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Protein assembly systems in natural and

synthetic biology
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Abstract

The traditional view of protein aggregation as being strictly disease-related has been challenged by many examples
of cellular aggregates that regulate beneficial biological functions. When coupled with the emerging view that
many regulatory proteins undergo phase separation to form dynamic cellular compartments, it has become clear
that supramolecular assembly plays wide-ranging and critical roles in cellular regulation. This presents opportunities
to develop new tools to probe and illuminate this biology, and to harness the unique properties of these self-
assembling systems for synthetic biology for the purposeful manipulation of biological function.
Introduction
Proteins are the workhorse molecules of the cell, driving
virtually every function and developmental program in
biology. Amazingly, many of these critical molecules
readily aggregate and assemble inside of living cells
through interactions amongst unfolded and folded do-
mains. This can occur aberrantly and lead to disease; but
there is also accumulating evidence that aggregation
phenomena can be regulated by the cell and used to
carry out important and beneficial biological functions
ranging from molecular scaffolding to memory [1–4].
Moreover, when designing synthetic cellular systems
using synthetic biology, we argue that protein aggrega-
tion may be viewed as a “feature” rather than a “bug”,
and that self-assembling elements possess unique prop-
erties that can be exploited to engineer new biological
functions [5]. In this Review, we provide a brief intro-
duction to protein assembly and the spectrum of aggre-
gation phenomena found in nature, we survey the
diverse and rapidly expanding set of biological functions
driven by supramolecular assemblies, and finally we offer
a prospective discussion of the methods and benefits of
their purposeful manipulation in cells and organisms.
© The Author(s). 2020 Open Access This artic
International License (http://creativecommons
reproduction in any medium, provided you g
the Creative Commons license, and indicate if
(http://creativecommons.org/publicdomain/ze

* Correspondence: khalil@bu.edu
†Giulio Chiesa and Szilvia Kiriakov contributed equally to this work.
1Biological Design Center, Boston University, Boston, MA 02215, USA
2Department of Biomedical Engineering, Boston University, Boston, MA
02215, USA
Full list of author information is available at the end of the article
Biological parts
Protein components can self-assemble into higher-order
complexes or assemblies within the cell. A common fea-
ture of many of these proteins is the presence of intrinsic-
ally disordered regions (IDRs). IDRs are protein sequences
that do not adopt a single three-dimensional structure,
but instead endow proteins with flexibility to adopt a
range of states, from unstructured to partially structured
[6]. Due to this flexibility, IDRs can enable proteins to en-
gage multiple partners and participate in the different
types of interactions that facilitate initiation of protein as-
sembly, e.g., (1) specific interactions among or between
folded domains and unfolded sequences [7–9] and (2)
non-specific weak interactions among IDRs [10, 11].
Depending on the relative strength and avidity of these in-
teractions, as well as other factors such as the physical-
chemical state of the cellular environment, a broad
spectrum of assembly phenomena can arise (Fig. 1). On
one end of the spectrum, proteins can be recruited and
maintained in highly dynamic, metastable assemblies that
are characterized by liquid-like properties [12, 13]; at the
other end of the spectrum, these initial interactions can
give rise to more ordered interactions that produce stable
higher-order aggregates, like amyloid fibers. Below, we
provide a brief overview of these different classes of supra-
molecular assemblies, discussing their key properties and
hallmark examples.

Dynamic assemblies
At the dynamic end of the spectrum are supramolecular
assemblies based on phase separation. Biological phase
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Fig. 1 Overview of higher-order assemblies. a Protein assemblies display a spectrum of material properties, from solid-like amyloid fibers to highly
dynamic liquid droplets. Examples of assemblies are shown below the spectrum. Highly stable assemblies include MAVS (mitochondrial antiviral
signaling) protein fibers and Aβ (amyloid β) peptide amyloid fibrils. Highly dynamic assemblies include nucleoli, membraneless organelles with
liquid-like shell around a more organized rigid core. The yeast prion protein Sup35 can convert between different structures: it constructs stable
amyloid fibrils in its prion conformation and undergoes reversible gel formation under pH stress. Stress granules and P-bodies can also exist in
different states, depending on the physiology of the cell. b Prions are self-propagating protein conformations. The prion conformation (purple)
serves as a template to convert the soluble (gray) conformation into the prion conformation, which usually results in the growth of amyloid
aggregates. The aggregates are fragmented by chaperone proteins, producing seeds that can nucleate the conformational conversion
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separation has generated tremendous excitement as re-
cent discoveries point to its critical role in many cellular
processes, such as the formation of organelles and regu-
latory complexes, as well as in human diseases [14]. Our
goal is to provide the reader a very brief introduction
and primer to this phenomenon; for more details on the
properties, formation, regulation, and function of this
class of assembly, we refer the reader to several recent
reviews [12, 14–16]. For simplicity, we will broadly refer
to these assemblies as dynamic condensates or dynamic
assemblies [17].
Phase separation is a physical phenomenon that occurs

