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Abstract

Background: Neuroanatomical compartments of the mouse brain are identified and outlined mainly based on
manual annotations of samples using features related to tissue and cellular morphology, taking advantage of
publicly available reference atlases. However, this task is challenging since sliced tissue sections are rarely perfectly
parallel or angled with respect to sections in the reference atlas and organs from different individuals may vary in
size and shape and requires manual annotation. With the advent of in situ sequencing technologies and
automated approaches, it is now possible to profile the gene expression of targeted genes inside preserved tissue
samples and thus spatially map biological processes across anatomical compartments.

Results: Here, we show how in situ sequencing data combined with dimensionality reduction and clustering can
be used to identify spatial compartments that correspond to known anatomical compartments of the brain. We
also visualize gradients in gene expression and sharp as well as smooth transitions between different compartments.
We apply our method on mouse brain sections and show that a fully unsupervised approach can computationally
define anatomical compartments, which are highly reproducible across individuals, using as few as 18 gene markers.
We also show that morphological variation does not always follow gene expression, and different spatial
compartments can be defined by various cell types with common morphological features but distinct gene expression
profiles.

Conclusion: We show that spatial gene expression data can be used for unsupervised and unbiased annotations
of mouse brain spatial compartments based only on molecular markers, without the need of subjective manual
annotations based on tissue and cell morphology or matching reference atlases.
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Background
Highly multiplexed spatial expression analysis of genes is
essential to uncover the organization of biological pro-
cesses in relation to sub-regions of tissues and organs.
Spatial atlases for well-studied organs like the brain exist
[1], but matching individual samples to a reference atlas
is challenging as 2D sections may be angled and not
well-aligned, and shape and size of organs differ between
individuals. Furthermore, specimens from human organs
are often sampled from a part of an organ, and it is gen-
erally not trivial to identify the exact original location
and orientation of the analyzed sample. Some regions,
such as the pyramidal cell layer of the hippocampus in
the brain, can be well defined based on morphology,
whereas other regions are more difficult to identify as
the morphological variations are small when cellular la-
beling is limited to nuclear staining or a finite set of
fluorescent markers.
We hypothesize that tissue and cell type can be de-

fined by gene expression and that gene expression thus
should define spatial compartments. Several methods for
measuring gene expression while preserving spatial in-
formation have been developed over the past years. Gen-
erally described, there are two approaches to preserve
spatial information: One approach is to either imprint a
spatial reference on a grid or to carefully record spatial
location prior to collection and sequencing of single-cell
RNA [2–6]. The other approach is the parallel profiling
of large numbers of mRNAs using barcodes decoded dir-
ectly in the tissue sample [7–10]. All approaches come
with benefits and drawbacks, such as spatial resolution,
depth of sequencing, accuracy, and throughput [11].
Targeted in situ sequencing (ISS) using padlock probes

and localized rolling circle amplification [7] provides
submicron localization of RNA species in a highly multi-
plexed fashion in cells and entire tissue sections, and re-
cent advancements in automation [12] have led to
higher detection efficiency and shorter protocol times.
Investigated genes are targeted with carefully designed
barcoded padlock probes, locally amplified and se-
quenced by repeated fluorescent staining and imaging
cycles. The resulting image data consists of six fluores-
cent channels for each sequencing cycle: One channel
showing cell nuclei, a reference channel for probe loca-
tion, and four channels (i.e., color channels) with fluor-
escent signals representing the four bases of the genetic
code (A, C, G, T). The resulting fluorescent signals ap-
pear as bright spots in a noisy background caused by
light scattering and autofluorescence in the tissue.
Previous approaches to define spatial compartments

based on exploring spatial patterns are non-negative
matrix factorization [13] and SpatialDE [14]. Non-
negative matrix factorization is a linear dimensionality
reduction technique that can provide a series of locally

correlated gene expression maps representing distinct
biological processes; local gene correlation does however
not necessarily define distinct tissue types. SpatialDE
identifies spatially variable genes and clusters their
spatial profiles based on a Gaussian-process-based prior.
Genes with similar spatial variation are thus grouped to-
gether into spatially significant patterns; again, similarity
in variation across genes may not correlate with similar-
ity in variation across tissue types.
In this paper, we first decode ISS data using an image

