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Abstract

Background: Viruses of Archaea and Bacteria are among the most abundant and diverse biological entities on
Earth. Unraveling their biodiversity has been challenging due to methodological limitations. Recent advances in
culture-independent techniques, such as metagenomics, shed light on the unknown viral diversity, revealing
thousands of new viral nucleotide sequences at an unprecedented scale. However, these novel sequences have not
been properly classified and the evolutionary associations between them were not resolved.

Results: Here, we performed phylogenomic analysis of nearly 200,000 viral nucleotide sequences to establish GL-UVAB:
Genomic Lineages of Uncultured Viruses of Archaea and Bacteria. The pan-genome content of the identified lineages
shed light on some of their infection strategies, potential to modulate host physiology, and mechanisms to escape
host resistance systems. Furthermore, using GL-UVAB as a reference database for annotating metagenomes revealed
elusive habitat distribution patterns of viral lineages and environmental drivers of community composition.

Conclusions: These findings provide insights about the genomic diversity and ecology of viruses of prokaryotes. The
source code used in these analyses is freely available at https://sourceforge.net/projects/gluvab/.
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Background
Grasping the biodiversity of viruses of Bacteria and Ar-
chaea has been a major challenge within the field of
virology. Limitations for viral cultivation and purification
associated with the absence of universal marker genes
have been major drawbacks in the effort to chart and
classify the biodiversity of these viruses [1, 2]. The Taxo-
nomic classification system established for viruses of
Bacteria and Archaea was originally based on morpho-
logical traits, but genetic studies demonstrated that the
major taxa established through this approach are not
monophyletic [3–5]. Thus, viral classification and tax-
onomy have come to rely heavily on comparative gen-
omics. This shift has led the International Committee
for the Taxonomy of Viruses (ICTV) to call for a scal-
able genome-based classification system that can also be
applied to uncultured viruses for which no phenotypic
data is available [6]. A comprehensive classification

system is fundamental for understanding how viruses
and their hosts have shaped the evolution of each other
and how viruses interact with the ecosystem [7].
Phylogenomic trees and genomic similarity networks

incorporate full genomic data for comparison and clus-
tering of viral genomes. Both phylogenomic- and
network-based approaches have showed promising re-
sults for reconstructing phylogenies and classifying and
identifying novel viral taxa [1, 5, 8–10]. These ap-
proaches circumvent the biases and limitations associ-
ated with morphological data or the use of phylogenetic
markers and are easily scalable to thousands of ge-
nomes [5, 11]. Network methods rely on the identifica-
tion of orthologous groups shared among genomes,
which can be problematic for viruses due to the rate at
which their genes evolve. Additionally, the evolutionary
associations among genome clusters identified by net-
work approaches are not explicitly resolved by these
methods [5, 12]. Meanwhile, phylogenomic approaches
provide trees in which the associations among genomes
are easily interpreted under an evolutionary perspective.
For these reasons, phylogenomic methods have been
the standard approach for reconstructing phylogenies
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of prokaryotic viruses [1, 8, 11, 13–16]. Previous studies
have leveraged this method to investigate the genetic
diversity of cultured viruses, but none have done so
using all of the uncultured diversity that has recently
been described [3, 4, 13, 14, 17–22].
Thousands of novel viral genomic sequences (i.e.,

complete genomes and genome fragments) were
recently discovered through culture-independent ap-
proaches, such as shotgun metagenomics, fosmid lib-
raries, single-virus sequencing, and prophage mining [4,
13, 17–20]. These new datasets unraveled an extensive
biodiversity that had been overlooked by culture-based
approaches. These sequences have the potential to fill
many of the gaps in our understanding of the diversity
of viruses of prokaryotes. Yet, achieving this goal re-
quires that these genomic sequences are properly orga-
nized in a robust evolutionary framework [7]. Here, we
applied a phylogenomic approach to chart the diversity
of uncultured dsDNA viruses of Bacteria and Archaea
aiming to gain insights on their genetic diversity, evolu-
tion, and ecology.

Results
Phylogenomic reconstruction
An initial database was compiled with all viral sequences
from NCBI RefSeq and sequences of uncultured viruses
that were discovered across multiple ecosystems using
approaches that bypassed culturing. This database
amounted to 195,698 viral nucleotide sequences along
with associated information of computational host pre-
dictions and ecosystem source (Additional file 1). Uncul-
tured viral sequences were filtered to select only those
derived from bona fide viruses of Archaea and Bacteria
(see the “Methods” section). Likewise, viral genomes
from RefSeq were filtered so that subsequent analysis
used only those from dsDNA viruses of Archaea and
Bacteria. Next, redundant sequences were removed as
well as those shorter than 10 Kbp that were not anno-
tated as complete or nearly-complete genomes. These
filtering steps resulted in a subset of 6646 sequences, out
of which 1873 were genomes from NCBI RefSeq. This
dataset was used for the phylogenomic reconstruction
(Fig. 1, see the “Methods” section for a detailed descrip-
tion of the filtering steps).
An all-versus-all comparison of the protein sequences

encoded in this dataset was performed and used to cal-
culate Dice distances between genomic sequences. Es-
sentially, the Dice distances between a pair of genomic
sequences decrease the more proteins that are shared
between them and the higher their degree of identity.
Finally, the obtained matrix of Dice distances was used
to construct a phylogenomic tree through neighbor-
joining (Fig. 2 and Additional file 2). The robustness of
the tree topology was evaluated through a sub-sampling

approach: one hundred phylogenomic trees were recon-
structed by randomly removing hits from 5% of the
protein encoding genes from the all-versus-all protein
search. Next, we measured the frequency in which the
nodes from the original tree were present in the re-
sampled trees (see the “Methods” section for details).
This analysis demonstrated that nodes displayed an
average recovery rate of 73.43%. Among all nodes,
96.57% of them were recovered at least once among the
re-sampled trees. These figures were obtained when re-
ducing the data used to calculate distances to approxi-
mately 90% of the amount used to establish the original
tree, demonstrating that tree topology is robust even in
the presence of incomplete or fragmented genomes,
which might be the case for some of the uncultured
viral genomes used. For comparison, we also applied
the re-sampling approach to the benchmarking dataset
tree of RefSeq viral genomes only. In this dataset, nodes
displayed an average recovery rate of 73.22%, and
among all nodes, 97.05% of them were recovered at
least once among the re-sampled trees. Therefore, the
figures of node consistency obtained for the complete
tree were similar to those observed for the benchmark-
ing dataset, providing further evidence of the reliability
of tree topology.

