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Background: Identifying causal variants and genes from human genetic studies of hematopoietic traits is important
to enumerate basic regulatory mechanisms underlying these traits, and could ultimately augment translational
efforts to generate platelets and/or red blood cells in vitro. To identify putative causal genes from these data, we
performed computational modeling using available genome-wide association datasets for platelet and red blood

cell traits.

Results: Our model identified a joint collection of genomic features enriched at established trait associations and
plausible candidate variants. Additional studies associating variation at these loci with change in gene expression
highlighted Tropomyosin 1 (TPM1) among our top-ranked candidate genes. CRISPR/Cas9-mediated TPM1T knockout
in human induced pluripotent stem cells (iPSCs) enhanced hematopoietic progenitor development, increasing total

megakaryocyte and erythroid cell yields.

Conclusions: Our findings may help explain human genetic associations and identify a novel genetic strategy to
enhance in vitro hematopoiesis. A similar trait-specific gene prioritization strategy could be employed to help
streamline functional validation experiments for virtually any human trait.
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Introduction

Elucidating genetic mechanisms governing hematopoiesis
has broad value in understanding blood production and
hematologic diseases [1]. Given interest in generating
platelets and red blood cells (RBCs) from in vitro culture
of induced pluripotent stem cells (iPSCs) [2-4], there is
also translational value in harnessing genetic and molecu-
lar processes that regulate hematopoiesis. Cost-effective
blood cell generation will require novel strategies based
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on better knowledge of underlying mechanisms driving
in vitro development.

In vitro hematopoietic systems might be improved by
identifying novel factors from human genetic studies.
Genome-wide association studies (GWAS) have linked
hundreds of single nucleotide polymorphisms (SNPs)
with platelet and/or red cell trait variability [5, 6]. Be-
cause most GWAS SNPs are non-coding, likely influen-
cing transcriptional expression of key genes [7, 8], it has
been challenging to derive functional biochemical under-
standing of the key genes of action [8—10]. Relatively few
studies have elucidated biochemical mechanisms for
blood trait variability loci [11-15]. One strategy to nar-
row focus on candidate genes is to link non-coding vari-
ation to expression of nearby genes [1, 16, 17]. However,
for platelet trait variation alone, GWAS have thus far
implicated >6700 expression quantitative trait loci
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(eQTLs) affecting expression of >1100 genes (see the
“Methods” section). Hence, there is a clear need to more
specifically identify putatively functional sites.

Actin cytoskeletal dynamics play key roles
hematopoiesis [18—20]. Tropomyosin proteins coat most
actin filaments and regulate actin functions [21, 22]. All
four human tropomyosin genes (1-4) are expressed in
human hematopoietic cells, and Tropomyosin 4 pro-
motes platelet development [15]. Genetic studies have
also suggested a role for Tropomyosin 1 (TPMI) in hu-
man platelet trait variation [6], though no prior studies
have elucidated if or how TPMI impacts human
hematopoiesis.

Here, we utilized penalized regression to construct a
model that predicted platelet GWAS associations based
on epigenetic datasets as features for the prediction. Our
model built from platelet trait GWAS loci reliably distin-
guished sentinel GWAS SNPs, as well as platelet-
relevant genes and loci. Among these prioritized sites
were SNPs that regulate TPMI expression. To validate
this putative candidate gene and to explore its function,
we used CRISPR/Cas9 genome editing to discover that
cultured TPM1-deficient induced pluripotent stem cells
enhanced hematopoietic progenitor cell formation. In
turn, this increased functional megakaryocyte (MK) yield.

in
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Thus, our framework stratified relevant functional loci
and helped identify TPM1 manipulation as a novel strat-
egy to enhance in vitro hematopoiesis.

Results
Penalized regression model identifies genetic regulatory
loci for hematopoiesis
GWAS have linked hundreds of single nucleotide poly-
morphisms (SNPs) with variability in human platelet
traits [6]. To focus our studies on credible functional
follow-up candidates, we utilized a penalized logistic re-
gression framework, i.e., the least absolute shrinkage and
selection operator (LASSO) [23, 24]. We used 860 fea-
tures to construct a model that distinguished platelet
trait GWAS SNPs from control SNPs after controlling
for allele frequency, distance to gene, and number of
SNP proxies in strong linkage disequilibrium (Fig. 1a,
the “Methods” section, and Additional file 1: Table S1).
Our “platelet trait model” was trained on 580 genome-
wide-significant platelet trait-related SNPs from a large
recent GWAS of human blood trait variation [6], along
with 860 chromatin features (Fig. 1b). These GWAS
SNPs affected human platelet count (PLT), platelet-crit
(PCT), mean platelet volume (MPV), and/or platelet dis-
tribution width (PDW). For each GWAS SNP, we
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Fig. 1. A penalized regression-based approach to identify hematopoietic regulatory loci and genes. a Schematic outline of our approach. We
generated a penalized regression-based predictive scoring algorithm based on platelet trait GWAS loci and applied the resultant scoring
algorithm genome-wide to predict causal variants and genes. We validated this model computationally and through validation of TPM1T function
in induced pluripotent stem cells (iPSCs). b To generate a penalized regression model, 580 platelet trait GWAS SNPs [6] and matched control
SNPs (~ 100 per GWAS SNP [25]) were analyzed for overlap with 860 chromatin features (e.g., histone marks and transcription factor binding sites).
c Penalized regression (LASSO [23]) analysis identified 38 chromatin features from the indicated cell types that best discriminated GWAS SNPs,
after controlling for background features (distance to nearest gene, number of SNPs in linkage disequilibrium, and minor allele frequency). Bar
heights are LASSO coefficients, indicating the relative importance of each feature. MK, primary megakaryocytes; Ery, peripheral blood derived
erythroblasts; MK/Ery, K562 cells; Lymphoblast, GM12878 or GM12891
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identified control SNPs matched to the degree possible
on distance to nearest gene, number of SNPs in linkage
disequilibrium, and minor allele frequency. We forced
our models to include these background characteristics,
in order to ensure that we identified chromatin features
that would distinguish GWAS SNPs after controlling for
background genetic variables. Model performance in the
training phase was assessed using standard approaches
(i.e., 10-fold cross-validation).

The resultant predictive model comprised 38 epige-
nomic features that best distinguished platelet trait
GWAS SNPs from controls (Fig. 1c, Additional file 2:
Figure S1, and Additional file 1: Table S2). Background
features were included during model creation and are
reflected in the area under the receiver operator curve
(AUC) for the initial training phase. However, given our
interest in genomic positions and overlapping chromatin
features, background characteristics were not carried for-
ward for genome-wide model application. These back-
ground characteristics would not affect determination of
human trait-associated loci based on genomic context.

While some care in interpretation was required, it was
encouraging that the model selected biologically plaus-
ible features. GATA1, GATA2, SCL, and FLI1 are crit-
ical hematopoietic transcription factors [26, 27], and
most of our features came from hematopoietic cell types
(primary MK, peripheral blood-derived erythroblasts,
K562 with MK/erythroid potential, and GM12878/
GM12891 lymphoblasts; Additional file 1: Table S2).

Genome-wide model application

We calculated trait-enrichment scores genome-wide
based on SNP overlap with each of the selected chroma-
tin features, weighted by our penalized regression model
coefficients (see the “Methods” section and Add-
itional file 1: Table S2). As expected, training SNP scores
were significantly higher for platelet trait GWAS SNPs
relative to SNPs genome-wide (p <0.0001 by ANOVA,
Fig. 2a). A set of 94 validation platelet trait GWAS SNPs,
representing 15% of all platelet trait GWAS SNPs [6],
also scored significantly higher than genome-wide SNPs,
although not as well as training SNPs (Fig. 2a).