analysis pipeline based on a graph-based decoding ap-
proach. We detect fluorescent signals applying a gener-
ous threshold and then revolve with high precision all
targeted barcodes using a graphical model (Methods),
thus pushing spatial gene expression profiling of tissue
samples to large sample coverage, high multiplexity, and
high decoding resolution. We analyze four different cor-
onal brain sections from two different mice, and we fur-
ther verify that decoded per-gene spatial expression
patterns match with in situ hybridization patterns from
the Allen Mouse Brain Atlas [1].
Next, we apply dimensionality reduction of local gene

expression patterns by UMAP manifold learning [15].
We show how this manifold can be reduced to three di-
mensions and visualized in RGB color space, providing a
general visualization of variations in gene expression.
We continue with community-based clustering of the
manifold space (Methods), resulting in a novel way of
detecting spatial compartments representing unique
combinations of expressed genes and cell types. We
show that the spatial compartments emerging from
these clusters are highly reproducible across brain tissue
sections from two different individuals. We also explore
the possibility of reducing the number of different genes
required for defining unique and reproducible spatial
compartments, enabling unbiased differential expression
analysis between identified compartments.
We further compare the spatial compartments defined

based on gene expression patterns with local cell morph-
ology (using CellProfiler [16]) and clusters defined based
on correlation patterns from non-negative matrix
factorization and SpatialDE. All these methods detect
spatial variations. However, spatial compartments de-
fined from gene expression have higher discriminative
power and reproducibility and thus can better guide au-
tomated identification of anatomical regions for further
investigations in relation to development or disease.

Results
In situ sequence decoding reveals symmetric and
repeating gene expression patterns
Our proposed ISS decoding of 5 sequencing cycles led
to the detection of a total of approximately 0.18 to 2M
transcripts representing 82 to 97 different genes across

Partel et al. BMC Biology          (2020) 18:144 Page 2 of 14



all four brain sections. An example of achieved signal
detection is shown in Fig. 1b, and all four brain sections
are available for interactive viewing via TissUUmaps [19]
at [17]. Instructions demonstrating how to use the
viewer are available at [18]. Note that only a randomly
selected fraction of the transcripts are shown at low
resolution to optimize visualization interaction. Zooming
in to a smaller part of the tissue will show all transcripts.
Color coding, symbols, and their size can be modified to
visualize single genes or combinations of genes, at mul-
tiple resolutions.

ISS gene expression patterns show similarity with ISH-
Allen Mouse Brain Atlas patterns
Per-gene ISS gene expression patterns and ISH patterns
from the Allen Mouse Brain Atlas were compared for
the two hippocampal sections of mouse 1 using normal-
ized Kullback-Leibler (KL) divergence. We sorted rows
and columns of the KL divergence matrix by the differ-
ence between the KL divergence of a gene ISS pattern
with its corresponding ISH pattern and the minimum
KL divergence with the other genes. By doing so, the
ISH patterns that best match a single ISS pattern (and
vice versa) appear in the top-left quadrant of Fig. 2a
(left), showing the top 10 matches. On the contrary, Fig.
2a (right) shows the result of the 10 least matching
genes. All patterns are shown in Additional file 1: Fig.

S1a. Corresponding patterns of the second hippocampal
section are shown in Additional file 1: Fig. S1b and S2.
Note that many of the poorly matching patterns may be
due to the different modalities of the data, poor match-
ing of brain slices, or even anatomical differences be-
tween the mice (n.b. ISS P25 mice are compared with
ISH P56 mice).

Color-space visualization of UMAP embedding reveals
sharp edges and soft gradients in gene expression
To visualize spatial variation in gene expression, each
normalized spatial gene expression matrix was mapped
into a 3-dimensional embedding using UMAP [15]. The
axes of this new reference space were normalized to unit
vectors and presented as an RGB color space, as shown
in Fig. 3b for the full gene panel and in Additional file 1:
Fig. S3b for the reduced gene panel. Each data point in
the RGB space corresponds to a patch with a given 2D
coordinate in the spatial brain map. Figure 3a (and Add-
itional file 1: Fig. S3a) is thus the corresponding gene ex-
pression map, color coded based on the UMAP
embedding. Note that patches with similar color have
highly correlated gene expression profiles, while very dif-
ferent colors correspond to patches with larger differ-
ences in gene expression patterns. For example, the
pyramidal cell layer in the hippocampus, as well as the

