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Abstract

Background: Cultivated hexaploid oat (Common oat; Avena sativa) has held a significant place within the global
crop community for centuries; although its cultivation has decreased over the past century, its nutritional benefits
have garnered increased interest for human consumption. We report the development of fully annotated,
chromosome-scale assemblies for the extant progenitor species of the As- and Cp-subgenomes, Avena atlantica and
Avena eriantha respectively. The diploid Avena species serve as important genetic resources for improving common
oat’s adaptive and food quality characteristics.

Results: The A. atlantica and A. eriantha genome assemblies span 3.69 and 3.78 Gb with an N50 of 513 and 535
Mb, respectively. Annotation of the genomes, using sequenced transcriptomes, identified ~ 50,000 gene models in
each species—including 2965 resistance gene analogs across both species. Analysis of these assemblies classified
much of each genome as repetitive sequence (~ 83%), including species-specific, centromeric-specific, and
telomeric-specific repeats. LTR retrotransposons make up most of the classified elements. Genome-wide syntenic
comparisons with other members of the Pooideae revealed orthologous relationships, while comparisons with
genetic maps from common oat clarified subgenome origins for each of the 21 hexaploid linkage groups. The
utility of the diploid genomes was demonstrated by identifying putative candidate genes for flowering time (HD3A)
and crown rust resistance (Pc91). We also investigate the phylogenetic relationships among other A- and C-genome
Avena species.

Conclusions: The genomes we report here are the first chromosome-scale assemblies for the tribe Poeae, subtribe
Aveninae. Our analyses provide important insight into the evolution and complexity of common hexaploid oat,
including subgenome origin, homoeologous relationships, and major intra- and intergenomic rearrangements. They
also provide the annotation framework needed to accelerate gene discovery and plant breeding.
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Background
Oat (Avena sativa L.) is a nutritionally important crop
throughout the world. It is ranked 6th in world cereal pro-
duction [1], and while its primary use continues to be as a
livestock feed, its uses as a human food and for cosmetics
continue to increase [2]. Among the many nutritional
benefits of oat are its high levels of calcium, β-glucan sol-
uble fiber [3–6], and high-quality oil and protein [7, 8].
Oat seed contains no gluten and only low levels of gluten-
related prolamins and therefore is a healthy
diet alternative for many people who cannot tolerate diet-
ary gluten. Oat is high in polyphenolic avenanthramides
having antioxidant, anti-inflammatory, and antiathero-
genic properties [9]. Oat also contains two classes of sapo-
nins: avenacosides (sugars bound to steroids) and
avenacins (sugars bound to triterpenoid), both of which
have been shown to lower cholesterol, stimulate the im-
mune system, and have anti-carcinogenic properties [7].
Oat also has many topical uses, as it has a soothing effect
on skin and has been used to treat dry, itchy skin [10]; oat
has also been shown to have sun-blocking properties [11],
and it is often found in products to treat eczema, psoriasis,
and other skin conditions [12, 13].
Common oat (A. sativa) and red oat (A. byzantina C.

Koch) are allohexaploids (2n= 6x= 42, AACCDD subge-
nomes) belonging to the Poeae Tribe of the Poaceae [14]
and are thought to have been domesticated from wild-weedy
A. sterilis L. [15], a species that arose from hybridization be-
tween a CCDD allotetraploid closely related to modern A.
insularis Ladiz. and an AsAs diploid [16]. Several variants of
the A-subgenome diploids exist (Ac, Ad, Al, Ap, and As [17];)
and are known to harbor several genetic features of signifi-
cance, including major crown rust resistance genes that have
been transferred into hexaploid oat cultivars [18, 19]. The A-
genome diploids have also been identified as potential gene
sources for improving soluble fiber and protein [20]. The A-
subgenome is also part of a major intergenomic translocation
(7C-17A) in A. sativa-A. sterilis that has been associated with
adaptation to winter hardiness—key elements in oat produc-
tion that likely contributed to the plant’s ability to shift from
Mediterranean winter ecology to Eurasian spring-summer
cultivation [21].
The C-subgenome chromosomes have a high amount of

diffuse heterochromatin along their entirety [22]; this is a
genetic feature not seen in the A and D chromosomes,
where heterochromatin is localized and seemingly concen-
trated around the centromeres, at the telomeres, and in
flanking secondary constrictions where rRNA genes are
located. Among the important genetic features in the C-
subgenome is a terminal translocation segment on the
long arm of 21D which carries a putative CSlF6c locus
that likely has a negative effect on seed soluble fiber con-
tent [23, 24]. Linkage has also been demonstrated between
the chromosome 5C telomeric knob in allotetraploid A.

