) [19] were aligned to each of the
assembled optical scaffolds using GMAP [43], which
takes into account exon-intron junctions. Local dupli-
cates, i.e., inter-scaffold matches, and CDSs with <99%
alignment coverage were removed from the analysis. Of
the 41,381 CDS, 99.93% are present in the 60444 and
TME3 genomes with only a few missing (84 and 86, re-
spectively). This CDS alignment was used to estimate
the haplotype phasing and allele number variation. In
total, we detected 18,831 and 19,501 multi-copy gene
loci in TME3 and 60444, respectively, with a large pro-
portion of CDS aligning into allelic pairs (n = 15,679 for
TMES3 and #n = 17,019 for 60444) (Fig. 2a).

Centuries of cassava clonal propagation has resulted in
genetically fixed deleterious mutations that affect crop
vigor and strongly limit breeding [3, 44, 45]. Duplicated
regions are often subject to dynamic changes, including
the accumulation of point mutations that facilitate species
diversification [46]. To test this hypothesis for the bi-alle-
lic genes in the diploid 60444 and TME3 genomes, we
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measured the nucleotide diversity for each allelic pair as
determined by AM560 CDS alignments and plotted the
proportion of single-base pair mutations. This analysis re-
vealed high variation between coding sequences of alleles,
further substantiating the heterozygosity within the coding
portion of the genome (Fig. 2b) (sequence alignment
mean: allele I-A 99.26%, allele I-B 97.15%).

Short-read-based genome assemblies frequently do not
capture intergenic sequences that might be important for
gene regulation because promoter regions often adjoin re-
petitive DNA sequences. Investigating gene expression
regulation is highly dependent on accurately assembled
promoters. We screened the promoter regions of bi-allelic
genes and analyzed their sequence contiguity over a 20-kb
region upstream the translational start codon (Fig. 2c).
This revealed near complete promoter regions in the
60444 and TME3 genomes as compared to the AM560
v6.1 genome. The extensive sequence contiguity will facili-
tate allele-specific expression analysis and the identifica-
tion of novel tissue-specific cassava promoter sequences.

To determine if the accumulation of allelic mutations
has an impact on gene expression, we measured allele-
specific expression using high-throughput RNA-seq ana-
lysis from eight sequencing libraries that originated from
different tissues (for details, see Additional file 3). In
total, we covered the expression of 18,723 genes with
two alleles and identified 3451 (14.43%) genes with
mono-allelic expression (Fig. 2d, e). Various mono-allelic
expressed genes (44.76%) have highly similar promoter
sequences (mean similarity = 95.52%) between the alleles,
indicating that mono-allelic expression of these genes
could be caused by one or more SNPs or may be epige-
netically regulated through DNA methylation or chro-
matin packaging. It has been suggested that cassava
developed a more robust maintenance methylation
mechanism than found in other crop plant species [28].
The high number of alleles not expressed in the analyzed
tissues could be another property of the cassava genome
that was maintained through clonal propagation of the
crop over centuries.

Assembling pseudochromosomes of heterozygous
cassava genomes

In cassava, a single bi-parental cross rarely yields enough
progeny to generate a robust and dense genetic map that
can be used to genetically anchor sequences to chromo-
somal pseudomolecules. The most recent publicly avail-
able cassava composite genetic map was generated from
various mapping populations and anchors only 71.9% of
an earlier haploid genome assembly [33]. To re-construct
the set of cassava chromosomes independently of a com-
posite genetic map (i.e., de novo), we generated chromo-
some proximity ligation libraries (Hi-C) for the TME3 and
60444 cassava cultivars (for details, see Additional file 3).
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Proximity mapping was previously shown to be instru-
mental for chromosome-scale assemblies in other species
[31, 32]. The optical-map-improved scaffolds were com-
bined with the remaining contigs and grouped according
to the Hi-C-based molecule interaction maps using Dove-
tail proprietary algorithms. The approach has already been
used recently in other crop genome sequencing projects
to generate pseudochromosomes from the assembly of
contigs and smaller scaffolds into contiguous scaffolds of
chromosome size [47, 48]. Implementing the Dovetail as-
sembly for cassava increased sequence contiguity by nearly
25-fold for a final scaffold N50 of 53.4 Mb in the TME3
and 59.2 Mb in the 60444 in African cassava genomes.