Application of additional prediction methods

Our goal was to use a compilation of methods and evi-
dence to specify loci with high functional likelihood.
Some models have been previously developed to identify
active genomic loci (e.g., CADD [29], GWAVA [17], and
DeepSEA [28]). We compared the effectiveness of these
models, and our trait-specific model, to discriminate
training or validation platelet trait GWAS sites from sets
of ~100 control SNPs for each GWAS SNP. LASSO
scores were based only on overlaps with chromatin fea-
tures and associated coefficients. We used AUC values
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to assess model performance. Our trait-specific model
performed well in analyses of training SNPs (AUC 0.799,
Fig. 2b) and validation SNPs (AUC 0.771, Fig. 2c).
GWAVA also performed well in predicting training
SNPs (AUC 0.745, Fig. 2b) and validation SNPs (AUC
0.836, Fig. 2¢).

GWAVA prioritizes functional impact of non-coding
genomic elements without regard for lineage or trait
specificity [17]. Hence, our results suggested that chro-
matin marks associated with active gene regulatory re-
gions were enriched in platelet trait GWAS loci.

However, hematopoiesis- and blood lineage-specific
chromatin regulatory mechanisms are also critical for
blood development [31-33]. It was difficult to parse
hematopoietic biological rationale in the regulatory ele-
ments prioritized by GWAVA scoring. Therefore, we
pursued further validation of our trait-specific model, in
an effort to best specify loci and related genes that were
important for hematopoiesis, megakaryopoiesis, and/or
platelet biology.

Genome-wide model validation
Encouraged by the features we selected and our model
performance, we next sought to derive external support
for the model selected by our regression framework.
First, we evaluated the biological specificity of variation
prioritized by the model. This was particularly import-
ant, given practical limitations associated with fine-
mapping and cellular validation experiments. Gene
Ontology analysis of the top 1% highest-scoring SNPs
indicated that the nearest genes to penalized regression-
prioritized variants were enriched for biologically relevant
pathways, even after removing GWAS-significant sites
(Fig. 2d and Additional file 1: Table S3-S5). While many
associated pathways related to platelet function and co-
agulation, generalized hematopoiesis- and hematopoietic
progenitor cell-related pathways were also included.
Second, we asked whether our SNP scores correlated
with summary association statistics for platelet trait-
GWAS data [6]. Indeed, variants that were nominally as-
sociated with platelet traits but did not reach genome-
wide significance and not included in our model (p value
between 0.05 and 5 x 10~°) had significantly higher aver-
age scores compared to SNPs that were not obviously
associated (p value >0.05, Additional file 2: Figure S2).
This correlation suggested that our scoring algorithm
was valid genome-wide and could potentially reveal true
biological associations, as had the GWAS [5, 11, 12, 14].
Finally, we asked if regulatory gene enhancer regions
were enriched with high-scoring SNPs by our model,
consistent with regulatory function. We found that our
model assigned higher scores to SNPs in FANTOMS5 en-
hancer regions [34] compared with other sites genome-
wide, consistent with the hypothesis that functional non-



Thom et al. BMC Biology (2020) 18:52

Page 4 of 16

A B C
’O\') | 2
2 0.6 Fkdk ; ;
8 = 2 >
0.4 = =
i 0.2 2 3 2 b3
o v 8_ N LASSO  0.799 8_ 3 LASSO 0.771
& 00 © 5 5 o . GWAVA  0.745 o . GWAVA 0.836
& s 2 CADD  0.581 2 CADD 059
LS =l DeepSEA 0.629 F s]Lr _ |DeepSEA 0550
\(\q \\'0(\ o0 02 04 S 08 10 00 X3 04 ) .ue 08 10
@,\“ R False positive rate False positive rate
A @
D
. . Fold
GO Biological Process Enrichment FDR
LASSO
platelet activation (GO:0030168) 1.35 3.06E-02
hemostasis (GO:0007599) 1.28 5.12E-03
blood coagulation (G0:0007596) 1.28 6.22E-03
coagulation (G0:0050817) 1.27 8.34E-03
regulation of hematopoietic progenitor cell
differentiation (G0:1901532) 142 4.90E-02
positive regulation of hemopoiesis (G0:1903708) 1.32 1.82E-02
hemopoiesis (G0:0030097) 1.35 3.86E-08
regulation of hemopoiesis (G0O:1903706) 1.32 1.91E-05
hem. or lymph. organ dev (G0O:0048534) 1.35 1.70E-08
GWAVA
hemopoiesis (GO:0030097) 1.22 1.60E-04
regulation of hemopoiesis (G0:1903706) 1.21 2.83E-03
hem. or lymph. organ dev (G0:0048534) 1.23 5.43E-05
CADD
hemopoiesis (G0O:0030097) 1.16 2.68E-02
hem. or lymph. organ dev (G0O:0048534) 1.17 1.47E-02
Fig. 2. Penalized regression model identifies genes relevant to platelet and hematopoietic biology. a SNP scores for platelet model training SNPs,
or a set of validation platelet trait SNPs, were significantly higher than genome-wide SNP scores. Bars represent mean + SEM, ****p < 0.0001 by
ANOVA. b Performance comparison of our platelet trait model to DeepSEA [28], GWAVA [17], and CADD [29] for training platelet trait SNP
identification. AUC values are shown in the legend. ¢ Performance comparison for validation platelet trait SNP identification. There was substantial
variation in the number of validation SNPs recognized and scored by each model. AUC values shown in the legend represent prediction accuracy
in identifying validation SNPs for LASSO (n =94 SNPs), GWAVA (n = 16), CADD (n = 18), and DeepSEA (n =94) vs ~ 10,000 random control SNPs. d
Platelet and hematopoiesis pathways [30] identified by the highest-scoring (top 1%) SNPs genome-wide for the indicated models, excluding
established platelet trait loci [6] (FDR, false discovery rate)

coding SNPs associate with active regulatory regions [8,
35] (Additional file 2: Figure S3, enhancer region scores
>0.9 vs genome-wide baseline <0.1). We further ob-
served that enhancer regions in hematopoietic cell types
scored significantly higher than enhancers from irrele-
vant control cells (Additional file 2: Figure S3). These
data suggest trait specificity in hematopoietic enhancers,
consistent with prior studies [31], and the broader hy-
pothesis about tissue-specific trait heritability as re-
ported elsewhere [36, 37]. Collectively, our findings
indicated that we could successfully target hematopoietic
and platelet trait-relevant loci.

Exemplary candidate locus and gene identification

Next, we used computational predictions, including our
own model, to stratify sites and related genes for func-
tional validation. Given practical limitations related to
follow-up validation, we wanted to narrow our focus to
a modest number of loci (e.g., <20). We reasoned that
functional SNPs would (i) be in high linkage disequilib-
rium (LD) with established platelet trait GWAS loci, (ii)
score highly relative to other SNPs within that LD block,
(iii) regulate target gene(s) as expression quantitative
trait loci (eQTLs), and (iv) overlap GATA binding sites
[38, 39]. We prioritized GATA binding sites based on
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the importance of GATA factors in hematopoiesis [26,
40] and in our penalized regression model (Add-
itional file 1: Table S2). We specifically focused our at-
tention on sites that were scored in the top 5% genome-
wide by our platelet trait model and by GWAVA [17], a
more generalized machine learning-based model that
performed well in validation analyses (Fig. 2b, c).