when a solution of molecular components spontaneously
separates or demixes into co-existing (lower free energy)
phases, such as when oil is mixed with water [1]. In cells,
molecular assembly via phase separation provides a gen-
eral strategy for organizing and compartmentalizing bio-
logical matter. Specifically, protein-based phase separation
can drive the formation of cellular compartments and or-
ganelles that lack membrane boundaries. A canonical
example is the nucleolus, a large and dynamic complex of
proteins and RNA found within eukaryotic nuclei that is
the site of ribosome biogenesis. Nucleoli can display a
broad range of sizes, coalesce into larger droplets, and dis-
play a range of viscosities, all of which represent classic
properties of liquids [18]. Nucleoli are just one example of
a larger family of membraneless organelles. The first
membraneless organelle characterized as liquid-like was
the P-granule [19]. Since then, P bodies, stress granules,
Cajal bodies, nuclear speckles, PML bodies, and germ
granules have all been demonstrated to form through
phase separation and possess liquid-like physical proper-
ties [20, 21].
As discussed more below, these dynamic assemblies

can help to compartmentalize biological reactions and in
some cases can even be composed of distinct, non-
miscible sub-compartments with different protein com-
positions [22]. In general, weak multivalent interactions
among components of the assembly drive the formation
of condensates and regulate their dynamic properties.
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The interactions can be summarized into two main
types: (1) specific interactions among folded domains
[23] or between folded domains and unfolded sequences
[7–9, 24]; and (2) non-specific weak interactions among
IDRs [10, 11]. In the first case, the strength and valency
of interactions and the relative component concentra-
tions determine their phase behavior, which can span
reversible droplet formation to gelation into a meshwork
of non-covalently crosslinked hydrogels [8]. Proteins that
undergo the second type of interaction often have disor-
dered regions with specific sequence compositions,
called low complexity regions (LCRs). LCRs feature
highly repetitive sequences, such as polyglutamine
(polyQ) repeats or glutamine/asparagine (Q/N)-rich mo-
tifs. Other key elements of these regions are clusters of
hydrophobic and aromatic residues [25] and patches of
charged side chains [26]. Interestingly, the dynamics of
phase transition and the physical properties of the as-
sembly, such as the viscosity, are intimately related to
the sequence composition of the constituent proteins
[22, 27], presenting unique opportunities to elucidate a
“molecular grammar” [27] for assembly formation and to
create designer assemblies based on sequence alone.

Stable assemblies: amyloid fibers
At the other end of the spectrum are solid structures, such
as amyloid fibers. Amyloids are highly stable assemblies
composed of protein molecules organized in a cross-β-
sheet lattice of indefinite length [28]. Amyloid fibrils form
through an unfolded-to-folded transition, wherein
partially unfolded protein sequences lock into β-sheet
conformations and self-assemble by aligning their β-sheets
and subsequently growing in a linear fashion [29]. This
process is generally described as nucleation-dependent
polymerization, where the protein needs to access a meta-
stable conformation in order to trigger aggregation. Once
this state is achieved, the reaction proceeds rapidly to
completion as a first-order reaction [30–33].
Proteins with high propensity to form amyloids con-

tain disordered regions enriched in hydrophobic and
polar amino acid residues. However, amino acid com-
position alone is insufficient to predict amyloid-forming
capacity, as the position within the protein sequence also
matters. Collectively, these insights have been used to
predict amyloid-forming sequences in the proteomes of
organisms [34, 35].
Amyloid fibrils are extraordinarily robust biomaterials.