To assess the quality of the Hi-C-based chromosomal
pseudomolecules, we aligned the genetic markers from
the cassava composite genetic map [33]. Out of 22,403
genetic markers, we were able to align 22,341 (99.7%)
with the 60444 genome and 22,373 (99.8%) with the
TME3 genome. To visualize and validate the chromo-
somal pseudomolecules, we plotted the genetic distance

against the physical distance for each genetic marker. At
this level of resolution, these plots confirm that whole
pseudochromosomes were assembled without large
inter-chromosomal re-arrangements (Fig. 1b, Add-
itional file 1: Figure S4). Plotting the recombination rate
using a sliding window of 1 Mb across assembled scaf-
folds revealed the expected decrease in recombination
frequency in the center of the scaffold, as well as the
presence of other regions with low recombination in the
chromosome arms (Fig. 1c, Additional file 1: Figure S5).
When analyzing the fasta sequences of the cassava pseu-
dochromosomes in more detail, we found TME3 and
60444 pseudochromosomal scaffolds to contain more DNA
sequence compared to the AM560 genome (Additional file 1:
Figure S6). For example, Scaffold 71yEs and Scaffold
14780444 representing chromosome 12 were 107.1% and
116.3% larger than the chromosome 12 in AM560. The
total length of the TME3 and 60444 pseudochromosomes
was 29% greater than the haploid genome size estimated by
flow cytometry, respectively. The additional sequences
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originate from repetitive sequences or spacers that were
added by Dovetail in the assembly process but also repre-
sent coding sequences and gene models as well. When
aligning the haploid composite genetic map [33] to the gen-
ome, we noticed that for loci where both haplotypes were
assembled as allelic contigs/scaffolds, Hi-C scaffolding
tended to integrate both haplotypes into pseudochromo-
somes, thus inflating genome size. We identified 78% of the
genetic markers in TME3 (82.8% in 60444) as perfect hits
(100% identity and coverage). Of those, 29.1% were present
more than once in the TME3 genome (29.8% of 60444)
(Additional file 1: Figure S7). Such a multiplication was ex-
pected, since both TME3 and 60444 are heterozygous ge-
nomes. We analyzed the various genome assemblies and
found that the numbers of genetic markers that were
present more than once were constant throughout the as-
sembly process. In the CANU and CANU-BNG assemblies
of both TME3 and 60444, the genetic markers are predom-
inantly on different contigs and scaffolds, confirming that
haplotypes have been assembled into separate allelic se-
quences. This is different in the Dovetail pseudochromo-
somes (Additional file 1: Figure S4), where 54.8% of TME3
and 56.5% of 60444 genetic markers can be found on con-
tiguous sequences more than once (Additional file 1: Figure
S7 E-F), indicating that both haplotpyes have been lifted
up into Hi-C scaffolds. Co-location of genetic markers on
the same scaffold was not a local phenomenon but was
spread over the entire genome. For example, on scaffold
7tMes representing presudochromosome 12 (Add-
itional file 1: Figure S8), 2635 genetic markers are aligned
twice or more, while they were mostly separated on allelic
sequences in the CANU-BNG assemblies, indicating inte-
gration of both haplotypes in the Dovetail pseudochromo-
some (Additional file 4: Table S5). Copies of the same
genetic marker typically occur in close proximity to each
other, with a median distance of 343 kb. A remaining set of
87 genetic markers was already duplicated on individual
contigs of scaffold 71ys in the initial CANU assembly of
chromosome 12 and thus likely represent true gene dupli-
cation events. They were on average separated by 27.9 kb
with up to eight gene copies per contig in some cases. After
removing the duplicated allelic sequences in the Dovetail
pseudochromosomes based on haplotig purging (Additional
file 2: Tables S6 and S7), the total size of the pseudochro-
somes was 796 Mb for TME3 and 854 Mb for 60444.
Proximity ligation mapping was also used to identify
miss-joints and mis-assemblies. Based on the Hi-C data,
we identified 30 mis-assemblies in the TME3 optical
map scaffolds and only 16 in the 60444 scaffolds. Each
mis-assembly was validated manually by testing Hi-C
read-pair alignment positions and alignment depth, and
scaffolds were corrected accordingly (Additional file 1:
Figure S9). However, the proximity maps of TME3 and
60444 will be valuable for quality assessment of the
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composite genetic map and to improve the sequence
resolution in regions that are seemingly devoid of mei-
otic recombination.