This stratification approach identified 15 loci and related
genes, including SNPs known to impact hematopoiesis,
megakaryocyte, and/or platelet biology (Table 1 and
Additional file 2: Figure S4). In principle, any site meeting
these stringent criteria could form the basis for interesting
biological follow-up experiments.

Two of these loci stood out as high-scoring variants by
the recently described gChromVAR algorithm [1], which is
based on accessible chromatin regions in hematopoietic
cells (Table 1). First, rs342293 is a GWAS SNP [5] that reg-
ulates PIK3CG gene expression [12] and lies within access-
ible chromatin in hematopoietic progenitor cell types [53]
(Fig. 3a, b). The GATA site is disrupted in the presence of
the SNP minor allele (Fig. 3c). In platelets, PIK3CG activity
regulates PIK3 signaling [55] and response to collagen [56].
Individuals harboring this minor allele had increased MPV
and decreased platelet reactivity [12] (Fig. 3d).

A second variant, rs11071720, found within the 3rd in-
tron of the Tropomyosin 1 (TPMI) gene locus, also
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attracted our attention. This sentinel GWAS SNP scored
highly compared to linked SNPs (EUR 7* > 0.7) and over-
lapped accessible chromatin in hematopoietic cells [53]
(Fig. 3e, f). The rs11071720 minor allele, which disrupts
a near-canonical GATA binding site, is an eQTL associ-
ated with decreased TPMI1 expression [41, 54], higher
platelet count, and lower MPV [6] (Fig. 3g, h and Add-
itional file 2: Figure S5).

Tropomyosin proteins regulate actin cytoskeletal func-
tions, which are critical for hematopoietic, megakaryo-
cyte, and platelet biology [15, 19, 20, 57]. Although
morpholino studies showed TPMI to be important for
zebrafish thrombopoiesis [5], no prior study had exam-
ined the effect of TPM1 during human hematopoiesis.
Based on these and the human genomics data, we hy-
pothesized that TPM1 would be an important effector of
hematopoiesis and ultimately platelet biology. Thus, in
what follows, we focus our cellular validation studies on
TPM1, under the hypothesis that rs11071720 regulated
the expression of this gene.

Tropomyosin 1 modulation enhances in vitro
hematopoiesis

We investigated functions for the TPMI gene in an
in vitro human model of primitive hematopoiesis [58].
We expected that total gene deletion would show

Table 1 Penalized regression-based fine-mapping identifies eQTLs in established platelet trait GWAS loci that overlie GATA binding
sites. Listed SNPs are within platelet trait GWAS LD blocks (EUR r* > 0.7), scored in the top 5% by our platelet trait model and by
GWAVA [17], overlap canonical or near-canonical GATA binding sites, and are eQTLs for at least 1 gene [41] (GTEx V7). Associated
gChromVAR posterior probabilities of being causal for platelet count trait association (PP PLT) are shown [1]. Genes in boldface have
known hematopoietic function. SNP rsIDs and locations refer to hg19 genome

rsID Chr Pos Platelet score GWAVA score gChromVAR (PP Nearest eQTL gene(s)
(Mb) (percentile) (percentile) PLT) gene

rs11240368 1 205.1 1.12 (97th) 0.52 (95th) DSTYK CNTN2, TMEMS8T

rs3771535 2 700 0.94 (95th) 0.53 (95th) 0.01 ANXA4 GMCL1, SNRNP27

rs10180681 2 1210 141 (98th) 0.63 (97th) 0.01 RALB EPB41L5, PTPN4 [42], RALB [43]

rs10180682 2 1210 141 (98th) 0.64 (97th) 0.01 RALB EPB41L5, PTPN4 [42], RALB [43]

rs9646785 2 1720  1.27 (98th) 0.58 (96th) TLKT GAD1, GORASP2

rs6771578 3 1674  1.14 (97th) 0.60 (96th) 0.003 PDCDI10 PDCD10 [44], SERPINIT, WDR49

rs12652692 5 778 3.62 (99th) 0.57 (96th) 0.01 LHFPL2 LHFPL2, SCAMP1

rs72793280 5 1316 2.73 (99th) 0.89 (99th) 0.001 P4HAZ ACSL6, P4HA2 [45, 46], PDLIM4 [47],
SLC22A4, SLC22A5

rs1741820 6 1228 1.75 (99th) 0.55 (96th) HSF2 HSF2, PKIB

rs342293 7 1064  1.80 (99th) 0.94 (99th) 0.99 CcriL PIK3CG [12]*

rs13265995 8 56.7 1.75 (99th) 0.60 (96th) TMEMé68 LYN [48, 49], TGS, TMEM68

rs9704108 11 03 1.12 (97th) 0.85 (99th) 0.087 IFITM2 IFITM2

rs11071720 15 633 1.53 (98th) 0.58 (96th) 0.98 PM1 APHI1B, LACTB, RAB8B, TPM1 [5]**

rs2316513 17 20 0.92 (95th) 0.54 (95th) 0.005 ESTIA DPH1, SMG6, SRR [50]

rs1654439 19 556 2.69 (99th) 0.58 (96th) 0.002 RDH13 GP6 [49, 51], NLRP2, RDH13 [52]

*eQTL in human platelets [12], but not in GTEx tissues [41]
**Function suggested by D. rerio morpholino experiments [5]
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stronger effects than non-coding SNP modification [59].
Using CRISPR/Cas9, we targeted a ~ 5-kb region con-
taining TPM1 exons 4-8 in iPSCs (Fig. 4a), anticipating
creation of a null allele [60]. We confirmed deletion by
sequencing and western blot (Fig. 4b, ¢ and Add-
itional file 2: Figure S6). In total, we obtained 3 TPM1I
knockout (KO) clones from 2 separate genetic back-
grounds. Karyotype and copy number variation analyses
confirmed that engineering these clones did not intro-
duce any de novo genomic aberrancies (Additional file 1:
Table S6 and Additional file 2: Figure S7).

TPMI1 protein was present during early iPSC differenti-
ation, but downregulated in non-adherent hematopoietic
progenitor cells and differentiated MKs (Fig. 4b, c). Early dif-
ferentiation proceeded normally in KO clones, with normal
patterns of primitive streak and mesoderm gene expression

(Fig. 4d), as well as pluripotency marker loss (Add-
itional file 2: Figure S8). The kinetics by which KDR'/
CD31" endothelial/hemogenic endothelial cells and CD43"
hematopoietic progenitor cells (HPCs) emerged were also
normal (Fig. 4e, f). In this culture system, KDR"/CD31" cells
include both HPC precursor cells (hemogenic endothelium)
as well as cells destined for a purely endothelial fate.

Unexpectedly, we found that KO cultures enhanced
generation of KDR*/CD31" as well as CD43" HPCs
(Fig. 4e, f). We quantified HPC abundance by cell count-
ing and flow cytometry, observing that KO HPC yield
doubled that of WT controls (Fig. 4g). We confirmed
this finding in a KO clone from a genetically distinct
iPSC background (Additional file 2: Figure S9). All HPCs
retained normal hematopoietic cell surface marker ex-
pression (Additional file 2: Figure S10).
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for 2 4 experiments. **p < 0.01 by ANOVA. (Top) Culture images on differentiation d8, with HPCs (light color) floating above an adherent

Next, we investigated whether KO HPCs would
yield functional megakaryocytes in increased quan-
tities. Liquid expansion culture revealed normal ma-
ture CD417/CD42b* megakaryocyte yield per HPC
(Fig. 5a). With twice as many starting HPCs, this
meant that total megakaryocyte recovery increased ~
2-fold in KO cultures. KO megakaryocyte morphology
was normal (Additional file 2: Figure S11), and mega-
karyocyte activation in response to agonists was
normal-to-increased (Fig. 5b). Microarray gene

expression analyses of WT and KO megakaryocytes
revealed no statistically significant changes in mega-
karyocyte genes (Additional file 2: Figure S12 and
Additional file 1: Table S7).