They are protease-, heat-, and detergent-resistant and can
have stiffness comparable to that of spider silk and colla-
gen fibers [36]. Both protein sequence and the physical/
chemical conditions of the solvent [37, 38] contribute to
the biophysical properties of the resulting fibril, such that
the same underlying protein can form fibrils with a variety
of morphologies and degrees of rigidity [38].
Amyloids have been linked to many human diseases,
ranging from diabetes to systemic amyloidoses [39, 40].
Perhaps most notably, amyloid deposits are hallmarks of
neurodegenerative disorders and their formation has
been linked to the etiology of diseases, such as Alzhei-
mer’s disease (AD) and Parkinson’s disease (PD) [41].
However, as described below, examples of non-disease,
functional amyloids are being increasingly uncovered
and characterized. For a more detailed treatment of
these structures and their roles in disease and physi-
ology, we refer the reader to other reviews [29, 42–44].

Heritable assemblies: prions
Prions are a unique class of aggregating proteins. Prion
proteins, first discovered as the causative agents of trans-
missible neurodegenerative disorders in mammals (e.g.,
scrapie, bovine spongiform encephalopathy, and
Creutzfeld-Jakob disease [45, 46]), have several unusual
properties. First, they can exist in functionally distinct
conformational states. Conversion between a soluble
conformation (associated with “normal” protein activity)
and a prion conformation results in dramatic change in
protein activity that can lead to new cellular phenotypes,
including disease. Second, the prion conformation is
self-replicating. That is, it serves as a template to convert
the soluble conformation into the prion conformation;
once induced, this prion state can self-replicate on long
biological timescales [47, 48]. Third, the prion conform-
ation is infectious: it can be transmitted from one cell to
another and, in the case of bona fide prions such as the
disease-causing human prion protein (PrP), from one
organism to another. Because of these properties, intra-
cellular prions and their associated phenotypes are herit-
able [42]. Proteins that fulfill all of these criteria except
for inter-organismal transmission are often referred to
as prionoids, and there is accumulating evidence that
proteins associated with human neurodegenerative dis-
eases, such as Tau in AD, have prion-like seeding and
spreading properties [49].
Most known prions form amyloid aggregates, templat-

ing the amyloid conformation onto newly synthesized
proteins. Conversion between the prion and soluble con-
formation is a reversible process [50]. However, once in-
soluble amyloid fibers are formed, they are generally
considered irreversible: amyloids are not cleared by the
protein quality control system and stored as inclusions
in cellular compartments [51, 52]. Not all prions are
known to form amyloids. Certain prion proteins can also
form dynamic condensates [32, 53]; others have yet un-
determined conformations [54], and it is likely these ele-
ments can take on a broad spectrum of biophysical and
conformational properties.
Much of our molecular understanding of prions origi-

nates from studies in yeast, where over ten bona fide
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prion proteins have been characterized to date (Table 1)
[60, 73, 82]. Unlike mammalian PrP, certain prions in
yeast have been proposed to play useful regulatory func-
tions (see below). These studies have revealed two com-
mon molecular properties. First, canonical prions
contain prion-forming domains (PrDs), which are modu-
lar intrinsically disordered domains (often Q/N-rich)
that confer their prionogenic behavior. In silico screens
trained on known PrDs have been able to predict new
prion sequences [68, 83–86]. However, it should be
noted that not all known prions have PrDs and canon-
ical sequence properties, and thus identification exclu-
sively on these requirements is insufficient [66]. Second,
prions interact with and depend on the activity of
chaperone proteins for propagation. In yeast, transmis-
sion and maintenance of the prion state are highly
dependent on the disaggregase Hsp104, which serves to
fragment amyloid fibers and create infectious, low mo-
lecular weight prion “seeds” that infect daughter cells
[87]. Though recent studies suggest that Saccharomyces
cerevisiae may harbor many more uncharacterized prio-
noid elements that appear to be independent of Hsp104,
and instead dependent on other chaperones [81, 88].
Overall, new experimental tools will be needed to dis-
cover and characterize these elements.
Finally, some prions can assemble into multiple dis-