Clustering prokaryotic viruses into lineages of closely
related genomes
Tree topology confirmed the polyphyletic nature of cur-
rently accepted families of prokaryotic viruses, both for
the full dataset (Fig. 2) and for the benchmarking
(RefSeq only) dataset (Additional file 3). These results
corroborate previous findings that showed that the
major families within the order Caudovirales (i.e., Myo-
viridae, Siphoviridae, and Podoviridae) are not mono-
phyletic [1, 3, 4, 10, 11, 23], which justifies the need for
a novel classification system based on a phylogenomic
approach. We tested different cutoffs of node depth (i.e.,
distance from the root of the tree) to establish lineages
in the benchmarking RefSeq dataset. These cutoffs were
scored by the Rand index to determine which values
produced maximum agreement with the ICTV classifica-
tion at the levels of family, sub-family, and genus. Based
on these results, a three-step approach was applied to
categorize diversity into hierarchical levels of increasing
genomic relatedness which respectively correspond to
the ranks of family, sub-family, and genus: level 1 (mini-
mum node depth of 0.0014, and number of representa-
tives equal or above 20), level 2 (minimum node depth
of 0.0056, and number of representatives equal or above
3), and level 3 (minimum node depth of 0.0189, and
number of representatives equal or above 3). The cutoffs
for minimum number of representatives were selected
so that the higher the level in the hierarchical
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classification, the higher the number of genomes repre-
senting the lineages. We opted for this approach to en-
sure that level-1 lineages were represented by multiple

genomes that displayed a strong signal of genomic re-
latedness, thus avoiding the establishment of spurious
lineages with few genomes, and to account for the

Fig. 1 Flowchart summarizing the methodology used to establish GL-UVAB. The initial dataset of genomic sequences consisted of the NCBI
RefSeq and viral genomic sequences obtained through culturing independent approaches adding up to 195,698 genomic sequences from which
4,332,223 protein encoding genes (PEGs) were identified. After the initial filtering, 6646 sequences were selected for phylogenomic
reconstruction. Dice distances were calculated between this set, and the resulting distance matrix was used for phylogenomic reconstruction
through neighbor-joining. The obtained tree was used to identify lineages at three levels, based on minimum node depth: level 1 (node depth
equal or above 0.0014, and number of representatives equal or above 20), level 2 (node depth equal or above 0.0056, and number of
representatives equal or above 10), and level 3 (node depth equal or above 0.0189, and number of representatives equal or above 3). Lineage
abundances were estimated in metagenomic datasets by read mapping. Lineage pan-genomes were determined by identifying clusters of
orthologous genes. Finally, sequences that were not included in the original tree were assigned to the lineages by closest relative identification
(CRI). Closest relatives were determined based on percentage of matched genes (minimum value of 70%) and average amino acid identity
(minimum value of 50%)
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presence of incomplete genomic sequences in our data-
set. At the first level, 5395 genomic sequences were
assigned to 68 lineages (Fig. 2). At the second level, 6198
sequences were assigned to 328 lineages, while at the
third level, 5656 sequences were assigned to 407 line-
ages. This three-level classification system was used to
establish the GL-UVAB. The average recovery frequen-
cies derived from the sub-sampling followed by tree re-
construction approach for the nodes used to define
level-1, level-2, and level-3 lineages were respectively
31.34%, 73.49%, and 88.26%. These results suggest more

reliability of the lineages the lower in the hierarchy. The
somewhat lower values observed for level-1 lineages can
be attributed to the fact that these lineages were derived
from nodes very close to the root of the tree, which are
more likely to have their topology affected during the
steps of sub-sampling followed by phylogenomic
reconstruction.
Genome sequences that were not included in the phy-

logenomic reconstruction were assigned to the lineage of
their closest relative as determined by the average amino
acid identity (AAI) and percentage of shared genes. A

Fig. 2 Phylogenomic reconstruction of 6646 viral genomic sequences reveals major lineages of uncultured prokaryotic viruses. The tree was built
through neighbor-joining based on Dice distances calculated between viral genomic sequences from both NCBI RefSeq and those reconstructed
from metagenomes, fosmid libraries, single virus genomes, and prophages integrated into prokaryote genomes. Tree was midpoint rooted.
Branch lengths were omitted to better display tree topology. Each of the 68 level-1 GL-UVAB lineages were highlighted by black colored
branches and with their defining nodes indicated by blue dots. Numeric identifiers for the lineages are displayed in the innermost ring within
gray strips. The outermost ring depicts the ICTV family-level classification assignments of RefSeq viral genomes that were included in the tree. For
reference, a single representative from each ICTV genus was labeled and their Taxonomic classification is shown in parentheses
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minimum AAI of 50% and the percentage of matched
PEGs of 70% were required for closest relative assign-
ments. Following this step, a total of 51,961 sequences
were classified (mean AAI of 75.91% and mean percent-
age of matched PEGs of 88.31%) to at least one level
(Additional file 1), which represents a 22-fold increase in
the proportion of classified sequences (both partial and
complete genomes) compared to the amount of RefSeq
genome sequences of prokaryotic viruses classified by
the NCBI taxonomy database at any rank. Importantly,
the classification of these genome fragments through
this method should be considered tentative, and to be
re-evaluated through the phylogenomic approach once
the complete genomes are available.