The early hematopoietic phenotype in KO cultures
was unexpected. We asked whether KO HPCs might
also enhance yield of other blood cell types. Indeed,
KO HPCs spawned normal-to-increased quantities of
erythroid and myeloid cells (Fig. 5c¢ and Add-
itional file 2: Figure S13). Hence, TPMI1 deletion
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enhanced formation of HPCs with multilineage poten-
tial (Fig. 5d).

Tropomyosin 1 locus is prioritized by red cell trait-based
penalized regression model

We were surprised by the early hematopoietic effects of
TPM1 deletion, given that rs11071720 has only been
genetically linked with platelet traits [6]. We therefore
investigated whether this finding could have been pre-
dicted using human genetics data. We found that
rs11071720-linked regulatory variants were marginally
associated with red cell traits, although these data did
not meet genome-wide significance (Additional file 2:
Figure S14). It is possible that future studies with im-
proved power will reveal a true statistical association
with red cell traits at this locus.

We also trained an additional model for red cell traits,
using an analogous framework and regulatory features as
described for platelet traits (see the “Methods” section).
Model training used 818 red blood cell trait-related
GWAS SNPs affecting red blood cell count (RBC count),
hematocrit (HCT), mean red cell corpuscular volume

(MCV), and/or red cell distribution width (RDW). The
resultant model included 78 features and performed well
in distinguishing red cell trait GWAS SNPs (Add-
itional file 2: Figure S15 and Additional file 1: Table S8).
When used as a scoring algorithm genome-wide, this
red cell trait model displayed performance similar to the
platelet trait model (Additional file 2: Figure S16, S17
and Additional file 1: Table S9).

Interestingly, our red cell model scored rs11071720 in
the 96th percentile genome-wide (Additional file 1:
Table S10). This prioritization agrees with TPM]I
impacting both megakaryocyte and erythroid lineages.
The other 14 sites that scored in the top 5% by both
platelet and red cell models might also be expected to
regulate early hematopoietic biology, and could form the
basis for future cellular validation experiments (Add-
itional file 1: Table S10). Indeed, several of these genes
are known to regulate hematopoiesis.

Discussion
Genetic insights could augment efforts to generate blood
products in vitro [2-4], but relatively few genetically
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implicated loci or genes have been functionally validated
[11-15]. The purposes of our present study were to es-
tablish (i) whether computational approaches using
available genomic data could prioritize trait-specific sites
and genes that impact hematopoiesis, megakaryopoiesis,
and/or platelet biology, and (ii) to validate the function
of a novel candidate gene (i.e., TPMI) in a translationally
relevant iPSC model. Our data support a model whereby
TPM1 deficiency enhances in vitro formation of multili-
neage HPCs (Fig. 5d). In addition to understanding a
genetic modifier of hematopoietic traits [6], application
of our results may augment in vitro megakaryocyte and
erythroid cell yields.

Broadly, the successful implementation of this trait-
specific penalized regression method demonstrates a
tunable approach to variant and gene identification. Our
pipeline is similar to prior methods that have stratified
loci based on chromatin feature data (e.g.,, GWAVA [17]
and fGWAS [61]), but is readily scalable to any set of
loci and chromatin features. For blood-related traits, it is
an adaptable complement to established and excellent
scoring models such as gChromVAR [1].

Given the scope of the present study, the most import-
ant functional result was enhanced yield of HPCs and
functional megakaryocytes. Our results were direction-
ally consistent with human genetic data [6], finding that
decreased TPM1 expression portends higher megakaryo-
cyte yield. The molecular mechanism(s) driving en-
hanced hemogenic endothelium and/or HPC formation
will be of considerable biologic and translational interest,
and such studies are ongoing. TPMI KO-related in-
creases in HPC formation may complement or synergize
previously described approaches that enhanced later
stages of hematopoiesis [2, 3, 62, 63].

Early hematopoietic function for TPMI was unex-
pected based on blood genetics [6]. Our model may
have prioritized some “early” hematopoietic sites,
given that many chromatin features derived from rela-
tively immature megakaryocytes [26] as well as K562
cells, which can act as progenitors for erythroid or
megakaryocyte lineages. Indeed, some of the sites tar-
geted general hematopoietic- and HPC-related path-
ways (Fig. 2d). Chromatin feature data from mature
megakaryocytes may enable future models to more
specifically target late stage megakaryopoiesis and/or
platelet sites. Alternatively, TPM1 could have separate
functions in early and late hematopoiesis, akin to
GATA2 [64].

Though a lack of robust detection methods precluded
accurate platelet production quantitation in our culture
system, normal function of derived megakaryocytes sug-
gests an overall increase in megakaryocyte yield would
translate into higher platelet production. Importantly, our
findings do not exclude additional effects on terminal
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megakaryopoiesis or erythroid development in vitro, nor
in vivo effects outside the scope of our iPSC model.
Enhanced hematopoiesis in TPM1KO iPSCs contrasts
detrimental effects of TPMI deficiency on organism fit-
ness in other contexts [5, 65, 66]. For example, abro-
gated D. rerio thrombopoiesis with tpma-directed
morpholinos [5] resembles human TPM4 deficiency [15]
rather than TPM1I deficiency. This highlights the import-
ance of species-specific genetic validation, particularly
given inter-species disparities in hematopoiesis [67].

Conclusions

In conclusion, using a penalized regression modeling ap-
proach to functional variant identification led us to define
a role for TPMI in constraining in vitro hematopoiesis.
Recent advances increasing per-MK platelet yields [2]
have focused a spotlight on increasing cost-effectiveness
of earlier stages of in vitro hematopoiesis. In addition to
improved recognition of genes and mechanisms under-
lying quantitative hematopoietic trait variation, application
of the computational approach described herein could
also help to specify trait-specific causal genetic variants for
virtually any clinically relevant human trait.

Methods

In silico analyses

Relevant datasets and coding scripts can be found on
GitHub  (https://github.com/thomchr/2019.PLT.TPM1.
Paper). Human genome version hgl9 was used for all
analyses, and we utilized the LiftOver script when neces-
sary  (https://bioconductor.org/packages/release/work-
flows/html/liftOver.html). GWAS summary statistics are
publicly available (http://www.bloodcellgenetics.org/).

Expression quantitative trait locus analysis

To estimate the number of eQTLs implicated by prior
platelet trait GWAS, SNPs in high LD with established
GWAS loci [6] (EUR #>0.9) were identified using
PLINK. From this set of SNPs, eQTLs and affected genes
were identified from GTEx V7 [41]. Numbers reported
in the text reflect unique eQTL SNPs, which often func-
tioned across multiple tissues. The affected gene esti-
mate reflects the number of unique Ensembl gene
identifiers (ENSG).