Repetitive DNA analysis and genome annotation of
cassava pseudochromosomes

Transposable elements (TEs) and REs are involved in gen-
ome evolution and shaping gene regulatory networks [49].
Unlike previous sequencing technologies, SMRT reads can
span and resolve entire TE and RE regions [50]. Using de
novo generated cassava DNA repeat libraries, we annotated
up to 2.5 times more TEs (defined by REPEATMASKER
and REPEATMODELER, as described in the “Methods”
section) in the pseudochromosomes compared to earlier re-
ports [19-21] (Fig. 3a). In the TME3 and 60444 Dovetail
assemblies, we annotated 602.90 Mb (64.81%) and 633.93
Mb (64.91%) as repetitive sequences, respectively. As an ex-
ample, we investigated the spatial distribution of sequence
repeats along the entire chromosomal scaffold 158340444,
which corresponds to pseudochromosome 9 (Fig. 3b) and
generated density maps for the four predominant TE cat-
egories. Long terminal repeat (LTR) retrotransposons have
higher densities in the centromer region, while non-LTR
retrotransposons elements (LINE and SINE) are clustered
in telomere-proximal regions. Class II DNA transposons
are more equally distributed across that scaffold. A similar
distribution of TEs was reported for other complex plant
chromosomes [51, 52], confirming the high quality of cas-
sava genome sequences ordered using Hi-C. Our pseudo-
chromosome assemblies reveal a high proportion of
repetitive DNA in cassava (65% of total contig length),
which is similar to the amount of repetitive DNA found in
other sequenced complex crop genomes such as sorghum
(54%) [53], quinoa (64%) [54], or barley (81%) [52] (detailed
TE annotation in Additional file 2: Table S9).

We predicted protein coding and microRNA (Add-
itional file 2: Table S10) sequences using a combination of
ab initio prediction and transcript evidence from available
cassava gene models [19]. Protein-coding sequence anno-
tation was assisted by Iso-Seq (high-quality, full-length
¢DNAs from single-molecule sequencing) data that cov-
ered 15,478 (45.7%) gene loci in TME3 and 16,057 (47.0%)
in 60444 (Additional file 1: Figure S10). The quality of the
gene model annotation was assessed for 1440 conserved
plant genes using BUSCO [55]. We found 95% of the
single-copy conserved orthologs in both genomes, with
only 20 and 19 genes partially assembled in TME3 and
60444, respectively (Additional file 2: Table S11).

Protein expansion in cassava genomes

The two African cassava cultivars 60444 and TME3 are
thought to have exceptional low genetic diversity [19].
The similar number of annotated genes allowed us to in-
vestigate gene family expansions specific to the two



Kuon et al. BMC Biology (2019) 17:75 Page 7 of 15
a b
Scaffold_1583;HRSCAF=4059
60444 I 150 (60444 Chr. 9)
100 <
TME3 | 3 ""“K'
50 o
AM560 v6.1 | ; o o
Ku50 I 0 20 40 60
0 20 40 60 100
Repetitive elements (%) 50 M /ANW

o | hanhopthn PV AR pnin sl

__ 100
Legend § 50 ‘

(TR [ UNE § 0
unclassified D .Iow complexity § 100

tDNA [ ] [ sRNA 5;) A A A
SR D |:| SINE 100
50

0 MWMMMMM

0 20 40 60

Fig. 3 Distribution of major repetitive elements identified in cassava genomes. a Percentage of base pairs of assembled cassava genomes that
represent long terminal repeat (LTR), unclassified repeat, DNA transposon (tDNA), sources of short RNA (sRNA), long interspersed elements (LINE),
low-complexity element, and short interspersed nuclear element (SINE) sequences. b Graphical representation of SNP markers (top) and
chromosomal density plots for the four predominant TE categories (bottom) on the scaffold 158340444 Map

Physical distance (Mb)

cultivars. We used OrthoMCL clustering of all gene
models present in our two assemblies as well as the gen-
ome assemblies of the South American cassava cultivar
AM560, Ricinus communis as a close relative of cassava,
and Arabidopsis thaliana as an outgroup [56, 57]. This
confirmed that the two African cassava cultivars are
closely related (Fig. 4a). For example, there were fewer
gene family groups specific to 60444 or TME3 (0.8—
1.1%), whereas the number of specific gene family
groups was considerably larger for Ricinus and Arabi-
dopsis. Interestingly, there were more protein groups as-
sociated exclusively with AM560 and Ricinus than with
Ricinus and either 60444 or TME3. These trends were
also seen for predicted enzymatic reactions (Fig. 4b) and
predicted metabolic pathways (Fig. 4c) but, as expected,
overall the four species were similar for total reactions
and metabolic pathways [57].