magna Murphy et Terrell (CCDD subgenomes) and co-
segregating genes controlling awn production and basal
abscission layer formation which have been implicated in
the domestication of common oat [25].
Despite the historical importance of oat and the

renewed interest in its nutritional value, a complete gen-
ome sequence of oat has yet to be reported. Indeed, the A.
sativa genome is large (> 12 Gb [26]), duplicated, com-
plex, highly repetitive, and characterized by several major
intra- and intergenomic rearrangements—making full
genome assembly of the hexaploid difficult [27]. Here we
report the development of fully annotated, chromosome-
scale assemblies for the extant progenitor species of the
As- and Cp-subgenomes, A. atlantica B.R.Baum & Fedak
and Avena eriantha Durieu., respectively. Using these as-
semblies, we (i) identified and quantified repetitive elem-
ent content in the genome, including centromeric and
telomeric repeats, (ii) analyzed syntenic relationships with
other cereal grains and homoeologous relationships within
oat using consensus linkage maps [28], (iii) identified pu-
tative candidate genes for flowering time [29] and crown
rust resistance [30] relative to recently published genome-
wide association studies (GWAS), (iv) estimated the age of
the evolutionary split between the A- and C-subgenomes
using synonymous substitution rates (Ks) analysis, and (v)
examined the genetic diversity and phylogenetic relation-
ship from a resequencing panel of 76 A- and C-genome
Avena species.

Results
Whole-genome sequencing and assembly
We selected the A. atlantica accession Cc 7277 and the A.
eriantha accession CN 19328 for whole-genome shotgun
sequencing. Both accessions are highly inbred and pheno-
typically homogeneous and represent type accessions for
their respective species. A total of 31,544,396 and 28,257,
346 PacBio reads were generated across 122 (RSII and Se-
quel) and 54 (Sequel) SMRT cells generating a total of
325.9 (~84× coverage) and 276.6 (~71× coverage) Gb of
sequence data for A. atlantica and A. eriantha, respect-
ively. The longest reads for each species, 194,884 and 151,
576 bp, came from the Sequel instrument. The N50 read
length for A. atlantica and A. eriantha was 18,658 and 15,
102 bp, respectively. In addition to PacBio sequencing, a
total of 192 Gb for A. atlantica and 40 Gb for A. eriantha
of 2 × 150 bp Illumina sequences were generated. A k-mer
analysis (at k = 21 scale) using Genoscope [31] predicted a
genome size of 3.72 Gb with 0.07% heterozygosity and a
repeat fraction of 78% for A. atlantica and a genome size
of 4.17 Gb with a 0.12% heterozygosity and a repeat frac-
tion of 76% for A. eriantha. The relative magnitude of
these values agree well with those reported by Bennett
and Smith [26] and Yan et al. [32], both of which report
that the genomes of the A-genome diploids are ~ 15%
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smaller than the C-genome diploids. However, former
estimates determined by replicated flow cytometry mea-
surements ranged in size from 4.1 to 4.6 Gb for A-
genomes and from 5.0 to 5.1 Gb for C-genomes [32]. The
differences in genome size predicted by k-mer vs. flow cy-
tometry analyses are likely a reflection of the significant
repeat fraction in the oat genome that is difficult to ac-
count for using a k-mer analysis.
Prior to Hi-C scaffolding, Canu was used to assem-

ble the A. atlantica and A. eriantha PacBio long reads
into 3914 and 8067 contigs with an N50 of 5,544,947