Fig. 1 Graph-based ISS signal decoding and spatial mapping. a Cut-out composite images from four sequencing cycles (1–4) with four
fluorescent channels (magenta, cyan, orange, and green representing the letters A, C, T, and G) are shown in the left panel. Each detected signal
is marked with a white cross, labeled D1-D14, and represented as a node in the graphical model (with the same color and label). The graphical
representation of the fluorescent signals results in two independent connected components, represented by two graphs A and B. Edges between
nodes represent distance between signals, where bold lines represent direct connections (distance < dth), and dash-dotted lines represent forced
connections (distance < dmax). Solving the graph gives three black paths: {D1,D5,D8,D12}, {D3,D6,D10,D13}, {D4,D7,D11,D14}, corresponding to
three decoded sequences: TAGT, GCAC and GCAG. b Overview of a full coronal section of a mouse brain with zoomed-in regions showing
detected barcodes and corresponding genes. Scale bar, 1000 μm. Analyzed samples are available for interactive viewing at [17], and video tutorial
on how to visualize spatial gene expression data is available at [18]
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dentate gyrus, form very distinct boundaries, while the
layers of isocortex are more softly graded.

Spatial gene expression clusters are highly reproducible
across brains
The continuous color space in Fig. 3 does not define dis-
tinct spatial compartments. A 50-dimensional UMAP
representation of the data from the full gene panel was
clustered using the Leiden clustering algorithm [20]
resulting in the definition of 17 to 32 regions in the four
different brain sections. Regions defined in the different
brains were then matched based on the correlation of
their gene expression profiles alone (Additional file 1:
Fig. S4). The top 20 distinct spatial compartments in the
cluster hierarchy are shown in Fig. 4 and their subclus-
ters in Additional file 1: Fig. S5. All identified regions in

the four brain sections can be iteratively visualized and
explored in TissUUmaps at [17]. The top 20 distinct
spatial compartments show high reproducibility between
three sections containing the hippocampus, while the ol-
factory section has a distinctly different pattern. These
spatial compartments show high correspondence with
the landmarks in the Allen Mouse Brain Reference Atlas,
and they can be readily annotated as shown in Fig. 4.

Reproducible clustering is possible with as little as 18
genes
Definition of spatial compartments in Fig. 4 relied on
data from 78 genes. To explore the limitations of the ap-
proach, we successively reduced the gene set, down to a
minimal set of 18 genes resulting in the definition of 19
to 28 clusters in the four brain sections. Clustering with

Fig. 2 ISS patterns compared to the Allen Mouse Brain ISH-Atlas of one of the coronal mouse brain sections from mouse 1. a Detailed visualization of
the 10 most (left) and least (right) matching genes as compared by KL divergence. b Visualization of spatial patterns of top-10 genes, from top to
bottom: decoded ISS reads with density profile color code, low-resolution grayscale images of normalized ISS and Allen Brain Atlas ISH expression, and
Allen Brain Atlas ISH data. c Visualization of spatial patterns of 10 least matching genes, from top to bottom as in b
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the reduced gene set identified a lower number of re-
gions for two of the four brain sections, while detecting
a slightly higher number for the other two sections (re-
spectively one and two additional clusters for the two
brain section from mouse 2 in Fig. 5a) suggesting some
overclustering due to the lower sequencing depth of the
reduced gene panel dataset. We matched cluster gene
expression profiles from the four brain sections based on
correlation Fig. 5b, Additional file 1: Fig. S6, and show
the top 20 spatial compartments in the cluster hierarchy
in Fig. 5a and their subclusters in Additional file 1: Fig.
S7. All regions identified with the reduced gene panel in
the four brain sections can also be iteratively visualized
and explored TissUUmaps at [17]. The identified spatial
compartment based on a minimal set of 18 marker genes

allows the possibility of unbiased differential expression
analysis for the remaining 60 genes, as exemplified in
Additional file 1: Fig. S8, S9.

Cell morphology patterns vary between spatial
compartments, but are not sufficient to define
compartments
We further explored clustering based on cell morph-
ology and how local cell morphology correlates with
the spatial compartments. Visualizing spatial variation
in cell morphology in 3D color space (using the same
approach as was applied for variations in gene expres-
sion), we can see that some distinct patterns appear
(Fig. 6a), while noise levels are much higher than
those for gene expression (shown in Fig. 3).