Correspondence between GL-UVAB lineages and ICTV
taxa
We investigated the correspondence between GL-
UVAB lineages and the taxa established by the ICTV
(Additional file 4). If genomes that belong to the
same ICTV taxa are also assigned to the same GL-
UVAB lineages, this is an indication of agreement be-
tween the two systems. Considering the degrees of
similarity selected to establish the GL-UVAB lineages,
we compared level-1 lineages to ICTV families, level-
2 lineages to ICTV sub-families, and level-3 lineages
to ICTV genera respectively. The agreement between
the ICTV classification and GL-UVAB system was
quantified through the Rand index (The value of this
index ranges from 0 to 1. Higher values indicate bet-
ter agreement between partitions). Level-1 lineages
displayed a 0.71 Rand index score when compared to
ICTV families, level-2 lineages displayed a 0.95 Rand
index score when compared to ICTV sub-families,
and level-3 lineages displayed a 0.95 Rand index score
when compared to ICTV genera. Overall, these results
indicate a strong agreement between the ICTV classi-
fication and the GL-UVAB system, specially at the
two lowermost levels of the hierarchical classification.
In most cases, the GL-UVAB lineages were composed

of genomes derived from only a single ICTV taxon
(Additional file 5). Apart from seven cases, all of the 68
level-1 lineages are composed of genomes assigned to a
single Taxonomic family as defined by the ICTV. The
exceptions were most often lineages composed of ge-
nomes classified as members from two of the three
major families of tailed bacteriophages (e.g., Myoviridae,
Podoviridae, and Siphoviridae), which is in agreement
with the polyphyletic nature of these taxa [1, 10, 11].
This is also the driving factor behind the lower Rand
index observed for level-1 lineages, as our approach
identified monophyletic clusters only. Hence, level-1 lin-
eages are equivalent to ICTV families in regard to the
degree of similarity among genomes, but with the added

advantage of being monophyletic groups. Among level-2
lineages, only a single one encompassed genomes from
more than one ICTV defined sub-family (lineage 96
which encompassed members of Ounavirinae and
Vequintavirinae). Finally, out of the 88 level-3 lineages
that had at least one genome classified by the ICTV at
the level of genus, 53 of them are composed of genomes
in which members belong to a single ICTV genus. This
finding suggests that GL-UVAB level-3 lineages encom-
pass a slightly broader diversity compared to the ICTV
genera, which is adequate considering the larger diver-
sity seen among genomes of uncultured viruses. To-
gether, these results demonstrate that the GL-UVAB
classification had a strong albeit imperfect agreement
with the ICTV established taxonomy and that the cutoffs
selected for lineage identification are adequate to derive
a classification system based on monophyletic lineages
in an automatic manner.

Targeted hosts and ecosystem sources of GL-UVAB
lineages
GL-UVAB lineages differed regarding host prevalence
(Fig. 3a). Out of the 68 level-1 lineages, 33 are predicted
to infect a single host phylum, most often Proteo-
bacteria, Firmicutes, or Actinobacteria, while 26 lineages
are predicted to infect two or more phyla. Level-3 line-
ages display the highest levels of host consistency (Add-
itional file 4). Among level-3 lineages with at least one
annotated host, 94% of them are predicted to infect a
single phylum and 50% are predicted to infect a single
genus. Lineages also differed regarding the ecosystem
sources from where their members were obtained
(Fig. 3b). Nearly all lineages contained members
obtained from multiple ecosystems but aquatic and
human-associated samples were consistently the main
sources of genomic sequences due to the fact that these
were the largest datasets in the database of genomic se-
quences. The trends of host and ecosystem prevalence
observed for the expanded lineages established by closest
relative identification (Additional file 6) were consistent
with those obtained from the lineages defined solely
through the phylogenomic tree, further corroborating
the validity of these findings.
We sought to further validate these host-lineage asso-

ciations. Thus, the benchmarking dataset containing a
subset of 2069 dsDNA prokaryotic viral genomes from
RefSeq was analyzed in parallel for comparison of re-
sults. This set of viral genomes with experimentally de-
fined hosts is ideal to observe trends of host prevalence
among genomic lineages, without the issues associated
with computational host predictions for uncultured vi-
ruses. Reconstruction of the phylogenomic tree and
lineage identification were performed through the exact
same approach used for the complete dataset described
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above. This analysis of the benchmarking dataset re-
sulted in the identification of 18 level-1 lineages, 48
level-2 lineages, and 132 level-3 lineages (Add-
itional file 3). Among the level-3 lineages of the bench-
marking dataset, 126 (95%) are composed of genomes
that infect within the same host phylum, corroborating
our finding that GL-UVAB lineages constitute cohesive
groups regarding their targeted hosts.

Next, we analyzed the contribution of each ecosystem as
a source of GL-UVAB lineages. Rarefaction curves re-
vealed that our dataset saturated the diversity of level-1
lineages only in aquatic and human-associated ecosystems
(Fig. 4). Nevertheless, the curves for level-2 and level-3 lin-
eages and for the level-1 lineages among other ecosystems
did not plateau, suggesting that more of these lineages are
still to be discovered and categorized across various

Fig. 3 Prevalence of targeted host and ecosystem sources among members of level-1 GL-UVAB lineages assigned through phylogenomic
reconstruction. a Frequency of infected host phyla across each of the 68 identified lineages. b Frequency of ecosystem sources from which viral
sequences were obtained across each of the 68 identified lineages. For clarity, only hosts and ecosystems with prevalence equal or above 1% are
shown. Numbers in parentheses indicate the total number of genomic sequences assigned to each lineage
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ecosystems. The shapes of these curves suggested that
aquatic, terrestrial, wastewater, and human-associated
ecosystems are among those with the largest diversity of
lineages at every level, meaning that these habitats have a
high potential for discoveries of novel lineages.