There remained 1823 protein groups containing 4081
gene models (2067 for 60444 and 2014 for TME3) that are
specific to the two African cassava genomes. Considering
the short evolutionary time since cassava was introduced to
Africa about 400 years ago, it is likely that the differences in
gene divergence and expansions between AM560, 60444,
and TME3 evolved before the ancestor or ancestors of
60444 and TME3 was brought to the African continent.

We subsequently investigated genes of proteins associ-
ated with gene families for overrepresentation of GO
terms [58]. For AM560, we found cultivar-specific pro-
teins with GO terms enriched for “polygalacturonase ac-
tivity” (Additional file 1: Figure S11). Among the most

significantly enriched GO terms for genes that were as-
sociated exclusively with the African cultivars were cat-
egories “structural integrity of ribosomes” (GO:0003735)
and “structural molecule activity” (GO:0005198) (Add-
itional file 1: Figure S12). Another more specific function
was squalene monooxygenase activity (GO:0004506).
Interestingly, single-strand DNA virus infection in-
creases squalene production [59]. Squalene monooxy-
genase converts squalene to (3S)-2,3-epoxy-2.3-
dihydrosqualene (epoxysqualene), which is a precursor
for many specialized metabolites (Additional file 1: Fig-
ure S13). Both in 60444 and TME3, there are four meta-
bolic pathways predicted to be involved in the
conversion of epoxysqualene to several specialized me-
tabolites. Some have known antimicrobial, anti-
inflammatory, and/or anti-tumor activities, including
beta-amyrin that can be converted to oleanolate, which
has antiviral activity [60] and inhibits topoisomerase 1/II
[61], which are involved in replication of viruses such as
cauliflower mosaic virus (CaMV) [62] . The Rep locus in
the CMD-related mungbean vyellow mosaic virus
(MYMV) encodes a protein with topoisomerase activity
[63]. Since the Rep locus is found in all Gemini viruses,
functionality is likely conserved [64]. The pathway from
squalene to oleanolic acid involves three consecutive re-
actions that all have gene annotations in all three cassava
cultivars. The two African cultivars 60444 and TME3
that are exposed to CMGs, however, have an expanded
gene pool for two of the three reactions in the pathway
(Additional file 1: Figure S12).
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CMD2 locus

The identification and molecular characterization of
geminivirus resistance genes in cassava has been slowed
by missing genomic resources. Previous genetic mapping
placed the CMD2 locus in separate regions of AM560-2
(v6.1) chromosome 12 [16, 22], suggesting that precise
CMD?2 mapping is difficult because of few recombin-
ation events and borderline marker saturation. We
found that genetic markers released from these mapping
efforts aligned to an approximate 5-Mb region between

49 and 55Mb of scaffold 7tyes (Fig. 5a). The same
markers were identified on 60444 scaffold 147840444
Analysis of the CMD2 locus in scaffold 7yg3 revealed
that nearly all markers from a bi-parental mapping
population [16] aligned to a region between 51 and 55
Mb (Fig. 5a, red circles, with a single marker outside of
this region at 49 Mb) and the marker set that had been
generated from an association mapping approach [22]
spanned an adjacent region of approximately 3 Mb (49—
51 Mb) in the same scaffold (Fig. 5a, blue circles). These
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results suggest that the genetic marker sets that previously
identified two separate loci in fact correspond to a single
region spanning 6 Mb of scaffold 7tpgs. However, the
pseudochromosome 12 region containing the CMD2
locus has four major assembly gaps (Fig. 5b), which likely
result from extensive stretches of repetitive DNA that pre-
vent complete assembly of the region. The alignment of
the AM560 CDS in the CMD2 region revealed high con-
formity with the AM560 chromosome 12 to scaffold 7 of
TMES3 containing the CMD2 locus (Fig. 5b). In 60444, the
markers aligned with a 6-Mb region on Scaffold 14780444