and 1,385,002 bp, spanning a total of 3.68 and 3.77 Gb
of total length, respectively (Table 1). The L50 of the
assemblies were 196 and 797 and the longest contigs
spanned 25,143,700 and 10,103,775 bp, respectively.
The average G+C content of the assemblies were
44.4% and 43.9%, which is similar to most monocoty-
ledonous cereals (e.g., Sorghum bicolor, 43.9%; Oryza
sativa, 43.6% G+C) but significantly higher than G+C
content predicted for dicots, which typically range be-
tween 33 and 36% (e.g., Carica papaya, 34%; Arabi-
dopsis thaliana, 36%) [34]. As these were PacBio read

Table 1 Summary statistics for the canu [33] and Hi-C assemblies for A. atlantica and A. eriantha

Assembly A. atlantica A. eriantha

Canu Hi-C Canu Hi-C

Number of scaffolds 3941 2195 8067 2652

Total size of scaffolds (bp) 3,683,522,149 3,685,054,491 3,773,539,112 3,777,787,481

Longest scaffold (bp) 25,143,700 577,845,554 10,103,775 588,203,704

Shortest scaffold (bp) 1010 1010 1020 1020

Number of scaffolds > 1 M nucleotides 768 9 1203 7

N50 scaffold length 5,544,947 513,237,590 1,385,002 534,821,622

L50 scaffold count 196 4 797 4

Scaffold % A 27.81 27.81 28.06 28.04

Scaffold % C 22.2 22.19 21.94 21.91

Scaffold % G 22.19 22.18 21.93 21.91

Scaffold % T 27.8 27.79 28.07 28.05

Scaffold % N 0 0.03 0 0.09

Scaffold N nt 0 1,250,201 0 3,223,400

Scaffold % non-ACGTN 0 0 0 0

Percentage of assembly in scaffolded contigs 0.00% 97.00% 0.00% 97.80%

Average number of contigs per scaffold 1 1.9 1 3.1

Average length of breaks (20 or more Ns) between contigs 0 601 0 578

Number of contigs 3941 4275 8067 8228

Number of contigs in scaffolds 0 2244 0 5740

Number of contigs not in scaffolds 3941 2031 8067 2488

Total size of contigs 3,683,522,149 3,683,804,291 3,773,539,112 3,774,564,081

Longest contig 25,143,700 21,736,085 10,103,775 10,106,525

Shortest contig 1010 120 1020 198

Number of contigs > 1 M nt 768 868 1203 1202

N50 contig length 5,544,947 4,310,367 1,385,002 1,314,218

L50 contig count 196 245 797 838

Contig % A 27.81 27.81 28.06 28.07

Contig % C 22.2 22.2 21.94 21.93

Contig % G 22.19 22.19 21.93 21.93

Contig % T 27.8 27.8 28.07 28.07

Contig % N 0 0 0 0

Contig %non-ACGTN 0 0 0 0
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based assemblies, no “N” gaps were present in the
Canu assemblies.
To improve the Canu assemblies, contigs were further

scaffolded by chromatin-contact maps using DoveTail
Chicago® and Hi-C libraries. Chicago® library contact
maps are based on purified DNA that is reconstituted
in vitro and thus limited to chromatin associations no
larger than the size of the purified input DNA fragments
(< 100 kb). Nonetheless, they are ideal for detecting and
correcting miss-joins in de novo assemblies as well as
short-range scaffolding [35]. Approximately 73× cover-
age of 1–100 kb read pairs (2 × 150) were generated from
Chicago® libraries for each Avena species and used to
scaffold the Canu assemblies using the HiRiSE™ scaf-
folder. In total, 334 and 158 breaks were made, while
1157 and 2962 joins were made in the A. atlantica and
A. eriantha assemblies, respectively. The net effect of
these changes was to decrease the number of total scaf-
folds to 3118 in the A. atlantica assembly and to 5263 in
the A. eriantha assembly, which was accompanied by a
slight decrease in N50 (4310 and 1.314 kb, respectively)
for each assembly. Whenever a join was made between
contigs, an “N” gap, consisting of 100 Ns, was created.
The total percent of the genome in gaps, for both spe-
cies, was less than 0.1%.
The Chicago®-based assemblies were then further scaf-