GL-UVAB lineages display unique patterns of habitat
distribution and pan-genome content
The observed differences in host preference and ecosys-
tem source among lineages led us to investigate the ap-
plicability of GL-UVAB as a reference database for
deriving abundance profiles from metagenomes. We an-
alyzed the abundances of 68 GL-UVAB level-1 lineages
across metagenomes from marine, freshwater, soil, and
human gut samples (Fig. 5). Lineages 18, 57, and 29 were
the most abundant in marine samples, in agreement
with the high prevalence of Cyanobacteria and Proteo-
bacteria as their hosts (Fig. 3a). Meanwhile, the lineages
18, 45 (which mostly infects Bacteroidetes), and 60
(mostly infects Alphaproteobacteria) were the most
abundant among freshwater samples. In temperate soil
samples, the most abundant lineages were 24 (Actino-
bacteria), 12 (Gammaproteobacteria), and 42 (Gamma-
proteobacteria). Finally, human gut samples were
dominated by lineages 11 (Bacteroidetes), 63 (Gamma-
proteobacteria), and 17 (Firmicutes).
Exploratory analyses are often performed in studies of

viral metagenomics to compare samples based on com-
munity composition [24, 25]. Yet these analyses are se-
verely hampered because the majority of the reads from
viral metagenomes cannot be assigned a Taxonomic
classification using databases that encompass only

cultured viruses [17]. As a proof-of-principle, the abun-
dances of level-1 lineages across metagenomes were
used to compare samples through non-metric multidi-
mensional scaling (Fig. 6). This analysis revealed a clear
distinction of samples according to ecosystems. Environ-
mental samples (marine, freshwater, and soil) were
roughly separated from gut samples by NMDS1. Mean-
while, aquatic and soil samples were separated by
NMDS2. Finally, marine and freshwater samples were
separated by NMDS1 as well. These patterns are in
agreement with recent findings that demonstrated that,
in the global scale, saline/non-saline and free-living/
host-associated prokaryote microbiomes have major dif-
ferences in community composition [26]. Our data re-
veals that viral communities follow similar trends.
Interestingly, this clear distinction between ecosystems
could not be observed when annotating these same sam-
ples using the ICTV family-level classification as a refer-
ence, likely because GL-UVAB covers a much broader
diversity of genomic sequences.
Next, we inspected the pan-genome of the identified lin-

eages by clustering their protein encoding genes into
orthologous groups (OGs). A total of 40,263 OGs contain-
ing at least three proteins were identified. These OGs dis-
played a sparse distribution, i.e., were only detected in a
small fraction of genomic sequences within lineages (Add-
itional file 7), which is likely associated with the fact that
not all of the genomes included in this analysis were
complete. The most conserved OGs encoded functions as-
sociated with nucleic acid metabolism and viral particle
assembly. Few OGs encoded putative auxiliary metabolic
genes (AMGs), and those where never shared by all the

Fig. 4 Rarefaction curves depicting the diversity of GL-UVAB lineages across ecosystems. The X axis displays the number of randomly sampled
genomic sequences from each ecosystem. The Y axis depicts the total number of lineages to which these sequences belong to. Each panel
represents a different level of the GL-UVAB classification system
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members of a lineage. A total of 1376 promiscuous OGs,
present in the pan-genome of three or more level-1 line-
ages, were identified.

Discussion
Despite their accelerated pace of evolution and extensive
horizontal gene transfer, viruses of prokaryotes can be
delineated into genetically cohesive lineages [27]. But

only a small fraction of prokaryotic viruses can be culti-
vated through currently available laboratory techniques.
This limitation has left many gaps in our understanding
of their biodiversity. The results presented here help to
bridge these gaps by leveraging on a large dataset of viral
genomic sequences obtained without cultivation from
multiple ecosystems. Our findings differ from previous
attempts to chart diversity of viruses of Bacteria and

Fig. 5 Abundance patterns of GL-UVAB level-1 lineages across habitats. The Y axis displays the average and standard errors of the relative
abundances (i.e., percentages of the mapped reads) of GL-UVAB level-1 lineages across metagenomes and metaviromes from marine, freshwater,
human gut, and soil ecosystems
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Archaea in several aspects. First, our approach included
thousands new genomic sequences of uncultured viruses
that have recently been described, while previous phylo-
genomic analyses have often been restricted to genomes
of cultured isolates only [1, 8, 10, 11, 15]. Second, our
method was based on a phylogenomic tree which in-
ferred evolutionary associations among viral genomic se-
quences. Thus, it differs from network-based methods
that have recently been proposed for the classification of
viruses [5, 9, 12, 28]. Phylogenomic trees explicitly re-
solve the evolutionary associations among viral genomes
which is a major advantage over network-based ap-
proaches. Third, not only we provide a phylogeny but
also a genome-based classification system encompassing
a large diversity of viruses of Bacteria and Archaea, of
an extension unlike any seem before. Our genome-based
classification system was shown to be consistent with
the Taxonomic classification established by the ICTV.
Therefore, our approach re-capitulates the currently ac-
cepted taxonomy of prokaryotic viruses, with the added

advantage to scale to thousands of sequences. Analysis
of 6646 genomic sequences including gene calling, Dia-
mond search, Dice distance calculation, phylogenomic
reconstruction, and lineage identification took 159 min
on a Dell PowerEdge R815 server using 64 processors,
demonstrating that our approach can be scaled to even
larger datasets encompassing thousands of genomic
sequences. Therefore, GL-UVAB was shown to be a
valuable tool to investigate the phylogeny of viruses of
prokaryotes and to assess and expand the Taxonomic
classification of uncultured viruses for which only gen-
omic data is available.
The cutoffs used for defining lineages were chosen to

classify as many sequences as possible while maintaining
cohesiveness within lineages regarding similarity between
genomes, targeted hosts, and Taxonomic classification as
defined by the ICTV. These goals were achieved, as the
GL-UVAB lineages are formed by groups of closely related
genomic sequences which was reflected in their targeted
hosts (Fig. 3a), pan-genome content (Additional file 7),