To better understand the similarity between the 60444
and TME3 genomes, we analyzed their synteny and in
particular synteny in the region of the CMD?2 locus using
the Comparative Genomics platform (CoGe) (Add-
itional file 1: Figure S14). More than 70% of the genes
encoded within the CMD21y g3 locus were found to be
syntenic to a gene within the CMD240444 and CMD2a 1560
loci (Fig. 5b, Additional file 1: Figure S15). Less than 10%
of the genes either had no syntenic gene (red) in the other
two genomes or the syntenic genes were outside the

CMD2 locus in a larger region three times the size of the
CMD?2 locus. Two TME3 genes, MeTME3_00015756 and
MeTME3_00015762, are missing from the CMD?2 regions
of AM560 and 60444, both short gene models of unknown
functions. While at the level of microsynteny most genes
are syntenic, the organization of the CMD?2 locus is not
entirely contiguous between the TME3, 60444, and
AM560 genomes except for a region with high microsyn-
teny around 52.7Mb. It is unlikely that the low
organizational microsynteny is the result of pseudochro-
mosome mis-assemblies because genes between 52.1 and
54.7 Mb of CMD21\3 are found on a single CANU-BNG
scaffold with low microsynteny to the corresponding re-
gions in AM560 and in 60444.

We searched our de novo gene annotations in the
CMD?2 loci of the TME3 and 60444 chromosome 12
scaffolds for three suggested CMD resistance candidate
genes that were identified in the AM560 v6.1 genome
[22]. Manes.12G076200 and Manes.12G076300 encode
peroxidases, a protein class that is involved in many bio-
chemical reactions [65]. In tomato, peroxidase activity
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increases in juvenile leaves during whitefly-mediated
geminivirus infections [66]. We confirmed the presence
of the two peroxidase genes (MeTME3_00015769 and
MeTME3_00015798) at the CMD2 locus of 60444 and
TME3. Manes.12G068300 encodes a protein disulfide-
isomerase-like 2-3 (PDI). This type of enzyme catalyzes
the correct folding of proteins and prevents the aggrega-
tion of unfolded or partially folded precursors. We iden-
tified MeTME3_00015870 in the CMD2 locus of TME3
that encodes a similar PDI. In barley, genetic studies
identified HvPDI5-1, which is the ortholog of MeTME3_
00015870, as a virus susceptibility factor that contributes
to resistance to bymoviruses [67].

When expanding the search proximal and distal to the
CMD?2 locus for genes that could provide resistance to
geminivirus infection, we identified a gene encoding
Suppressor of Gene Silencing 3 (SGS3, MeTME3_
00015743, 1.71 Mb downstream of the CMD2 locus).
SGS3 is involved in posttranscriptional gene silencing
(PTGS) and functions together with RNA-directed RNA
polymerase 6 (RDR6) during dsRNA synthesis [68].
SGS3 has also been suggested to function in the trans-
port of the RNA-silencing signal [69]. SISGS3, the to-
mato homolog of Arabidopsis SGS3, interacts with the
tomato yellow leaf curl geminivirus (TYLCV) V2 protein
that functions as a suppressor of silencing and counter-
acts the innate immune response of the host plant [70].
The identified genes provide useful information for can-
didate proteins related to the function of the dominant
CMD?2 locus in protection against geminivirus infection
in TME3 and other CMD2-type cassava cultivars.

Conclusions

The diploid-aware de novo assemblies of the heterozygous
60444 and TME3 cassava genomes will help to unlock the
limited genomic diversity of African cassava cultivars for
crop improvement and geminivirus resistance breeding.
The genome assembly strategy reported here can be simi-
larly adapted to other medium-sized, non-inbred genomes
with high heterozygosity and DNA repeat-rich regions.
Using the information for haplotype-phased alleles and
allele-specific expression, it will be possible to characterize
and purge deleterious mutations using targeted genome
editing [71], conventional breeding, or genomic selection.
Moreover, the large haplotype scaffolds of the 60444 and
TME3 genomes will greatly facilitate trait mapping and
map-based cloning of agriculturally important genes in
this important food security crop.