folded using in vivo Hi-C libraries, created from native
chromatin to produce ultra-long-range mate pairs. Mate
pair reads (10–10,000 kb) representing a physical cover-
age of 2749× and 513× were generated for the A. atlan-
tica and A. eriantha genomes and scaffolded using the
HiRiSE™ scaffolder. In total, 922 joins and 2614 joins
(plus three breaks) in the A. atlantica and A. eriantha
were made, respectively, producing ultra-long scaffolds,
putatively representing full-length chromosomes and/or
chromosome arms. The HiRiSE™ assembly for A. atlantica
had a scaffold N50 of 513.2Mb, and an L50 of 4, spanning
a total sequence length of 3.685 Gb. The longest scaffold
spanned 577.8Mb. Similarly, the A. eriantha assembly
had a scaffold N50 of 534.8Mb, an L50 of 4, and spanned
a total sequence length of 3.778 Gb with the longest scaf-
fold reaching 588.3Mb. Scaffold joins produced by the
Hi-C mate pairs introduced new “N” gaps in the assembly
(each consisting of 1000 Ns), thereby increasing the num-
ber of gaps in the assembly to 2079 and 5576 for A. atlan-
tica and A. eriantha, respectively. The final percentage of
“N” nucleotides in the final assemblies was less than 0.1%,
with the average gap size of 600 and 578 bp, respectively
(Table 1).
The longest eight scaffolds of the A. atlantica assembly,

presumably representing two chromosome arms (205 and
278Mb) and six full-length chromosomes (448–577Mb),
consisted of > 96% of the total sequence length from the
Canu assembly. Similarly, the longest seven scaffolds,

ranging in size from 455 to 588Mb, presumably represent-
ing each of the seven haploid A. eriantha chromosomes,
were composed of > 97% of the total Canu assembly
sequence. For simplicity, scaffolds representing each of the
seven chromosomes from each species are referred to
forthwith by size (longest to shortest) as AA1-AA7 and
AE1-AE7. The scaffolds in the A. atlantica and A. eriantha
assemblies that remain unintegrated into one of the
chromosome-scale pseudomolecules are relatively small
and repetitive, with an average size of 61 and 38 kb, which
likely contributed to the inability of the proximity-guided
assembler to confidently place these contigs within the
framework of the chromosomes—specifically the low num-
ber of interactions on a short fragment as well as the inabil-
ity to discern interaction distance differences over the short
molecule.

Chromosome arm merging
We compared the A. atlantica assembly with a recently
published genetic linkage map, constructed from an F6:8
recombinant inbred line population generated from a
cross of A. strigosa x A. wiestii, both AsAs Avena diploid
species [36]. This map was based on 11,455 ordered, co-
dominant 64-base tag-level haplotypes on seven linkage
groups generated using the Haplotag pipeline [37]. Of
these, 4551 haplotypes had perfect matches to single
sites on the eight largest scaffolds. A clear one-to-one
correspondence between linkage groups (LG) and phys-
ical assembly scaffolds was observed (Fig. 1), with greater
than 97% of the tag-level haplotypes mapping to a spe-
cific scaffold derived from a single LG. For example, of
the 846 tag-level haplotypes mapping to scaffold Sco-
FOjO_324_449 (AA1), 838 (> 99%) were derived from
LG 7 (Table 2). Of the 464 tag-level haplotypes derived
from LG 2, 378 mapped to scaffold ScoFOjO_1310 (278
Mb) and 85 mapped to scaffold ScoFOjO_1577 (205
Mb), indicating that these two smaller scaffolds should
be merged to produce a single, full-length pseudo
chromosome (AA5; 485Mb), thus completing the as-
sembly of seven full-length haploid chromosomes for A.
atlantica. A head-to-tail merging of these chromosome
arms (separated by 1000 Ns) was determined based on
the collinearity of the tag-level haplotypes with respect
to their orientation within the linkage group. A near
perfect collinear relationship was observed between the
linkage map and the physical map for all chromosome-
linkage group comparisons, with the exceptions being
the anticipated reductions of linkage distances relative to
physical distances observed at the pericentromeric re-
gions of each chromosome (Fig. 1). It is well docu-
mented that recombination is suppressed in centromeres
at rates ranging from fivefold to greater than 200-fold,
depending on the species [38, 39]. Of the 2188 contigs
that were unintegrated into an A. atlantica chromosome
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[43] to 85% for maize [44]. Given the large size of these
genomes, it is not surprising that < 20% of the genome
is classified as non-repetitive.
Of the various LTR-RT present (Additional file 1: Table