Fig. 3 Color-space visualization of UMAP embedding. a Brain gene expression variations: each patch is color coded based on its gene expression
profile projected in a 3D space. Patches with similar color have highly correlated gene expression profiles. Brain sections marked with a star in the
top left corner are two consecutive sections of the same brain (mouse 1), while brain sections marked with a triangle are from a different mouse
(mouse 2), one with location similar to the sections of mouse 1 and the other one from the olfactory region. Scale bar, 1 mm. b Visualization of
the patch gene expression profiles in the dimensionality reduction space (three different projections of the same space), showing how the
olfactory region (cyan) forms a cluster far away from the more centrally located slices
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Fig. 4 (See legend on next page.)
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Approaches to define more than a few clusters in this
space were not successful due to the high noise
levels. Next, we compared cell features within the
spatial compartments defined by gene expression.
While some spatial compartments show distinct mor-
phological profiles (i.e., clusters B, C, and L corre-
sponding to dentate gyrus, stratum pyramidale, and
lateral ventricle sharing high density features, and
clusters R, F, and G, corresponding to isocortex shar-
ing high intensity features), others can be better
identified based on their gene expression (i.e., hypo-
thalamus and midbrain clusters T, M, and S of Fig. 4),
since variations in cell morphology are very small
(Fig. 6b).

Spatial compartments are poorly defined by non-negative
matrix factorization and SpatialDE analysis
Non-negative matrix factorization [13] provided a series
of locally correlated gene expression maps representing
distinct biological processes that show clear localized ex-
pression (Additional file 1: Fig. S10).
Also, SpatialDE [14] identifies spatially variable genes

by clustering their spatial profiles based on a Gaussian-
process-based prior. Genes with similar spatial variation
are thus grouped together into spatially significant pat-
terns. Initializing the number of patterns to 20, we ob-
tain 15 and 13 spatial gene expression patterns defined
by sets from 1 to 24 genes (Additional file 1: Fig. S11
and Additional file 1: Table S1). Although most of these
patterns show clear spatial localization, they do not de-
fine spatial compartments, but rather represent high
order biological processes resulting from correlated ex-
pression of specific gene expression patterns that en-
compass single or multiple compartments.

Discussion
We analyzed ISS data of four mouse brain sections from
two different individuals. Two of the four sections were
provided by Qian et al. [21] and were processed by our
graph-based decoding image analysis pipeline in order to
extract the spatial gene expression. The study by Qian
et al., although partially based on the same data, focuses
on cell typing analyses of manually selected brain re-
gions. Here instead, we show how the spatial gene ex-
pression can be used to segment spatial molecular
compartments without the need of costly manual
annotations.

Specifically, we have first decoded the spatial gene ex-
pression and related decoded expression patterns with
ISH-Allen Mouse Brain Atlas patterns based on
Kullback-Leibler divergence. We found that some gene
expression patterns match strongly with the correspond-
ing ISH patterns but others relate more poorly due to
discrepancies in the cutting angles of tissue slices or due
to different shape and size of samples. This highlights
the challenge to map spatial gene expression data to a
common reference in order to reliably define spatial ana-
tomical compartments for further investigations. Many
efforts are on the way to develop a common coordinate
framework for cell atlases, such as the Human Cell Atlas
[22], the Human BioMolecular Atlas Program [23], and
the Lifetime FET flagship consortium [24]. The method
presented here will support these efforts by providing a
solution for an automated gene-driven segmentation of
tissue regions irrespective of translation and rotation of
the tissue sections. This could be extremely valuable for
human tissue sections (both surgically removed or post-
mortem) that due to their larger size are sometimes cut
in smaller pieces and where the exact location of the
biological sample is often unknown.
Here, we showed that mapping the spatial gene ex-

pression to a common RGB color space can reveal both
sharp and soft transition of expression across the sam-
ples. Moreover, cluster analysis of the spatial expression
profiles using as few as 18 marker genes can reliably
identify visually consistent spatial compartments. It
should be noted here that our method can also be ap-
plied to data from other spatially resolved methods, such
as spatial transcriptomics [25]. While ISS is a targeted
approach and offers single cell resolution, spatial tran-
scriptomics is untargeted and limited by the spot size
and distance between spots. However, with deeper se-
quencing, spatial transcriptomics may be able to find
smaller differences in expression between neighboring
regions (but with lower spatial resolution). Ortiz et al.
[25] have used 7663 genes and a reduced palette of 266
genes to define 181 molecular clusters within the mouse
brain. Still, not all annotated regions, such as provided
by Paxinos and Franklin [26], can easily be separated,
e.g., separating the primary visual cortex from secondary
visual cortex or auditory cortex is challenging. Here, we
focused on 18 marker genes that can solely separate dis-
tinct brain regions, but more (carefully selected) marker
genes may be needed to achieve a finer resolution of
brain regions.