Our results show that the new maps of the CMD?2 locus
in both 60444 and TMES3, together with the newly anno-
tated genes, will help to identify the causal genetic basis of
CMD?2 resistance to geminiviruses. Our de novo genome
assemblies will also facilitate genetic mapping efforts to
narrow the large CMD?2 region to a few candidate genes
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for better informed strategies to develop robust gemini-
virus resistance in susceptible cultivars. Furthermore, the
genome assemblies will lead to a better understanding of
the genetic differences between cassava cultivars and how
genetic variability can be deployed in breeding programs
for future cassava improvement.

Methods

Further details of all methods are presented in Add-
itional file 3. No statistical methods were used to prede-
termine sample size. Experiments were not randomized,
and investigators were not blinded to allocation during
experiments and outcome assessment.

Long-read sequencing and sequence assembly

To sequence the two cassava genomes with long reads, we
extracted high molecular weight (HMW) genomic DNA
from 3-week-old leaf tissue of in vitro grown cassava
60444 and TME3 plants following a modified protocol
[72]. Libraries for PacBio SMRT sequencing were gener-
ated as described previously [73]. Libraries were
sequenced using a PacBio RSII instrument with P6C4 se-
quencing reagents. We used 47 SMRT cells for TME3 and
45 SMRT cells for 60444. For 60444, we generated a total
of 52.4 GB with subread bases with a mean read length of
12.8 kb. For TME3, 53.9 GB of subread bases were gener-
ated with a similar mean read length of 12.4 kb. The Pac-
Bio sequences had a > 70-fold genome coverage.

De novo assembly of the subreads was performed ap-
plying three assemblers: the PBcR-MHAP pipeline [36],
the CANU-MHAP assembler [34], and the FALCON
(v0.5) assemblers [35]. For FALCON, we adopted par-
ameter sweeping and the assembly with the largest N50
was retained. For the other assemblers, default parame-
ters were used, except the expected haploid genome size
was set to values estimated by flow cytometry as well as
k-mer analysis (Additional file 3). Quiver from SMRT
Analysis v2.3.0 was run two times to polish base calling
of assembled contigs [74].

Optical map construction

Long-range scaffolding of the assembly contigs with op-
tical mapping was achieved using the Irys optical map-
ping platform (BioNano Genomics). HMW DNA was
isolated from 3-week-old leaf tissue of in vitro grown
60444 and TME3 cassava plants, embedded in thin agar-
ose plugs according to the IrysPrep Kit and the plant tis-
sue DNA isolation protocol (BioNano Genomics). DNA
molecules were labeled using the NT.BspQI DNA-
nicking enzyme by incorporation of fluorescent-dUTP
nucleotides according to the IrysPrep nick-and-repair
protocol (BioNano Genomics). DNA samples were ali-
quoted and quantitated using the Qubit Fluorimeter run
in broad-range mode. The final samples were then
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loaded onto the IrysChips, linearized and visualized by the
BioNano Irys molecule imaging instrument. Molecules >
150 kb were assembled de novo using the pairwise assem-
bler provided by the IrysView software package (BioNano
Genomics) with p value threshold of 107°.

Three-dimensional genome-wide chromatin capture
sequencing

Freshly harvested leaves of in vitro grown cassava 60444
and TME3 plants were vacuum infiltrated in nuclei isola-
tion buffer (NIB) supplemented with 2% formaldehyde.
Protein crosslinking was stopped by adding glycine and
applying an additional vacuum infiltration step. Leaf tissue
was snap-frozen using liquid nitrogen and ground into a
fine powder, re-suspend in NIB, and purified by spin-
downs as described earlier [75]. Nuclei were digested with
400 units of HindIIl as described in [75]. Digested chro-
matin was labeled using a fill-in reaction with 60 units of
Klenow polymerase and biotin-14-dCTP. The exonuclease
activity of T4 DNA polymerase was used to remove
biotin-14-dCTP from non-ligated DNA ends. Proteinase
K was added to reverse the formaldehyde crosslinking,
and DNA was purified following phenol-chloroform
extraction [75]. The Hi-C samples were quality assessed
by PCR amplification of a 3C template and evaluated ac-
cording to [75] (Additional file 1: Figure S3). Quality con-
trol passed Hi-C samples were purified following a
phenol-chloroform extraction protocol [75] and mechan-
ically sheared to fragment sizes of 300 bp using a Covaris
S2 sonicator. Hi-C library fragments were blunt-ended
using the End Repair Mix from Illumina and finally puri-
fied using AMPure beads according to the standard
AMPure protocol. The biotinylated Hi-C samples were
enriched through biotin-streptavidin-mediated pull-down
and adenylated using Illumina’s A-tailing mix. Illumina
paired-end sequencing adaptors were ligated to the Hi-C
fragments, and a PCR amplification of the Hi-C library
was carried on as suggested earlier [75]. Finally, PCR
products were purified using AMPure beads following the
standard AMPure protocol and quantified using a Qubit
device. Samples were sequenced using the Illumina HiSeq
2500 instrument. This produced 385 million pairs of 150-
bp reads for 60444 and 391 million reads for TME3 (Add-
itional file 2: Tables S13 and S14). Genome scaffolding
was performed with Dovetail Genomics’ HiRise scaffold-
ing software.