S1), Gypsy-like and Copia-like elements represent > 60% of
each genome, in a ratio of 2.3:1 and 3.5:1 for the A. atlan-
tica and A. eriantha genomes, respectively, which is similar
to the ratios reported for other Poaceae species (e.g., rice,
4.9:1 [45]; sorghum, 3.7:1 [46]; and maize, 1.6:1, [47]). The
next most common element was class II CMC-EnSpm
DNA transposons, representing ~ 5% of each genome—
which are known common features of the cereals [48, 49].
Interestingly, a significant proportion (A. atlantica: 10.6%
and A. eriantha: 14.3%) of the interspersed repeat fraction
for each genome was classified as “unknown”. Given the
extensive investigations of repeat elements in the grasses
[50–52], this unknown fraction likely represents repeat
elements unique to Avena and could be invaluable in
differentiating the A-, C-, and D-subgenomes in hexaploid
oat. For example, Solano et al. [53] reported the identifica-
tion of a tandem repeat sequence clone (pAm1; GenBank
X83958) from Avena murphyi L., an AACC tetraploid,
which selectively hybridized to the C-subgenome. A repeat
that was highly homologous (E-value 2E-82) to pAm1 was
identified by RepeatModeler in A. eriantha, but is missing
in the A. atlantica genome (Fig. 2a; Tracks 4 and 5). Simi-
larly, Katsiotis et al. [54] reported the identification of an
interspersed repeat (pAvKB26; GenBank AJ297385.1) that
selectively hybridized to only the A- and D-subgenomes.

This repeat was identified in the unknown repeat fraction
of A. atlantica but was missing in the A. eriantha genome
(Fig. 2b; Tracks 4 and 5). Repeat content is believed to be
an important driver of genome organization and evolution
[55] and these data will be important for understanding
the overall evolution of common hexaploid oat.
In addition to the interspersed repeat elements, ~ 0.5%

of the genome was classified as low complexity, satellite,
microsatellite or telomeric repeat (see genomic feature
section below). Indeed, 5217 and 3404 putative microsat-
ellite loci were identified, with the most common di-, tri-
and tetranucleotide repeat motif identified being (AT)n,
(AAC)n or (GGC)n and (TTTA)n, in A. atlantica and A.
eriantha, respectively. To date, no microsatellites have
been generated specifically for the Avena diploid species –
thus these new putative microsatellite loci represent im-
portant genetic tools for studying diversity and specifically
for advancing breeding in the A-genome diploids.

Transcriptome assembly and functional annotation
The A. atlantica and A. eriantha transcriptomes, which
consisted of 51,223 and 47,361 scaffolded isoforms, the
Brachypodium cDNA and peptide models (v 1.0; Ensembl
genomes) and the uniprot-sprot database were provided as
primary evidence for annotation in the MAKER pipeline
[56]. The RNA-Seq data mapped with high efficiency to
the assemblies, with > 96% of the reads mapping to their
respective genome at 93.1% concordance for pair align-
ment rates, suggestive of high-quality genome assemblies

Fig. 2 Genome overview of a A. atlantica and b A. eriantha. Track 1 (outside): Chromosome and sizes; Tracks 2: Annotated gene density; Track 3:
Centromeric repeat density; Track 4: Telomeric sub-repeat density; Track 5: C-genome specific repeat (pAm1) density; Track 6: A-genome specific
repeat (pAvKB26) density
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