tinct self-templating structures. These structural vari-
ants—or conformational alleles—give rise to distinct
and stable prion activities, called strains [89–92]. The
concept of the “prion strain” was first suggested based
on studies of PrP, in which different structures of the
prion protein were identified and linked to distinct
disease pathologies [93]. Now, many prions are
known to give rise to strains, and it has been shown
that strain variation derives from different amyloid
fiber structures (with different physical properties)
that correlate with heritable phenotypes [37, 94, 95].
For example, a number of strains have been identified
for the well-studied yeast prion [PSI+], which is
formed by self-templated aggregation of the transla-
tion termination factor Sup35 [96]. Two of the most
common [PSI+] strains are referred to as weak and
strong [91]. Strains carrying weak [PSI+] have lower
efficiency of translational read-through relative to
strong [PSI+], and thus a weaker phenotype. However,
weak [PSI+] fibers are thermodynamically more stable,
with larger and more rigid amyloid cores compared
to strong [PSI+]. This structural difference results in
less efficient fragmentation by the chaperone machin-
ery, and consequently the generation of fewer seeds,
slower templating of new protein to the prion form,
and less stable inheritance [97]. Understanding these
sequence–structure–phenotype relationships will pro-
vide important blueprints to guide the purposeful
manipulation and engineering of these powerful ele-
ments of inheritance.

Biological functions
Protein aggregation has been classically viewed as an ab-
errant process with pathological consequences. Indeed,
cellular aggregates are associated with a large number of
human diseases, including neurodegeneration [98], type
2 diabetes [39], and aging [99], and extensive work has
been dedicated to elucidating their role in these and
other diseases (reviewed elsewhere [42, 43]). But in part
due to the development of new techniques to study pro-
tein aggregates (Table 2), we are gaining a new appreci-
ation and understanding of their non-pathological roles.
Protein aggregates play positive functions in a variety of
cellular processes, including gene regulation [126, 127],
signaling [76, 128, 129], memory storage [56, 130, 131],
DNA repair [132], cell fate decisions [130, 133–135],
and even evolution [2]. These examples should serve as
inspiration for synthetic biologists aiming to purpose-
fully manipulate information flow in living systems
(Fig. 2).

Gene regulation
Many components controlling aspects of gene expres-
sion form dynamic protein assemblies that contribute to
their regulatory mechanism. Strikingly, different steps of
eukaryotic gene transcription appear to utilize regulated
phase separation mechanisms [137]. A first step in tran-
scription is the binding of transcription factors (TFs) to
enhancer regions. Phase separation was found to be im-
portant in this process at super-enhancers, which are
clusters of enhancers driving robust transcription of cell
identity genes. In particular, certain TFs were shown to
phase separate via their IDRs into liquid-like conden-
sates that help to compartmentalize the transcriptional
apparatus [138]. A following step in transcription in-
volves Mediator, a complex that connects signals from
TFs to RNA polymerase (Pol) II. Mediator has been
shown to form phase-separated clusters both with TFs
[127] and with Pol II [126] at active sites of transcrip-
tion. Finally, the process of transcription elongation re-
lies on phosphorylation of the C-terminal domain (CTD)
of Pol II. This is accomplished in part by the enzyme
complex positive transcription elongation factor b (P-
TEFb). To ensure hyper-phosphorylation of the CTD
and efficient elongation, P-TEFb undergoes phase separ-
ation into nuclear speckles capable of recruiting Pol II
[139]. Interestingly, protein phase separation has also
been implicated in gene silencing through recent work
demonstrating that HP1α proteins, key factors involved
in the formation of heterochromatin domains, have the
ability to form liquid droplets in a regulated fashion
[140–142].