(See figure on previous page.)
Fig. 4 Spatial gene expression compartments are highly reproducible across brains. Visualization of 20 spatial compartments, with their annotations,
defined by highly correlated clusters (right column). The annotations follow the Allen Mouse Brain Atlas (left column). For comparisons, we also
provide the annotations by Franklin and Paxinos (central column). Note that brain sections are slightly angled medial-lateral as well as dorso-ventral.
Sections from different mice are marked respectively with a star and a triangle in the top left corner. Scale bars, 1 mm
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We also investigated if spatial compartments can be
accurately defined only based on cellular morphological
features. We showed that morphological variation does
not always follow gene expression, and different spatial

compartments can be defined by various cell types with
common morphological features but distinct gene ex-
pression profiles. It is yet to be explored if combining
gene expression and morphological information can

Fig. 5 Reproducible definition of compartments is possible with as little as 18 genes. a Visualization of 20 compartments, with their annotations,
defined by highly correlated clusters. Note that brain sections are slightly angled medial-lateral as well as dorso-ventral. Scale bar, 1 mm. b
Hierarchical clustering of gene expression profiles based on correlation. Color coding according to regions listed at the bottom of the figure.
Gene expression profiles for each cluster are defined by summing the expression of selected marker genes from all patches belonging to the
cluster and normalizing by cluster size. Row colors represent sample id as defined by star and triangle markers in the top left corner for each
brain section in a
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improve compartment definition. Similarly, in the field
of cell typing classification schemes and nomenclatures
based on gene expression are advantageous over provid-
ing classifications purely based on morphological or
physiological criteria because of their richness of data
[27]. Such transcriptomic nomenclatures can be com-
bined with additional features but currently serve as the
basis for cell type classifications.

Conclusion
The molecular architecture of cells in the brain is very di-
verse and the brain as such is a very heterogeneous organ.
Technologies, like single-cell RNA sequencing or in situ
sequencing, offer high-throughput measurements of RNA
and allow to capture the molecular diversity within tissue
sections. Here, we used an approach that relies on gene
expression data to segment and identify compartments in
the brain. We believe that the identification of brain com-
partments based on gene expression features has more
discriminative power than morphological feature analysis
and thus can better guide the fully automated

identification of spatial compartments for further investi-
gations in relation to development or disease.

Methods
In situ sequencing (ISS) data generation
The design and experimental details of the ISS assay
used to produce the data for this paper is described in
detail in Qian et al. [21]. The raw images of two brain
sections (mouse 1, brain sections marked with a star in
all figures) were provided by Qian et al. The other two
brain sections belonging to a different mouse (mouse 2,
brain sections marked with a triangle in all figures) were
probed independently in a different set of experiments
but with the same experimental conditions. In brief,
10 μm fresh frozen brain tissues from CD1 male mice
(postnatal day 25) were probed with 95 nucleotide (nt)
long padlock probes. Padlock probes contained a 4 nt se-
quencing by ligation barcode and a 20 nt sequencing by
hybridization barcode (called “base 5”). A 97-gene panel
and a 82-gene overlapping panel (Additional file 2: Table
S2) were probed in two different experiments and

Fig. 6 Spatial variation in cell morphology. a Visualization of morphological variation in one brain section using RGB color space shows some distinct
compartments, while others cannot be differentiated. Scale bar, 1 mm. b Spatial compartments defined by gene expression (visualized in Fig. 4) are
clustered based on cosine similarity in morphological profiles, where the profiles are defined by summing the normalized morphological features of all
patches belonging to the compartment and scaling each feature by compartment size
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imaged on an epifluorescence microscope AxioIma-
ger.Z2 (Zeiss) with × 20/0.8 objective. At each sequen-
cing cycle, the tissue sample was stained and imaged in
six fluorescent channels: a nuclei channel, a general stain
channel (used as reference channel for each barcode
probe), and four color channels; one for each letter of
the genetic code (A, C, G, T), following the protocol
summarized by Hilscher et al. [28]. The result of the ex-
perimental procedure was image data with three spatial
dimensions (x, y, z), one color dimension encoding the
different fluorescent channels, and a temporal dimension
for the different imaging/sequencing cycles. Below, we
describe the analysis pipeline. The output is the spatial
coordinates of decoded barcodes along with scores to as-
sess the quality of the decoding.