Assembly accuracy estimation, repeat identification, and
gene annotation

Publicly available WGS Illumina paired-end reads [76]
were trimmed and quality filtered using Trimmomatic
[77] and mapped to the draft assembly using BWA ALN
(v0.7.12) [78] with default parameters. WGS read-
mapping files were sorted using SAMtools SORT [79]
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statistics and called using QUALIMAP BAMQC [80].
Identification allelic sequences in all drafts was per-
formed using Purge Haplotigs [39] (Additional file 1:
Figure S16). To assess the assembly completeness, the
set of reference CDSs (https://phytozome.jgi.doe.gov/pz/
portal.html#linfo?alias=Org_Mesculenta) was aligned to
each of the assembled draft genome using GMAP [43]
with option “-no fails” and “min-identity 0.5.” Results
were further filtered for alignments covering >99% of
query sequence using a custom script.

Repeat families found in the draft genome assemblies of
60444 and TME3 were first independently discovered de
novo and structure classified using the software package
REPEATMODELER ver. 1.0.9 and REPEATMASKER ver.
4.0.7 (https://www.repeatmasker.org). To screen for large
tandem repeats, we used the software package RefAligner
from Bionano with the option “-simpleRepeat -simpeRe-
peatTolerance 0.1 -simpleRepeatMinEle 3.”

To annotate the gene space, we performed iterative
MAKER analysis. In the initiated analysis, the gene pre-
diction tool AUGUSTUS [81] was trained with reference
gene models. The predicted gene models were combined
with alignment base evidence, including all ESTs from
cassava found on NCBI (https://www.ncbi.nlm.nih.gov/
nucest/?term=cassava%20ESTs), Iso-Seq data, and Uni-
Prot protein sequences. The initiated set of MAKER
gene models were used to train gene predictor SNAP,
which was added in the second round of MAKER ana-
lysis, together with gene predictor GeneMark trained
using Iso-Seq data. Putative gene functions of the final
set of gene models were characterized by performing a
BLAST search of the protein sequences against the Uni-
prot database (ftp://ftp.ebi.ac.uk/pub/databases/fastafiles/
uniprot/). PFAM domains, InterProScanID, and Gene
Ontology annotation were obtained by running inter-
proscan [82]. To annotate non-protein-coding genes, the
tools tRNAscan-SE [83] and Infernal [84] were used to-
gether with the Rfam version 13.0 database.

Allele-specific expression analysis and promoter region
comparison

Newly generated RNA-seq datasets were derived from three
key developmental stages of cassava 60444: early stage plant
with fibrous root (FR) and leaf, middle stage plant with leaf,
FR and intermediate root (IR), and late stage plant with leaf,
FR, IR. RNA-seq libraries were sequenced using Illumina
HiSeq2000 in paired-end 2 x 100 nucleotides mode. We
aligned the RNA-seq reads using STAR [85] and retained
the unique alignments. Reads were counted using SAM-
tools and custom made scripts [79].

Promoter regions were characterized for genes with two
alleles and fpkm expression ratio>0. Sequences 2 kb
upstream of the start codon were defined as promoter. A
pairwise alignment was generated for each allele pair using
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the MUSCLE pairwise alignment tool [86]. Alignments
were analyzed using 100-bp bins, and a similarity ratio
was calculated using a custom script and visualized using
the INCHLIB cluster and heatmap tools [87].