Fig. 6 Non-metric multidimensional scaling analysis of metagenomes and metaviromes from marine, freshwater, human gut, and soil ecosystems.
Euclidean distances between samples were calculated based on the relative abundances of GL-UVAB level-1 lineages
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and Taxonomic classification (Additional file 4). GL-
UVAB was conceived to be an evolving system. We en-
courage researchers to adapt the GL-UVAB approach to
suit the needs of the specific questions under investiga-
tion. For example, performing species-level clustering
would require node depth cutoffs even higher than those
used to delineate level-3 lineages. Importantly, the lineage
identification step is dependent on the cutoffs selected for
minimum node depth and number of representatives.
When reproducing or expanding these analyses, the use of
different cutoffs is likely to affect the results. Specifically,
lowering either of these values will lead to an increase in
the numbers of lineages identified, while raising them will
have the opposite effect.
The lack of genes universally shared by viral genomes

leads to a difficulty in estimating genomic distances be-
tween highly divergent genomes. This trait leads to
lower values of the estimated robustness (i.e., recovery
rates) of the identified viral lineages, specially those
closer to the root of the tree (e.g., level-1 lineages). This
is not a limitation associated with our strategy in par-
ticular but rather an issue shared by all approaches of
viral phylogenomics [10, 11]. Because of that, we chose
not to remove lineages based on their degree of esti-
mated robustness. Nevertheless, it is important to keep
in mind that those lineages that displayed lower recovery
rates are more likely to not be supported by alternative
approaches of viral phylogenomics (Additional file 8).
Thus, caution is advised when considering the validity of
these lineages, as well as any subsequent analysis derived
from them. Potential errors when clustering genomes
into viral lineages are expected to be propagated into
downstream analysis of biogeographical patterns, pan-
genome content, and host and ecosystems prevalence,
and therefore, these results should be interpreted with
care, specially for the level-1 lineages which displayed
the lowest degree of robustness.
The consistency of the targeted hosts among lineages

identified with our phylogenomic approach suggests that
the assignment to GL-UVAB lineages provides a rough
estimate of the hosts of uncultured viruses. This is of
fundamental importance, considering the growing diver-
sity of viral genomes discovered from metagenomic
datasets for which no host information is initially avail-
able [29, 30]. Host prevalence analysis indicated that ap-
proximately half of the level-1 lineages are capable of
infecting more than a single host phylum (Fig. 3a). The
ability to interact with the molecular machinery of the
host is a major driver of the evolution of prokaryotic vi-
ruses. Thus, closely related genomic sequences (that be-
long to the same lineages) likely have undergone similar
evolutionary pressures that ensure host infectivity, lead-
ing to the observed pattern of higher host consistency
among the lowest level of hierarchical classification (i.e.,

level-3 lineages). Meanwhile, the ability of some lineages
to infect across multiple host phyla is likely an indication
of the high level of genomic plasticity of viruses that al-
lows them to evolve to infect new organisms that are
not closely related to their original hosts.
The abundance patterns observed for the GL-UVAB

lineages (Fig. 5) are a reflection of their distinctive
trends of host prevalence (Fig. 3a). As expected, the
GL-UVAB lineages that dominated at each ecosystem
often targeted taxa that are the most abundant at these
habitats [31, 32], e.g., lineages that target Proteobacteria
and Cyanobacteria at aquatic samples and lineages that
target Bacteroidetes and Firmicutes in the human gut.
Although this observation might seem obvious, it does
not emerge when using cultured viral genomes for the
Taxonomic annotation of metagenomes. Instead, the
same taxa are often observed with similar abundance
patterns regardless of the ecosystem sampled. This oc-
curs because established taxa have no discernible host
or ecosystem preferences and because much of viral di-
versity is not encompassed by viral taxonomy [16, 33,
34]. Thus, the cohesiveness of GL-UVAB lineages re-
garding phylogeny, host preference, and ecology allows
for meaningful habitat-taxa associations to be observed.
In addition, we demonstrated that the GL-UVAB sys-
tem can be used for the annotation of viral metagen-
omes to reveal important trends of viral community
composition, highlighting the usefulness of this system
for studies of viral ecology.
A detailed investigation of the pan-genome content of

the level-1 lineage 18 revealed some of the strategies ap-
plied by these viruses during infection. This lineage was
among the dominant group in both freshwater and mar-
ine samples and infects Cyanobacteria and Proteobac-
teria. The pan-genome of lineage 18 includes OGs
encoding high-light inducible proteins, photosystem II
D1 proteins, and a transaldolase. These proteins are in-
volved in photosynthesis and carbon fixation pathways
[35]. Therefore, the success of this group across aquatic
ecosystems might be linked to their capacity to use such
proteins as AMGs to modulate the metabolism of their
Cyanobacterial hosts during infection, redirecting it to
the synthesis of building blocks to be used for the as-
sembly of novel viral particles [35].
The promiscuous distribution observed for multiple

OGs could be the result of the positive selection of these
genes following events of horizontal gene transfer (HGT).
Indeed, promiscuous OGs often encoded proteins that
might confer advantages during infection. Eight of them
encoded thymidylate synthase, a protein involved in nu-
cleotide synthesis. Meanwhile, two promiscuous OGs
encoded the PhoH protein, which mediates phosphorus
acquisition in nutrient-deprived conditions. These find-
ings suggest a selective pressure favoring the acquisition
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of genes that allow viruses to modulate host metabolism
towards the production of nucleic acids to be used for
the synthesis of progeny DNA [35]. Multiple methylases
were identified among promiscuous OGs. Viruses use
these proteins to protect their DNA from host restric-
tion modification systems [36]. Prokaryotes can acquire
restriction modification systems through HGT [37], and
our data suggests that viruses also benefit from HGT by
acquiring novel methylases that allow them to escape
these systems. Finally, lysins (e.g., peptidases and ami-
dases) were a common function among promiscuous
OGs. This finding is surprising because lysins are
believed to be fine-tuned for the specific structure of
host cell wall [38, 39]. Acquisition of novel lysins might
help viruses to expand their host spectra or as a mech-
anism to ensure infectivity following the emergence of
resistance mutations that lead to alterations in the struc-
ture of the host cell wall.
In conclusion, by analyzing thousands of uncultured

viral nucleotide sequences, we were able to categorize
the diversity of these biological entities. This was
achieved by identifying lineages of uncultured viruses
through a robust and scalable phylogenomic approach.
Analyzing host and source prevalence, pan-genome con-
tent, and abundance in metagenomes painted a more ac-
curate picture of viral biodiversity across ecosystems,
highlighted the potential for discoveries across different
habitats, and shed light on ecological drivers of viral
community composition. We made available the source
code [40] along with all the data necessary to replicate
our analyses (Additional file 9: File S1). Thus, the com-
munity can easily expand GL-UVAB and apply this ap-
proach to their specific demands. Future studies will
continue to shed light on viral diversity across our
planet’s many ecosystems. Our work provides the initial
steps for a genome-based classification of these yet un-
discovered evolutionary lineages, providing a solid
framework to investigate the biology of prokaryotic vi-
ruses in the future.