Gene selection
The gene panels for the ISS experiments were selected
based on single-cell RNA sequencing data from the
hippocampus (roughly 28,000 genes [29]) and using pci-
Seq trimmed to two subsets of 82 and 97 genes, respect-
ively [21]. A total number of 78 genes passed quality fil-
tering for our clustering approach. The expression of the
78 marker genes was not limited to the hippocampus:
excitatory and inhibitory cell type markers are often
shared between brain regions. For our “reduced” dataset,
we aimed for a limited set of genes specific for different
cell types. We settled for 18 marker genes—6 inhibitory
markers (Pvalb, Vip, Cck, Fam19a1, Calb1, Calb2), 6
Pan-excitatory markers (Rprm, Crym, Wfs1, Pcp4,
Plcxd2, 3110035E14Rik), 2 markers associated to neo-
cortical layers (Rorb—Layer 4, Penk—Layer 6), and 4
markers that are shared between excitatory and inhibi-
tory cells (Slc24a2, Bcl11b, Gda, Rgs4) [30]. A smaller
number of genes led to less robust region definitions,
and while a larger number of genes resulted in more dis-
tinctly defined regions, we found this set of 18 genes to
be a good balance between data reduction and region
definition.

Image registration, tiling, and normalization
Image maximum intensity projections were aligned to
compensate for chromatic aberration of fluorescent
channels and for misalignments among successive im-
aging cycles caused by repetitive washing and staining
procedures. Each color channel was aligned to the gen-
eral stain channel of the respective sequencing cycle, ap-
plying a translation to compensate for chromatic
aberration. Successively, general stain channel images
from different sequencing cycles were rigidly aligned to
a common reference sequencing cycle using multiresolu-
tion image registration [31]. The same transformations
were then applied to the related color channels in order
to create a common coordinate space. For each

registration, a transformation matrix was estimated
using normalized cross-correlation metric optimized
with Adaptive Stochastic Gradient Descent [31]. After
registration of the whole slide images, each image was
tiled in smaller non-overlapping patches of 1028 × 1028
pixel size in order to split the dataset in smaller multidi-
mensional tensors used for parallelization of later opera-
tions and optimize memory resources. A second
alignment step was then performed for each individual
tensor to locally align channels and cycles repeating the
procedure of the first alignment.
Images were normalized by scaling the intensity values

between the background intensity and the signal inten-
sity estimated from n random 128 × 128 pixel patches
from the whole slide image of the respective channel
and cycle. The background intensity was defined as the
mean intensity of the patch modes, and the signal inten-
sity was defined as the 99th percentile of 98th patch
percentiles.

Signal candidate detection, merging, and probability
prediction
Signal candidates were extracted with an h-maxima
transform [32] from the normalized images after a top-
hat filtering used for enhancing bright spots and attenu-
ate background. Therefore, all local maxima with an h-
maxima greater than a given threshold h are considered
as signal candidates.
Due to broad emission spectra and imperfect washing

procedures, fluorescent signals can bleed-through to ad-
jacent channels or sequencing cycles and cause multiple
false detections of the same signal. As a barcode should
only represent a single letter at a given sequencing cycle,
each barcode should only fluoresce in a single color
channel (other than the general stain) per sequencing
cycle. Therefore, signal candidates of a given sequencing
cycle are grouped across color channels such that over-
lapping detection or detections that are adjacent in a
four-connectivity pixel grid are merged together, keeping
the signal candidate in the channel with highest
intensity.
Many of the signals detected by the h-maxima trans-

form are likely to be noise, also after the merging step.
Therefore, a signal probability prediction describing the
probability of a signal candidate of being signal or noise
was calculated. This was done using a convolution
neural network (CNN, Additional file 1: Fig. S12), imple-
mented and trained in-house on a subset of manually
annotated candidate signals (nominated by the h-
maxima transform) from multiple ISS experiments.
Using 5 × 5 pixel windows centered in each signal candi-
date (selected randomly across all color channels and se-
quencing cycles) as training data, the CNN learned the
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underlying discriminative features to predict the similar-
ity between a signal candidate and a true signal.