Genome-wide comparison and structural variation
detection

To compare the 60444 and TME3 assemblies on a
genome-wide scale, we used the optical maps of the two
cassava cultivars to detect structural variations (SVs)
using the RunBNG software [88]. We used the maps
from 60444 as the reference and TME3 as query.
RunBNG acts as a wrapper and essentially uses the Bio-
Nanos’ RefAligner for generating the alignments. Align-
ments were then screened using the script “SVdetect” to
detect the intergenomic SVs and to calculate insertion
and deletion sizes [73]. Synteny was analyzed using the
CoGe platform (https://genomevolution.org/). Syntenic
regions between 60444 and TME3 were identified using
CoGe SynMap and SynFind. The resulting table contains
all genes in TME3 and the syntenic genes that were de-
tected in 60444. We then defined a microsynteny score
for every gene j in TME3. In a window of m genes sur-
rounding gene j, stretching maximally n genes upstream
and maximally n genes downstream on the same scaf-
fold, we calculated for every m gene the longest syntenic
gene sequence where all genes are conserved syntenic in
the same or antisense direction in 60444. For n =5, the
maximal value per gene is thus 11 if gene j has both 5
genes up and 5 genes downstream and all 11 genes can
be found in the same or antisense order in 60444. We
then summed all scores of the genes in the window and
divided by the square of the number of genes. Thus, in a
window of 11 genes ABCDEFGHIJKTME3 where ABC-
DETME3 can be found in 60444 on Scaffold 1 and
FGHIJKTME3 on Scaffold 2, the score is 5 x 5+6 x 6/
11? = 0.504. The same scoring results of a gene duplica-
tion in one genome but not the other.

The QTL CMD?2 on 60444 and TME3 has been identi-
fied using BLAST alignments of markers from the com-
posite genetic map of cassava [33] and screened for
markers from scaffold5214 and scaffold06906. Scaf-
fold5214 has been reported by Rabbi and colleagues [16]
to be closely linked to CMD?2, and Scaffold6906 has been
revealed in an association study [22]. Best BLAST hits
were filtered and plotted using custom R-scripts. To
identify the CMD?2 region of the AM560 genome, we
used BLAST searches using a subset of the genetic
markers: (1) Rabbi et al. [16] marker S5214_780931, (2)
Wolfe et al. [22, 42] (only those with a p value < 10-50)
S8_5645072, S8_5801843, S8_5801851, S8_6106055, S8_
6218789, S8_6222418, S8_7325190, S8_7325312, S8_
7325397, S8_7717243, S8_7717285, S8_7762525, S8_
7762556, S8 7790078, S8 7790133. The markers
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represent SNPs; thus, a 81-bp region (40 bp either side
of the disease resistance associated SNP) was used for
each BLAST search. For each SNP marker, we per-
formed a manual investigation and a single hit was iden-
tified on chromosome 12 and the CMD2 locus was
defined 100,000 bp either side of these BLAST hits.

Gene family analysis
To investigate gene family expansion specific in the 60444
or TME3 genomes, we used OrthoMCL clustering of all
gene models present in our assemblies, the assembly of
AM 560, the assembly of Ricinus communis as a close
relative of cassava, and Arabidopsis as an outgroup [56,
57]. Only the longest protein sequence was selected, and
datasets were filtered for internal stop codons. Pairwise se-
quence similarities between all input protein sequences
were calculated using BLASTP [89] with an e value cutoff
of 107°. Clustering of the resulting matrix was used to de-
fine the orthology cluster with an inflation value set to 1.5.
Over- and underrepresentation of Gene Ontology (GO)
terms between the three cassava genomic compartments
were calculated with a hypergeometric test using the func-
tions GOstats and GSEABase from the Bioconductor R
package [90]. The REVIGO [91] package was used to
remove redundant and similar terms from long Gene
Ontology lists by semantic clustering and to visualize the
enrichment results. To define local duplicated genes,
OrthoMCL clustering was used. Local duplicated genes
were reported when one orthologous neighboring gene
was encoded on the same scaffold with a maximum
distance of 100 kb and a 10 gene interval.

Enzyme prediction and pathway prediction was per-
formed as published earlier [57].
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