Methods
Viral genome database
The NCBI RefSeq dataset was used as a starting set of
reference viral genomic sequences. Host information for
these sequences was retrieved from GenBank files, and
their Taxonomic classification was obtained both from
the NCBI Taxonomy database and from the ICTV [41].
Additionally, genomic sequences (i.e., complete and par-
tial genomes) were compiled from studies that used
high-throughput approaches to obtain viral genomes
through culture-independent analysis. These sequences
of uncultured viruses were obtained from environmental
metagenomes and metaviromes [3, 14, 17, 18, 20–22],
fosmid libraries of Mediterranean viruses [4, 13], single

virus genomes [42], and prophages integrated into pro-
karyotic genomes [19]. We also retrieved the associated
metadata, which included information on putative hosts
and ecosystem source.
This dataset contained both RefSeq and uncultured

viral sequences (henceforth referred to as Vir_DB_
Nuc) and contained a total of 195,698 viral nucleotide
sequences (Additional files 1 and 9). Protein encoding
genes (PEGs) were predicted from Vir_DB_Nuc using
the metagenomic mode of Prodigal [43], which identified
4,332,223 protein sequences (henceforth referred to as
Vir_DB_Prot, Additional file 10). The Vir_DB_Prot data-
set was queried against the NCBI-nr protein database
using Diamond [44] for Taxonomic and functional
annotation.

Sequence pre-filtering
Identifying viral sequences within metagenomic and
metaviromic datasets can be problematic. Because each
study used different strategies to achieve that goal, we
pre-filtered sequences from Vir_DB_Nuc to ensure that
only bona fide viral sequences were included in down-
stream analyses. We considered as bona fide viral se-
quences those complete and partial genomic sequences
that displayed a strong viral signal. This viral signal was
assessed in three distinct steps that relied on sequence
homology. First, the Vir_DB_Prot dataset was queried
against the prokaryotic virus orthologous groups
(pVOGs) [45] protein database using Diamond [44]
(more sensitive mode, BLOSUM45 matrix, identity ≥
30%, bitscore ≥ 50, alignment length ≥ 30 amino acids,
and e value ≤ 0.01). Each orthologous group in the
pVOGs database is assigned a viral quotient which
ranges from 0 to 1. The more specific to viral genomes
the orthologous group is the closer to one this viral quo-
tient is, meaning that groups with a quotient of 1 are
found exclusively in viral genomes and were never
detected in genomes of Bacteria or Archaea. For each
genomic sequence in our Vir_DB_Nuc, we calculated
the percentage of proteins mapped to the pVOGs data-
base and their added viral quotient (AVQ). The AVQ
was defined as the sum of the individual viral quotients
of the best hits of each protein from the viral genomic
sequences mapped to the pVOGs database. Also, we
queried proteins from Eukaryotic virus genomes in Vir_
DB_Nuc against the pVOGs database using DIAMOND
as described above. Any pVOGs that matched proteins
from Eukaryotic viruses were excluded from the pVOGs
database for subsequent searches, meaning that they
were not considered when calculating AVQ scores to
identify bona fide viral sequences. Sequences with 20%
or more of the proteins mapped to the pVOGs database
and with an AVQ equal to or greater than 5 were
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classified as bona fide genomic sequences of prokaryotic
viruses. These cutoffs were determined by analyzing
both eukaryotic and prokaryotic Refseq viral genomes,
and selected to maximize precision and recall of the re-
cruitment step. This initial round of recruitment yielded
26110 genomic sequences (Vir_DB_Nuc_R1). Second,
proteins from the Vir_DB_Nuc_R1 dataset were used as
bait for a second recruitment round. The remaining pro-
tein sequences (which were not recruited in the first
round) were queried against Vir_DB_Nuc_R1 through
Diamond as described above. Genomic sequences from
which at least 20% of the derived proteins mapped to a
single genome from Vir_DB_Nuc_R1, yielding a mini-
mum of three protein matches, were recruited to Vir_
DB_Nuc_R2 (78,295 genomic sequences). Third, a step
of manual curation was performed, which recruited
mostly long sequences with high AVQ that did not
match the percentage criteria of the automatic recruiting
steps due to their high number of encoded proteins.
This step recruited a total of 6420 genomic sequences
(Vir_DB_Nuc_R3).
We benchmarked the accuracy of the automatic recruit-

ing steps with two datasets. First, a subset of Vir_DB_Nuc
comprised only of the viral genomes from RefSeq was run
through the recruitment pipeline using the same criteria
described above. None of the 7036 eukaryotic viruses were
recruited by the pipeline (i.e., 100% precision) and 2136
out of 2297 prokaryotic viruses were correctly recruited
(i.e., 92.99% recall). We also benchmarked the filtering
pipeline with a dataset of 897 Gbp of genome sequence
data derived from the NCBI RefSeq prokaryote genomes
spanning 880 genera from 35 phyla. Sequences were split
into fragments of 5, 10, 15, 20, 25, 50, and 100 Kbp to
mimic metagenomic scaffolds. Using the filtering criteria
described above and a subsequent length filtering for
sequences longer than 30 Kbp would recruit only 109
sequences (0.36%), all of which displayed homology to the
prophage sequences described by Roux et al. [19].
In addition, we confirmed the viral origin of the re-

cruited sequences by analyzing them through VirSorter
[19] and VirFinder [46]. Overall there was a strong
agreement between the pVOGs approach and the two
aforementioned methods: 90.3% of all the sequences re-
cruited based on pVOGs scores were also annotated as
bona fide viruses by VirSorter (categories 1, 2, 4, and 5)
and/or VirFinder (score ≥ 0.6 and p value ≤ 0.05). We
observed that a total of 27,562 sequences were identified
as viral by VirSorter but not by our automatic recruit-
ment approaches, suggesting this tool has a better recall
for identifying viral sequences. Thus, we included those
sequences as bona fide viral sequences in our dataset as
well (Vir_DB_Nuc_R4). The remaining sequences (that
were not recruited to Vir_DB_Nuc_R1, Vir_DB_Nuc_R2,
Vir_DB_Nuc_R3 or Vir_DB_Nuc_R4) could be viral, but

since they did not display a clearly viral signature they
were excluded from the subsequent steps of phyloge-
nomic reconstruction.