SNP selection

From a total of 710 genome-wide significant GWAS
SNPs (p<5E-8) affecting platelet count, platelet-crit,
mean platelet volume, and/or platelet distribution width
[6], 580 comprised our platelet model training SNP set.
These 580 had rsIDs that were recognized by the Gen-
omic Regulatory Elements and GWAS Overlap algo-
Rithm (GREGOR) [25] tool, which we used to select
control SNPs based on distance to nearest gene, number
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of SNP LD proxies linked to the lead associated SNP
(r*>0.8), and minor allele frequency. We identified ~
100 matched controls for each training SNP, all with a
minor allele frequency >10%. This minor allele cutoff
was necessary to limit the effects of very low control
SNP frequencies on the resultant model.

From a total of 1003 genome-wide significant GWAS
SNPs (p <5E-8) affecting red cell count, hematocrit,
mean corpuscular volume, and/or red cell distribution
width [6], 818 had rsIDs recognized by GREGOR. These
comprised the red cell model training SNP set. We iden-
tified ~ 100 matched controls with minor allele fre-
quency > 10% for each training SNP.

Chromatin feature selection

We collected a subset of available feature tracks from
ENCODE [68], including data for hematopoietic (K562,
GM12878, and GM12891) as well as other cell types
(e.g., H1-hESC, HUVEC, HeLa, HepG2). We also col-
lected available feature tracks from primary MKs and
hematopoietic cells [26]. The only modification to any of
these genomic datasets was peak-calling in MK-derived
chromatin immunoprecipitation-sequencing (ChIP-Seq)
tracks [69]. See Additional file 1: Table S1 for a list of
these features.

Penalized regression modeling

To generate our model, we first analyzed training set
GWAS SNPs and matched control SNPs for overlap
with 860 chromatin features (dataset available on
GitHub). Columns representing our 3 baseline parame-
ters (distance to nearest gene, number of LD proxies
linked to the lead associated SNP, and minor allele fre-
quency) were also included in this data table for each
SNP. This chromatin feature overlap data file was then
analyzed using the least absolute shrinkage and selection
operator (LASSO, L1 regularization, glmnet version 2.0-
18) [23, 24] with 10-fold cross-validation. Baseline pa-
rameters were assigned penalty factors of 0 (to force in-
clusion), while other chromatin features were assigned
penalty factors of 1. Features and coefficients were taken
from the A . In addition to 3 baseline features, there
were 38 features included in our platelet model and 78
features in our red cell model. Only the chromatin fea-
tures and related coefficients were carried forward for
model applications. For downstream genome-wide ana-
lyses, we scored all SNPs within NCBI dbSNP Build 147
based on coefficients and overlaps with model features.

Model performance comparison

We used public databases to obtain SNP scores for alter-
native models (CADD v1.3 [29], GWAVA unmatched
score [17], DeepSEA [28]; https://cadd.gs.washington.
edu/download, http://www.sanger.ac.uk/resources/
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software/gwava, http://deepsea.princeton.edu). For each
model, we identified scores for platelet trait GWAS
SNPs and a random selection of ~ 100 control SNPs for
each GWAS SNP. We then used ROCR [70] to compare
model performance in discriminating GWAS SNPs from
controls, and report the area under the receiver operating
characteristic (AUC) for each model. An analogous pipeline
was used to analyze the ability of each model to discrimin-
ate red cell trait-related GWAS SNPs from controls.

For sites in Table 1, including rs11071720, we ob-
tained gChromVAR scores [1] (https://molpath.shi-
nyapps.io/ShinyHeme/).

Model evaluation
To assess biological specificity, we identified the top 1%
highest-scoring SNPs from each model (platelet model,
red cell model, GWAVA, CADD) after excluding all red
cell or platelet trait-associated GWAS loci. We then
used closestBed (https://bedtools.readthedocs.io/en/lat-
est/content/tools/closest.html) to identify the nearest
gene to each of these SNPs. Genes and position were de-
fined by BioMart (http://www.biomart.org/). We then
used the Gene Ontology resource (http://geneontology.
org/) to analyze pathway enrichment. Input analysis set-
tings were binomial tests and calculated FDR for GO
Biological Process complete. Pathways identified with
FDR < 5% are presented in Fig. 2d, Additional file 1:
Table S3-S5, Additional file 2: Figure S16d, and Add-
itional file 1: Table S8.

Enhancer regulatory regions were defined according to
the FANTOMS5 dataset [34]. Presented FANTOMS5 data
represent scores for all overlapping SNPs from dbSNP 147.

Linkage disequilibrium structure assessment

The SNP Annotation and Proxy Search tool (https://archive.
broadinstitute.org/mpg/snap/ldsearch.php), LDlink (https://
analysistools.nci.nih.gov/LDlink), and 1000 Genomes Project
(phase 3) data were used to measure linkage disequilibrium
in the EUR population.

Transcription factor binding site identification

To identify GATA sites, the genomic sequence context for
SNPs of high interest were obtained using the UCSC
Table Browser [71] and analyzed for matches by manual
curation of canonical or near-canonical GATA binding
motif in all orientations (AGATAA, TTATCA, AATAGA,
TTATCT; GATAA, AATAG, CTATT, TTATC).

Human iPSC generation

iPSC models were generated as described from peripheral
blood mononuclear cells [72]. The “CHOP10” and
“CHOP14” lines were used in this study. CRISPR/Cas9-
mediated genome editing was performed as described [73]
per protocols from the CHOP Human Pluripotent Stem
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Cell Core Facility (https://ccmt.research.chop.edu/cores_
hpsc.php) with the following guide sequences: 5 (1)
ATGACGAAAGGTACCACGTCAGG, 5" (2) TGAGTA
CTGATGAAACTATCAGG, 3° (1) CCCTTTTCTT
GCTGCTGTGTTGG, and 3" (2) GGAGAGTGATCAAG
AAATGGAGG.

Karyotype analysis
Chromosomal G-band analyses were performed by Cell
Line Genetics (Madison, WI).

Copy number variation analysis

Copy number variation (CNV) analysis was performed
with the Children’s Hospital of Philadelphia Center for
Applied Genomics. CNVs were called using PennCNV
[74] based on an Illumina Infinium GSAMD-24v2-0
(hg19) microarray with 759,993 SNPs.

iPSC hematopoietic differentiation and analysis

iPS cell cultures and primitive hematopoietic differentia-
tions were performed as per published protocols [58,
75-77]. iPS cells were maintained on irradiated mouse
embryonic feeder cells in human embryonic stem cell
(ESC) medium (DMEM/F12 with 20% knockout serum,
100 uM non-essential amino acids, 0.075% sodium bicar-
bonate, 1 mM sodium pyruvate, 2 mM glutamine, 50 U/ml
penicillin, 50 g/ml streptomycin (all from Invitrogen), 10—
4 M B-mercaptoethanol (Sigma, St. Louis, MO), and 10
ng/ml human bFGF (Stemgent)). Medium was changed at
least every 2 days, and colony clusters passaged weekly to
new feeders ESC medium containing ROCK inhibitor
(10 uM) using TrypLE (Invitrogen) and gentle scraping.

About 1 week prior to differentiation, iPSCs were tran-
sitioned to a “feeder-free” state by culturing on Matrigel-
coated wells (BD Biosciences; 6-well tissue culture plate,
Falcon 3046) in ESC medium under atmospheric O,
conditions.