Graph-based signal decoding
Finally, signal candidates and probability predictions
were combined in a graphical model as follows to re-
solve and decode the gene sequences across fluorescent
channels and sequencing cycles: Signal candidate detec-
tions are represented in the graph as D nodes (colored
nodes in Fig. 1a). Each D node consists of a pair of
nodes connected by an edge with weight wi equal to:

wi ¼ − log pið Þ;
where pi is the probability prediction of the signal candi-
date detection i. Relationships among signal candidate
detections belonging to different sequencing cycles are
encoded as edges connecting D nodes (Fig. 1a). Each
edge connecting a pair of D nodes has a weight propor-
tional to the Euclidean distance between the signal can-
didate detections represented, specifically:

wij ¼ − log
1

1þ kdij

� �
;

where dij is the Euclidean distance between detection i
and j, and k is a weighting parameter used to modulate
the contribution of dij. In order to build the graph, signal
candidate detections are searched for connected compo-
nents between sequencing cycles within a maximum
connection distance dth. Each connected component can
be represented as a graph with D nodes encoding candi-
date detections and edges representing connections.
Each of the connected components that are found is
then refined by adding edges between not connected D
nodes belonging to consecutive sequencing cycles that
are closer than a maximum distance dmax. Nodes of the
first and last sequencing cycles are then connected re-
spectively to a source and a sink node. Finally, connec-
tions are removed between detections not belonging to
consecutive sequencing cycles and the graph is solved by
maximum flow of minimum costs between the source
and the sink [33].

Quality of decoded barcodes
A quality metric Qs was assessed for each decoded se-
quence s, encoded by the set of detections Dsb : b ∈ [1, n],
where n is the number of sequencing cycles. The quality
score per sequence is proportional to the probability
predictions, intensities, and distances of the signal candi-
date detections that form the sequence and is defined as:

Qs ¼ μs �
Xn

b¼1
Qsb;

where Qsb is the quality score of each decoded base that

forms the sequence and μs is a function proportional to
the maximum distance between the detections that form
the sequence. Specifically, Qsb is defined as:

� If multiple detections {Dsb1,…,Dsbk}, with a
probability prediction higher than 0.5, other than
Dsb were detected and merged in a given cycle:

Qsb ¼
IDsbpDsb

IDsbpDsb
þ max IDsb1pDsb1

;…; IDsbk pDsbk

� � ;
� Otherwise,

Qsb ¼ pDsb

where I and p are respectively intensity value and prob-
ability prediction of a given candidate. In order to
penalize sequences whose detections are far apart from
each other, μs is defined as:

μs ¼ 1 −
log 1þ dð Þ

σ
;

and clipped between 0 and 1 values, where d is the max-
imum distance between signal candidate detections com-
posing a sequence and σ is a parameter weighting the
penalty. Parameter σ is empirically set to the value that
maximizes the area under the receiver operating charac-
teristics from the true positive rate and false positive rate
evaluation based on sequences of targeted barcodes.

Evaluation of gene expression patterns in relation to the
Allen Mouse Brain Atlas
We verified the output of the decoded gene expression
patterns from two mouse brain sections with respect to
3D grid expression data from the in situ hybridization
(ISH) Allen Mouse Brain Atlas [1]. The Allen Mouse
Brain Atlas provides genome-wide in situ hybridization
data for approximately 20,000 genes processed with a
data processing pipeline for extracting 3D grid gene ex-
pression data [34, 35]. The output of the data processing
is a 67 × 41 × 58 voxel grid with quantified gene expres-
sion values for each gene. For each of the gene expres-
sion patterns decoded in the two brain sections, we
computed the KL divergence with respect to grid expres-
sion patterns from the ISH atlas in order to assess spatial
pattern similarities. Gene expression patterns from ISS
were first scaled to match the resolution of the atlas
voxel grid. Second, a probability density function was es-
timated for each gene using a Gaussian kernel with co-
variance factor of 0.05. Both ISS and ISH gene
expression patterns were then normalized such that the
total mass of each probability density function became
equal to 1. We then selected the two (out of 67) coronal
levels that best match the ISS sections for computing
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the Kullback-Leibler divergence between normalized ex-
pression patterns. The coronal level showing the closest
gene-gene similarity was further selected for
visualization purposes.

Gene expression matrix generation and UMAP
embedding
Prior to investigating spatial gene expression varia-
tions, the output from the sequence decoding step
was filtered independently for each brain section by
first removing low quality reads applying a quality
threshold of 2, and excluding low-expressed genes
that had a total count < 500. Successively, a gene ex-
pression matrix was constructed for each sample
where rows represent overlapping patches of the tis-
sue sample and columns represent targeted genes.
Gene expression matrices were generated using
square tiles of size 128 × 128 pixels and overlap of
128 pixels, so that each patch represents genes from
a region of size of 384 × 384 pixels (~ 125 μm2). Each
entry in the matrix represents the expression level of
a particular gene in a given patch (i.e., total count of
reads decoded inside the patch). An additional filter-
ing step excludes patches with less than 10 reads
from further evaluations. Thus, a total of 78 genes
from all samples passed the filtering steps, resulting
in a total of 4 genes excluded from the analysis (i.e.,
Chodl, Cort, Crh, Pax6). The expression table of each
sample was thereafter normalized, stabilizing variance
using Anscombe’s transform and successively regres-
sing out the logarithmic total counts of reads per
patch in order to exclude unwanted sources of vari-
ation such as number and size of cells in each patch.
Next, the expression matrices were scaled feature-wise
to zero mean and unit variance. Each filtered and
normalized expression matrix was thereafter mapped
into a common 3-dimensional embedding using
UMAP [15]. The axes of the 3-dimensional embed-
ding were normalized to unit vectors and coordinates
of each projected patch in this new reference space
were used to map each patch in the RGB color space.