Sequence completeness
The publications that originally described the aforemen-
tioned sequences also determined genome completeness,
often by searching for overlapping sequence ends or by
identifying synteny and homology with complete viral
genomes. Completeness information was retrieved from
the metadata in the original publications. RefSeq ge-
nomes were tagged as complete if their description field
included the term “complete genome.” We also per-
formed an additional search for circular sequences by
identifying overlapping ends through VirSorter [19].
Next, we queried the proteins from all sequences in Vir_
DB_Nuc annotated as complete against those derived
from genomes that were not tagged as complete. This
search was performed through Diamond (set to more
sensitive mode, identity ≥ 30%, bitscore ≥ 30, alignment
length ≥ 30 amino acids, and e value ≤ 0.01). If 70% or
more of all the proteins of a single complete genome
“A” could be mapped to a given sequence “B,” then that
genome “B” was tagged as nearly-complete (provided
that genome “B” had a length of at least 10 Kbp).

Phylogenomic reconstruction
Phylogenomic reconstruction was performed using a
subset of genomes from Vir_DB_Nuc that included all
dsDNA RefSeq viral genomes annotated as complete or
nearly-complete for which the host Domain was either
Bacteria or Archaea and the uncultured bona fide pro-
karyotic viruses from Vir_DB_Nuc_R1, Vir_DB_Nuc_
R2, Vir_DB_Nuc_R3, and Vir_DB_Nuc_R4 with a
length equal or greater than 10 Kbp and annotated as a
complete or nearly-complete viral genomes. These cri-
teria were established to minimize any issues that might
arise from the use of incomplete genomes in the phylo-
genomic reconstruction. Genome sequences were
clustered with CD-HIT [47] using a cutoff of 95% nu-
cleotide identity and minimum 50% coverage of the
shorter sequence to remove redundant sequences. The
non-redundant dataset contained 6646 viral nucleotide
sequences that were used for phylogenomic reconstruc-
tion (Vir_DB_Phy). Distances between genomic se-
quences were calculated based on a modified version of
the Dice method [4]. First, an all-versus-all comparison
of the PEGs derived from the Vir_DB_Phy dataset was
performed through Diamond [44] (more sensitive
mode, identity ≥ 30%, bitscore ≥ 30, alignment length ≥
30 amino acids, and e value ≤ 0.01). Next, distances be-
tween genomic sequences were calculated as follows:
DAB = 1 − (2 × (AB)/(AA+BB)), where AB is the bitscore
sum of all the valid protein matches of sequence A
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against sequence B, while AA and BB are the bitscore
sum of all the valid protein matches of sequence A
against itself and of all the valid protein matches of se-
quence B against itself, respectively. The more homolo-
gous proteins are shared between A and B, and the
higher the percentage of identity between these hom-
ologous proteins, the closer to zero the value of DAB

will be. Nonhomologous proteins should produce no
matches when comparing sequence A against B, but
will match with themselves when comparing A against
A and B against B. Therefore, when estimating DAB,
nonhomologous proteins are penalized, increasing the
value of DAB. The obtained Dice distances matrix was
used as input to build a phylogenomic tree through
neighbor-joining algorithm [48] implemented in the
Phangorn package of R. The obtained tree was
midpoint rooted (Additional file 11). In parallel, a
benchmarking dataset comprised of 2069 genome se-
quences of dsDNA viruses of Archaea and Bacteria
from the NCBI RefSeq database was also subjected to
phylogenomic reconstruction. The steps for distance
calculation, tree construction, and lineage identification
were performed exactly as described above for the full
dataset.

Tree topology validation by re-sampling
A re-sampling approach was applied to test the
consistency of tree topology. First, 5% of the proteins
encoded in the genomic sequences used to build the tree
were randomly selected. Then, distances between ge-
nomes were re-calculated after excluding any protein
matches from the all-versus-all search in which either
the query or subject sequences were selected for exclu-
sion, which removes approximately 10% of all of the ori-
ginal matches. Finally, the obtained distance matrix was
used to construct a new tree. This process was repeated
over 100 iterations. Next, we measured the frequency in
which the nodes from the original tree were present in
the re-sampled trees. This strategy was applied for both
the Vir_DB_Phy and the RefSeq benchmarking dataset.
For reference, we also performed this analysis using dif-
ferent values of percentage of removed proteins (1–20%)
and 50 iterations.

Lineage identification
First, we sought to establish cutoffs for lineage identifi-
cation that produced maximum agreement with the
ICTV Taxonomic classification. Thus, the phylogenomic
tree built for the benchmarking dataset was parsed to
identify monophyletic clades as candidate lineages based
on minimum node depth (i.e., distance from the root of
the tree). During this testing step, the values of mini-
mum node depth cutoff ranged from 0.0001 to 0.2,
incremented in steps of 0.0001. Next, the lineages

identified for each cutoff value were compared to the
ICTV classification at the ranks of family, sub/family,
and genus, and scored according to the Rand index. The
cutoffs that yielded the highest Rand index scores were
selected as the ideal ones for identifying lineages de novo
for each rank in the full dataset (Vir_DB_Phy). Thus,
lineage identification was performed by parsing the Vir_
DB_Phy phylogenomic tree to identify monophyletic
clades that matched the established criteria based on
minimum node depth, and for a minimum number of
representatives. Lineages were identified de novo in
three steps, aimed at capturing diversity into levels of in-
creasing genomic relatedness: level-1 (node depth equal
or above 0.0014, and number of representatives equal or
above 20), level-2 (node depth equal or above 0.0056,
and number of representatives equal or above 3), and
level-3 (node depth equal or above 0.0189, and number
of representatives equal or above 3). To trace the pan-
genomes of the identified lineages, the proteins derived
from 6646 genomic sequences in Vir_DB_Phy were clus-
tered into orthologous groups using the orthoMCL algo-
rithm [49] implemented in the Get_Homologues
pipeline [50]. The MCL inflation factor was set to 1, and
all other parameters were set to default.