Throughout hematopoietic differentiation, cells were
maintained at 37 °C in 5% CO,, 5% O,, and 90% N,. All
media were supplemented with 2 mM glutamine, 50 pg/
ml ascorbic acid (Sigma, St. Louis, MO), 150 pg/ml
transferrin (Roche Diagnostics), and 4 x 10™* M mono-
thioglycerol (Sigma). Media and cytokines were changed
daily as follows [78]: days 0—1 RPMI (Invitrogen) with 5
ng/ml BMP4, 50 ng/ml VEGF, and 25 ng/ml Wnt3a; day
2 RPMI with 5 ng/ml BMP4, 50 ng/ml VEGF, and 20 ng/
ml bFGF; day 3 SP34 (Invitrogen) with 5ng/ml BMP4,
50 ng/ml VEGF, and 20 ng/ml bFGF; days 4-5 SP34 with
15 ng/ml VEGF and 5 ng/ml bFGF; day 6 serum-free dif-
ferentiation medium (SFD) with 50 ng/ml VEGF, 100 ng/
ml bFGF, 100 ng/ml SCF, and 25 ng/ml FIt3L; and days
7-9 SFD with 50 ng/ml VEGF, 100 ng/ml bFGF, 100 ng/
ml SCF, 25 ng/ml FIt3L, 50 ng/ml TPO, 10 ng/ml IL-6,
and 0.05-2U EPO. In all differentiations, marked cell
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death occurred through day 2, after which time surviving
cells formed an adherent monolayer. Analyses during
differentiation therefore used 0.25% trypsin-EDTA
(ThermoFisher Scientific; 1 ml/well, 5 min at room
temperature) to dissociate monolayer cells.

By days 6—7, non-adherent floating hematopoietic pro-
genitor cells (HPCs) appeared. HPCs were collected on
days 7-9 and either frozen or used directly for further
culture and/or analyses. HPCs cultured in 50 ng/ml
thrombopoietin and 25 ng/ml SCF to generate megakar-
yocytes, 2 U erythropoietin and 25 ng/ml SCF to gener-
ate erythroid cells, or 200ng/ml granulocyte/
macrophage colony stimulating factor to generate mye-
loid cells.

Flow cytometry gating strategies for pluripotency
(SSEA3"/SSEA4"), hemogenic endothelium (KDR'/
CD31"), hematopoietic progenitors (CD43" and CD41"/
CD235%), and terminal lineages have been previously
validated [58, 75-77].

Flow cytometry

Flow cytometry analysis was performed on a Cytoflex
LX, and FACS sorting was performed on a FACS Aria II
(BD Biosciences). Flow cytometry data were analyzed
using FlowJo 10 (Tree Star, Inc.). The following anti-
bodies were used for flow cytometry: FITC-conjugated
anti-CD41 (BioLegend), PE-conjugated anti-CD42b (BD
Biosciences), APC-conjugated anti-CD235 (BD Biosci-
ences), PB450-conjugated anti-CD45 (BioLegend),
AF488-conjugated anti-SSEA3  (BioLegend), AF647-
conjugated anti-SSEA4 (BioLegend), PE-conjugated anti-
KDR (R&D Systems), PECy7-conjugated antiCD31 (Bio-
Legend), PECy7-conjugated anti-CD34 (eBioscience),
and FITC-conjugated anti-CD43 (BioLegend).

Gene expression analysis by RT-semiquantitative PCR
Total RNA was prepared using PureLink RNA micro
kits (Invitrogen) in which samples were treated with
RNase-free DNase. The reverse transcription of RNA
(100 ng—1 pg) into cDNA was performed using random
hexamers with Superscript II Reverse Transcriptase (RT)
(Life Technologies), according to the manufacturer’s in-
structions. Real-time quantitative polymerase chain reac-
tion (PCR) was performed on QuantStudio 5 Real-Time
PCR Instrument (Applied Biosystems). All experiments
were done in triplicate with SYBR-GreenER pPCR
SuperMix (Life Technologies), according to the manu-
facturer’s instructions. Primers (Additional file 1: Table
S11) were prepared by Integrated DNA Technologies or
Sigma Aldrich. Dilutions of human genomic DNA stan-
dards ranging from 100 ng/pl to 10 pg/pul were used to
evaluate PCR efficiency of each gene relative to the
housekeeping gene TATA-Box Binding Protein (TBP).
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Microarray analysis

For microarray analysis, 50,000 cells were FACS-sorted
directly into TRIzol. RNA was extracted from using a
miRNeasy Mini Protocol (Qiagen). Samples passing qual-
ity control were analyzed using the human Clariom D
Assay (ThermoFisher Scientific) and analyzed using Tran-
scriptome Analysis Console (ThermoFisher Scientific)
Software and Gene Set Enrichment Analysis (http://soft-
ware.broadinstitute.org/gsea/index.jsp) software.

Cell analysis and imaging

For Cytospins, FACS-sorted MKs were spun onto a glass
slide and stained with May-Griinwald and Giemsa. Im-
ages were obtained on an Olympus BX60 microscope
with a x40 objective. An Invitrogen EVOS microscope
with a x 10 objective was used to image cells in culture.

Western blots

Cell pellets were resuspended in Laemmli buffer, soni-
cated for 5min, and boiled for 5min at 95°C. Lysates
were centrifuged at 10,000rpm for 5min at room
temperature, and supernatants were used for analysis.
Lysate volumes were normalized to cell counts. Samples
were run on 4-12% NuPAGE Bis-Tris gels (Invitrogen)
and transferred onto nitrocellulose membranes (0.45um
pore size, Invitrogen) at 350 mA for 90 min. Following
blocking in 5% milk for 1h, membranes were incubated
with primary antibodies overnight at 4 °C. After washing
thrice in TBST, membranes were incubated with sec-
ondary horseradish peroxidase-conjugate antibodies for
1h at room temperature, washed in TBST thrice, and
developed using ECL western blotting substrate (Pierce)
and HyBlot CL autoradiography film (Denville Scien-
tific). The following antibodies were used for western
blotting: Rabbit anti-TPM1 (D12H4, #3910, Cell Signal-
ing Technologies), Mouse anti-TPM1/TPM2 (15D12.2,
MAB2254, Millipore Sigma), Mouse anti-TPM3
(3D5AH3AB4, ab113692, Abcam), Rabbit anti-TPM4
(AB5449, Millipore Sigma), and Mouse anti-f Actin
(A1978, Sigma). Western blot band quantitation was
performed using FIJI [79] (https://fiji.sc/).

MK activation assay

MKs were pelleted and resuspended in Tyrode’s Salts
(Sigma) with 0.1% bovine serum albumin (BSA) contain-
ing FITC-conjugated PAC-1 (BD Biosciences), PacBlue-
conjugated CD42a (eBioscience), and APC-conjugated
CD42b (eBioscience) at a concentration of roughly 100,
000 cells per 50pul. Following addition of Convulxin
(Enzo Biochem) or Thrombin (Sigma), cells were incu-
bated at room temperature in the dark for 10 min. Cells
were then incubated on ice for 10 min. An additional
100 ul Tyrode’s Salts containing 0.1% BSA was added,
and cells were immediately analyzed by flow cytometry.
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Data presentation

Genome-wide SNP scores were loaded as custom tracks
into the UCSC Genome Browser [71]. Images depicting
genomic loci were generated using this tool, as well as
Gviz [80]. Other data were created and presented using
R, Adobe Illustrator CS6, or GraphPad Prism 6.

Statistics
Statistical analyses were conducted using R or GraphPad
Prism 6.

Data availability
All materials, data, code, and associated protocols will
be promptly available to readers upon request.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512915-020-00783-7.