Spatial gene expression clusters and differential gene
expression analysis
We then investigated if the gene expression from the
four sections clusters in common brain compartments.
The gene expression matrices generated in the previous
analysis were mapped together into a 50-dimensional
space using UMAP and clustered using the Leiden
clustering algorithm [20]. Gene expression profiles of
identified clusters were then normalized by cluster area
and total gene counts, and grouped together with
correlation-based hierarchical clustering.

Clustering with a minimal gene set
In order to perform differential expression analysis be-
tween spatial compartments without bias introduced by
the clustering itself, we also define compartments by
clustering the gene expression of a limited set of 18
marker genes. Marker genes were chosen hierarchically
from scRNA literature according to strongly expressed
genes for interneurons, pyramidal cells, and non-
neuronal cells (the “Gene selection” section). Again, di-
mensionality of the marker gene expression profiles of
the two brains was reduced in a common 50-
dimensional space. Next, patches of each brain section
were clustered individually with the Leiden clustering al-
gorithm [20]. To verify region similarity, differential ex-
pression analysis based on Wilcoxon rank-sum statistical
test implemented in Seurat [36] was applied to the genes
excluded from the reduced gene panel between and
within the defined compartments of two brain sections.

Morphological feature analysis
We then conducted a morphological feature analysis to
study how cell morphology relates with gene expression
profiles. We first segmented cell nuclei from the respect-
ive channel of one brain section with CellProfiler [37]
and successively extracted 16 morphological features
using CellProfiler Analyst [16]. We removed border arti-
facts from the single tiles before normalizing morpho-
logical features between bounds that visually highlight
spatial profiles. We further removed outliers based on
nuclei area and shape caused by segmentation errors.
This resulted in a feature vector of length 16 for each
segmented cell. Using the same patches defined before
for spatial gene expression analysis, we created a matrix
where each entry represents local cell morphology. Next,
we kept only patches that contained more than three
cells and regressed out the total number of cells per
patch. We then visualized spatial variation in cell
morphology (mapping the extracted patch morpho-
logical profiles in RGB color space as done for visualiz-
ing spatial gene expression variation) and compared
morphological profiles of spatial compartments defined
through gene expression clustering for relating gene ex-
pression with cell morphology.

Non-negative matrix factorization and SpatialDE analysis
Non-negative matrix factorization is well suited for its
non-negativity feature to biological contexts where bio-
logical signals can be naturally present or absent. We
therefore translated normalized expression values into a
positive space for applying non-negative matrix
factorization analysis [13]. The expression matrix E is
thus factorized into two nonnegative matrices W and H
initializing the number of factors to 20. An approxima-
tion of the gene expression matrix E is then
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reconstructed as a linear combination of column feature
vectors in H weighted by the contribution of each gene
column in matrix W:

E ¼ WH

Columns feature vectors of matrix H represent there-
fore co-expression patterns (also called metagenes)
shared in the two brains, often corresponding to real
biological patterns. And rows of matrix W represent the
contribution of each gene in each metagene.
We also investigated gene expression variation in tis-

sue samples with SpatialDE [14], a framework based on
Gaussian process regression that identifies genes with
spatially significant gene expression patterns. We ran
SpatialDE analysis on normalized gene expression matri-
ces generated from square patches of 512 px size and
64 px overlap, due to a higher demand of computational
resources by the tool. SpatialDE classified all targeted
genes as significantly spatially varying as was expected
due to the choice of gene panel (Additional file 1: Fig.
S11a). We then performed SpatialDE “automatic expres-
sion histology” analysis consisting in a spatial clustering
of similarly spatially varying expression patterns based
Gaussian Mixture Models with a spatial Gaussian prior
on the cluster centroids.
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1186/s12915-020-00874-5.
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