Lineage expansion by closest relative identification
Sequences that did not pass the initial length and redun-
dancy filters to be included in the phylogenomic tree
were assigned to the lineages of their closest relatives.
Closest relatives were defined as the sequence with the
highest percentage of matched protein encoding genes
(PEGs) as detected by Diamond searches. A minimum
AAI of 50% and the percentage of matched PEGs of 70%
were required for closest relative assignments. Potential
ties were resolved by choosing the closest relative with
the highest average amino acid identity (AAI) value.

Lineage abundance in metaviromes and metagenomes
The abundances of Vir_DB_Nuc sequences were esti-
mated in viral metagenomes (viromes) from the following
ecosystems: marine epipelagic samples [51], healthy hu-
man gut [52], and freshwater lakes [53], and because no
large-scale viromes of mesophilic soils were available, we
used cellular metagenomes from this ecosystem [54, 55].
Sequencing reads from these metagenomes and metavir-
omes were retrieved from the European Nucleotide Arch-
ive or NCBI Short Read Archive. Subsets of 20 million R1
reads from each sample were mapped to Vir_DB_Nuc
using Bowtie2 [56] using the sensitive-local alignment
mode. Lineage abundances across samples were calculated
by summing the relative abundances of individual gen-
omic sequences according to their assigned lineages.
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Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12915-019-0723-8.

Additional file 1: Table S1. Table containing detailed information of all
the genomic sequences from Vir_DB_Nuc analyzed in this study,
including sequence identifier, NCBI access number, original dataset,
sequence length, number of identified PEGs, Taxonomic classification
(NCBI and ICTV), ecosystem source and host Taxonomic classification and
affiliation to the identified GL-UVAB lineages at three hierarchical levels.
The pVOGs_Perc_Matched field corresponds to the percentage of pro-
teins derived from a sequence that matched the pVOGs database and
the pVOGs_VQ_Score corresponds to the added viral quotient (AVQ) of
these matches. The Bona_Fide_Phage_Homology_CR_ID corresponds to
the identifier of the closest relative identified for a given sequence
among those of Vir_DB_Nuc_R1. Bona_Fide_Phage_Homology_CR_Hits
represents the absolute number of protein matches to the closest relative
and Bona_Fide_Phage_Homology_CR_Perc_Matched represents the per-
centage of proteins in a sequence covered by these matches.

Additional file 2: Figure S1. Phylogenomic reconstruction of 6646 viral
genomic sequences. The tree was built through Neighbor-Joining based
on Dice distances calculated between viral genomic sequences from
both NCBI RefSeq and those reconstructed from metagenomes, fosmid li-
braries and prophages integrated into prokaryote genomes. The tree was
midpoint rooted. To better display higher-order associations between lin-
eages, nodes were collapsed according to their Level-1 lineage assign-
ments or if all the leaves in a node were not assigned to any lineages.

Additional file 3: Figure S2. Phylogenomic reconstruction of 2069
genomes of dsDNA viruses of Archaea and Bacteria from RefSeq. The tree
was built through Neighbor-Joining based on Dice distances calculated
between complete prokaryotic viral genomes from NCBI RefSeq. The tree
was midpoint rooted. The innermost ring displays ICTV family level Taxo-
nomic classification, the middle ring displays ICTV subfamily level Taxo-
nomic classification, and the outermost ring displays classifications into
lineages identified for the benchmarking dataset.

Additional file 4: Table S2. Prevalence of targeted hosts, ecosystem
and dataset sources, Taxonomic classification and completeness of
genomic sequences among the three levels of GL-UVAB lineages.

Additional file 5: Figure S3. Concordance between the ICTV taxonomy
and the GL-UVAB classification system. A) Bar plots depicting the preva-
lence of ICTV family level genome classifications among the Level-1 GL-
UVAB lineages. B) Bar plots depicting the prevalence of ICTV sub-family
level genome classifications among the Level-2 GL-UVAB lineages. C)
Heatmap depicting the prevalence of ICTV genera (columns) level classifi-
cation among Level-3 GL-UVAB lineages (rows). Within squares are
depicted the absolute number genomes from a genus assigned to a
given lineage, while the color gradient represents the percentage of ge-
nomes from a genus assigned to a given lineage. To facilitate
visualization rows and columns were clustered based on euclidean
distances.

Additional file 6: Figure S4. Prevalence of targeted host and
ecosystem sources among Level-1 GL-UVAB lineages assigned through
phylogenomic reconstruction and lineage expansion by closest relative
identification. A) Frequency of infected host phyla across each of the 68
identified lineages. B) Frequency of ecosystem sources from which viral
sequences were obtained across each of the 68 identified lineages. For
clarity, only hosts and ecosystems with prevalence within a lineage equal
or above 1% are shown. Numbers in parentheses indicate the total num-
ber of genomes assigned to each lineage after the step of classification
through closest relative identification.

Additional file 7: Table S3. Table describing the prevalence of OGs
across GL-UVAB Level-1 lineages with associated Taxonomic and func-
tional annotation. Only OGs detected in at least 3 members of a lineage
are shown.

Additional file 8: Table S4. Characteristics of the nodes of the tree
depicted in Fig. 1, including depth, height, and robustness measured
with varying values of percentage of proteins removed during sub-
sampling with 50 replicates for each value.

Additional file 9: File S1. Link to download the multifasta file
containing the 195,698 viral genomic sequences from Vir_DB_Nuc
analyzed in this study.

Additional file 10: File S2. Link to download the multifasta file
containing the 4,332,223 protein encoding gene sequences predicted
from Vir_DB_Nuc.

Additional file 11: File S3. Phylogenomic tree used to define GL-UVAB
lineages. The tree was constructed with the Neighbor-Joining algorithm
based on Dice distances calculated between 6,646 genomic sequences.
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