Additional file 1: Table S1. The 860 chromatin feature tracks included
in our LASSO analysis. These data were obtained from ENCODE [68],
ChromHMM [81], and analyses of primary human MK cells [26]. Table S2.
Chromatin features and coefficients comprising our penalized regression-
based platelet scoring model. Coefficients for background parameters are
included at the bottom of this list, but were not included in subsequent
genome-wide SNP scoring. Table S3. Gene Ontology pathways that
were significantly enriched in the top 1% of SNPs, as defined by platelet
model scores. Presented pathways had false discovery rate (FDR) < 5%.
Table S4. Gene Ontology pathways that were significantly enriched in
the top 1% of SNPs, as defined by GWAVA scores. Presented pathways
had false discovery rate (FDR) < 5%. Table S5. Gene Ontology pathways
that were significantly enriched in the top 1% of SNPs, as defined by
CADD scores. Presented pathways had false discovery rate (FDR) < 5%.
Table S6. CRISPR/Cas9-edited Tropomyosin 1 knockout (KO) iPSC lines
did not incur any additional CNVs compared to the parent line. Analyses
of wild type CHOP14 and CHOP10 ‘parent’ lines, and derivative TPMT1KO
‘child" lines, are shown. Karyotype and copy number variation (CNV) ana-
lyses for all child lines were consistent with parental iPSC lines. Table S7.
Dysregulated molecular pathways in TPM1KO MKs. FACS-sorted MKs were
analyzed by microarray, and gene set enrichment was performed. Upreg-
ulated Gene Ontology [30] pathways with FDR<25% are shown. There
were no significantly downregulated pathways. GO, Gene Ontology. NES,
nominal enrichment score. FDR, false discovery rate. Table $8. Chromatin
features and coefficients comprising our penalized regression-based red
cell scoring model. Coefficients for background parameters are included
at the bottom of this list, but were not included in subsequent genome-
wide SNP scoring. Table $9. Gene Ontology pathways that were signifi-
cantly enriched in the top 1% of SNPs, as defined by red cell model
scores. Presented pathways had false discovery rate (FDR) < 5%. Table
$10. Penalized regression-based fine-mapping identifies eQTLs in estab-
lished platelet and/or red cell trait GWAS loci that overlie GATA binding
sites. Listed SNPs are within platelet or red cell trait GWAS LD blocks (EUR
’>0.7), scored in the top 5% by both our platelet trait and red cell
models, overlap canonical or near-canonical GATA binding sites, and are
eQTLs for at least 1 gene [41] (GTEx V7). Associated GWAVA [17] scores
are present, if available. SNP rsIDs and locations refer to hg19 genome.
Table S11. Semi-quantitative RT-PCR primers used in this study.

Additional file 2: Figure S1. Penalized regression identifies epigenetic
features that discriminate platelet trait GWAS SNPs from matched
controls. Area under the receiver operator curve (AUC) for platelet trait
model. Penalized regression results depicting the regularization
parameter (A) vs. AUC. Top axis shows how many features were identified
at each level of A Variation in AUC at each A reflects 10-fold cross-
validation. The Ayin (Model with maximal AUC) and Ay (minimal feature
inclusion with AUC within 1 standard error of A;,) are shown, with A
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model incorporating the indicated number of features. The final model,
with 41 total features, included 38 chromatin features and 3 background
characteristics (Distance to Nearest Gene, Minor Allele Frequency, and
Number of SNPs in linkage disequilibrium). The AUC at Ay was 0.726.
Note that this AUC includes background characteristics, which were not
used in subsequent genome-wide SNP score applications. Figure S2.
High SNP scores for platelet trait model capture information from sub-
genome-wide significant loci. a,b Higher SNP scores correlate with lower
GWAS p-values for variation in a mean platelet volume (MPV) or b plate-
let count (PLT). SNPs were scored genome-wide and plotted against arbi-
trarily binned —logo(p-value) GWAS MPV or PLT variation values. A value
of 7.3 for —log;o(p-value) correlates with a p-value of 5x10°®. Box-and-
whisker plots show 25th-to-75th percent interval (box) and standard devi-
ation (whiskers). ****p < 0.0001 vs Column 1 (ANOVA, Dunnett's multiple
comparison test). Significant linear correlations existed between higher
values of —logio(p-value) and SNP scores (Pr(>[t))<2e-16 by linear regres-
sion significance test). ¢,d SNPs that nearly missed genome-wide signifi-
cance for € MPV or d PLT were enriched for high SNP scores. SNPs that
did not meet genome-wide significance were stratified into non-
significant (p-value >0.05) and marginally significant (p-value between
5x10 and 0.05). Bars represent mean+SEM. ****p < 00001 by Wilcoxon
Rank Sum test. Figure S3. Platelet trait model gives high scores to SNPs
marking hematopoietic enhancer regions. Hematopoietic enhancer re-
gions are enriched for high SNP scores based on our platelet trait model.
FANTOMS5-defined enhancer regions for adult bone marrow (BM) CD34+
(CNhs12553), K562 (human erythroleukemia, CNhs12458), and CMK (hu-
man megakaryoblastic leukemia, CNhs11859) hematopoietic cells were
compared with enhancer regions from random non-relevant cell types
(CNhs11756 from adult pancreas, CNhs14245 from a papillary cell lung
adenocarcinoma cell line and CNhs12849 from adult parotid gland). Bars
represent mean+SEM. ****p<0.0001 by 1-way ANOVA vs Controls. Figure
S4. Additional putatively active eQTLs implicated through fine-mapping
with LASSO-based SNP scores and by direct overlap with GATA binding
sites. In each panel, the top portion shows GWAS SNP in black and linked
SNPs (EUR ”>0.7) in cyan. Bar heights depict SNP scores. Gene exons are
shown in yellow. Accessible chromatin regions (ATAC-Seq) are shown for
hematopoietic stem cells (HSC), CD34+ hematopoietic progenitor cells,
megakaryocyte-erythroid progenitors (MEP), and erythroblasts (Ery) [53].
Implicated SNP(s) in each region are outlined in the gray box, and inter-
esting gene(s) in each region are indicated. Note that some SNPs regu-
late multiple genes, but only nearby regulated genes are boxed and
labeled here. a rs11240368 is an eQTL for CNTN2 and TMEMS8I. b
rs3771535 is an eQTL for GMCLT and SNRNP27. € rs10180681 and
rs10180682 are eQTLs for EPB41L5, PTPN4, and RALB. d rs9646785 is an
eQTL for GAD1 and GORASP2. e rs6771578 is an eQTL for PDCD10, SER-
PINIT, and WDR49. f rs12652692 is an eQTL for LHFPL2 and SCAMPI. g
rs72793280 is an eQTL for ACSL6, P4HA2, PDLIMA4, SLC22A4, and SLC22A5.
h 151741820 is an eQTL for HSF2 and PKIB. i rs13265995 is an eQTL for
LYN, TGS, and TMEM68. j rs9704108 is an eQTL for IFITM2. k rs2316513 is
an eQTL for DPH1, SMG6, and SRR. I rs1654439 is an eQTL for GP6, NLRP2,
and RDH13. Scale bars, 50 kb. Figure S5. The SNP rs11071720 is an ex-
pression quantitative trait locus (€QTL) for TPM1. Individuals with the
rs11071720 minor ‘C’ allele have decreased Tropomyosin 1 expression in
tibial artery tissue (p= 0.000056, Normalized Enrichment Score= -0.082).
Data obtained from GTEx V7 [41]. Figure S6. DNA sequencing and west-
ern blot confirmation of TPM1 deletion. a Shown are TPMT exons (num-
bered light blue boxes) in and around the proposed deletion site. 5" and
3" guide RNA sites are marked. Deleted areas in each clone are indicated
as 'empty’ bars, with flanking present DNA in dark red. b Western blot of
CHOP14 or CHOP10 iPSC lysates showing no TPM1 protein in KO clones.
Middle lane in CHOP10 blot depicts a suspected heterozygous clone. Fig-
ure S7. Karyotype analyses of iPSC clones were normal. a,b,c Analyses of
a wild type CHOP14 performed at the time of genome editing, b
CHOP14-derived TPM1 knockout clone 1 (KO1), and € CHOP14-derived
TPM1 knockout clone 2 (KO2) show normal human female karyotypes.
d,e Analyses of d wild type CHOP10 karyotype analysis performed at the
time of genome editing and e CHOP10-derived TPM1 knockout clone
(KO3) show normal human male karyotypes. These results reflect analyses
and interpretations from Cell Line Genetics (Madison, WI). Figure S8. KO
cells show normal kinetics of pluripotency marker loss in early

differentiation. a Representative gating strategy for flow cytometry ana-
lysis. Singlet cells were analyzed directly for all presented studies. b On
days 0-4, TPM1 KO iPSCs show normal loss of pluripotency markers SSEA3
and SSEA4, with kinetics identical to WT. Figure $9. CHOP10-derived
TPM1 KO iPSCs yield more single cells after differentiation. There were
more hematopoietic progenitor cells (HPCs, non-adherent single cells) in
CHOP10-derived TPM1 KO clone 3 following 7-8 hematopoietic differenti-
ation. **p<0.01. Figure S10. Non-adherent cells (HPCs) from TPMT KO
cultures show normal cell surface markers. WT and TPM1 KO iPSC clones
1-3 all display relatively normal cell surface marker patterns after 9 d dif-
ferentiation. Multiple experiments show no consistent lineage preference
across all clones. Figure S11. TPM1 KO MKs have normal morphology.
Following 8 d differentiation and 5 d MK expansion culture, wild type
(WT) and TPM1 KO CD41"/CD42b" primitive MKs were FACS-sorted and
analyzed by Cytospin. Scale bar represents 20 um. Figure S$12. Microarray
analysis shows no significant differences in MK genes. a Volcano plot
showing gene expression changes in WT and KO MK microarray analysis.
TPMT1 is circled. b Hierarchical clustering for microarray gene analysis data
of FACS-sorted WT and KO MKs. Red, high expression. Blue, low expres-
sion. € Heat map shows the most highly upregulated (top) and downreg-
ulated (bottom) genes in KO MKs. d Expression of representative MK
genes are not significantly (ns) changed in WT vs KO MKs. PF4, Platelet
factor 4. PPBP, Pro-platelet basic protein. SELP, P-selectin. NFE2, Nuclear fac-
tor erythroid 2. @ Gene set enrichment analysis (GSEA) for MK pathways
were not significantly changed. Shown are GO pathways for MK differen-
tiation (FDR g-value 0.314) and Regulation of MK differentiation (FDR g-
value 0.64). f GSEA plots for select significantly upregulated pathways in
KO MKs. Figure S$13. TPMTKO HPCs retain normal myeloid lineage ex-
pansion potential. HPCs obtained after 8d differentiation were put into
lineage expansion media and cultures were analyzed by manual cell
counting and flow cytometry over 3-5 d. Mature myeloid cells were
CD45". Points represent lineage-specific cell percentage multiplied by
total cell count, normalized to cell count on day 0. *p<0.05 by ANOVA vs
WT. Figure S14. Hematopoietic trait associations of SNPs near and
within the TPM1 gene locus. Aggregated GWAS platelet, red cell, or white
cell trait p-values for SNPs near and within the TPMT gene locus in LD
with rs11071720. The p-values for these SNPs reach genome-wide signifi-
cance for platelet traits (PLT#, MPV). Figure S15. Penalized regression
identifies epigenetic features that discriminate red blood cell trait GWAS
SNPs from matched controls. a Area under the receiver operator curve
(AUQ) for red cell trait model. Penalized regression results depicting the
regularization parameter (\) vs. AUC. Top axis shows how many features
were identified at each level of A. Variation in AUC at each A reflects 10-
fold cross-validation. The Ay, (Model with maximal AUC) and Ase (min-
imal feature inclusion with AUC within 1 standard error of A, are
shown. The A\« model incorporated 81 total features, including back-
ground characteristics (Distance to Nearest Gene, Minor Allele Frequency,
and Number of SNPs in linkage disequilibrium). The AUC at Ay, was 0.732,
though it is important to note that this included background characteris-
tics (distance to nearest gene, number of SNPs in linkage disequilibrium,
and minor allele frequency). b Penalized regression (LASSO) analysis iden-
tified 78 chromatin features from the indicated cell types that best dis-
criminated red cell GWAS SNPs, after controlling for background
characteristics. Bar heights are LASSO coefficients, indicating the relative
importance of each feature. Subsequent application of this model was
based only on these 78 chromatin features and associated coefficients.
Ery, peripheral blood derived erythroblasts. MK, primary megakaryocytes.
MK/Ery, K562 cells. Lymphoblast, GM12878 or GM12891. Figure S16. Pe-
nalized regression model identifies genes relevant to erythroid and
hematopoietic biology. a SNP scores for red cell trait model training
SNPs, or a set of validation red cell trait GWAS SNPs, were significantly
higher than genome-wide SNP scores. Bars represent mean+SEM, ****p<
0.0001 by ANOVA. b Performance comparison of our red cell trait model
to DeepSEA [28], GWAVA [17], and CADD [29] for training red cell GWAS
SNP identification. AUC values are shown in the legend. ¢ Performance
comparison of the indicated methods for validation red cell GWAS SNP
identification. AUC values are shown in the legend corresponding to
model accuracy in predicting validation SNPs (LASSO n=152, GWAVA n=
29, CADD n=23, DeepSEA n=152) vs. ~15,000 random controls. d Eryth-
roid and hematopoiesis pathways [30] identified by the highest-scoring
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(top 1%) SNPs genome-wide for the red cell model, excluding established
red cell trait loci [6] (FDR, False Discovery Rate). Figure S17. High SNP
scores for red cell trait model capture information from sub-genome-
wide significant loci. a,b Higher SNP scores correlate with lower GWAS p-
values for variation in @a mean corpuscular volume (MCV) or b red blood
cell count (RBC). SNPs were scored genome-wide and plotted against ar-
bitrarily binned -logo(p-value) GWAS MCV or RBC variation values. A
value of 7.3 for —log;q(p-value) correlates with a p-value of 5x10°. Box-
and-whisker plots show 25th-to-75th percent interval (red box) and
standard deviation (whiskers). ****p < 0.0001 vs Column 1 (ANOVA, Dun-
nett's multiple comparison test). Significant linear correlations existed be-
tween higher values of —log;(p-value) and SNP scores (Pr(>[t))<2e-16 by
linear regression significance test). ¢,d SNPs missed genome-wide signifi-
cance for € MCV or d RBC were enriched for high SNP scores. SNPs that
did not meet genome-wide significance were stratified into non-
significant (p-value > 0.05) and marginally significant (p-value between
5x10 and 0.05). Bars represent mean+SEM. ****p < 0.0001 by Wilcoxon
Rank Sum test.
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