Table 1 Prion proteins: bona fide prions, prion candidates, and prionoids

Prion Protein
determinant

Function Prion phenotype Organism Prion properties Reference

Amyloid A Apolipoprotein,
inflammatory
response

Amyloid A amyloidosis Human, cattle,
cheetah, chicken,
mouse

Amyloid, cell-to-cell spread-
ing, trans-organismal spread-
ing (except for humans)

[43]

[β] Prb1 Vacuolar proteinase B,
protein degradation
in vacuole

Phenotypic lag: prolonged
carboxypeptidase Y activity after
loss of PEP4

Saccharomyces
cerevisiae

Non-amyloid, reversibly
curable, mitotic inheritance,
infectious

[55]

CPEB, Orb2, CPEB3* Regulating synaptic
plasticity, repressor of
AMPA receptor
transcription

Facilitating long-term memory,
activator of AMPA receptor
translation

Sea slug, fruit fly,
mouse

Self-templating, amyloid,
heritable in yeast

[56–58]

Cb-Rho
prion*

Rho Transcriptional global
regulator

Transcriptional terminator read-
through

Clostridium
botulinum,
Escherichia coli

Amyloid, Sup35C assay,
inheritance

[59]

[GAR+] Pma1/Std1 Proton pump,
glucose signaling

Utilization of poor carbon sources
in the presence of glucose

Saccharomyces
cerevisiae

Inheritance, infectious [54, 60]

[Het-s] Het-s Heterokaryon incompatibility upon mixing with self Podospora anserina Dependence on Pa Hsp104,
amyloid fibrils infectious

[61, 62]

[LD+]* Lumini-
dependens

Transcription factor
controlling
autonomous
flowering pathway

Hypothetical: delay of flowering Arabidopsis thaliana Sup35C assay, detergent
resistant aggregates, Hsp70
and Hsp90 dependence,
inheritance, infectious

[63, 64]

[LSB+] Lsb2 Cytoskeletal assembly
protein

Seeds [PSI+] Saccharomyces
cerevisiae

Dependence on Hsp104,
inheritance, infectious,
detergent resistant
aggregate

[65]

[MOD+] Mod5 tRNA
isopentenyltransferase

Resistance to azole antifungals,
modified sterol biosynthesis

Saccharomyces
cerevisiae

Amyloid, Hsp104
dependence, inheritance,
infectious

[66, 67]

[MOT3] Mot3 Transcriptional
regulation

Increased biofilm formation, agar
invasion, decreased hypoxia
resistance

Saccharomyces
cerevisiae

Amyloid, dependence on
Hsp104, inheritance,
infectious

[60, 68]

[NSI+] Unknown Unknown Translational read-through affect-
ing the Sup45 termination factor

Saccharomyces
cerevisiae

Sup35C assay, dependence
on Hsp104, inheritance,
infectious

[60, 69]

[NUP100+] Nup100 Nuclear pore
complex

No significant effect Saccharomyces
cerevisiae

Amyloid, self-assembly,
Sup35C assay, dependence
on Hsp104, mitotic
inheritance

[67, 70,
71]

[OCT+] Cyc8 Ttranscriptional
regulation, chromatin
regulation

Derepression of genes inhibited
by Cyc8-Tup1 complex, invertase
production in the presence of
glucose, flocculation

Saccharomyces
cerevisiae

Dependence on Hsp104,
inheritance, infectious

[60, 72]

[PSI+] Sup35 Translational
termination

Translational read-through Saccharomyces
cerevisiae

Amyloid, Sup35C assay,
dependence on Hsp104,
inheritance, infectious

[60, 67, 73,
74]

PrP Sc PRNP Preserves synaptic
structure and
function

Fatal neurodegenerative diseases Human, sheep, cattle,
deer, mink, felines

Self-templating, detergent
and protease resistant
amyloid fibers, infectious

[75]

[RNQ+] Rnq1 Unknown Cross-seeding other prions Saccharomyces
cerevisiae

Amyloid, Sup35C assay,
dependence on Hsp104,
inheritance, infectious

[60, 67, 73,
74]

[SWI+] Swi1 Transcriptional
regulation,
nucleosome
remodeling

Poor growth on non-glucose car-
bon sources, abolished multicellu-
lar features

Saccharomyces
cerevisiae

Amyloid, Sup35C assay,
dependence on Hsp104,
inheritance, infectious

[60, 67, 73,
74]

[URE3] Ure2 Gln3 repressor Utilization of poor nitrogen
sources in the presence of
ammonium

Saccharomyces
cerevisiae

Amyloid, Sup35C assay,
inheritance, infectious

[60, 67, 73,
74]
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Table 1 Prion proteins: bona fide prions, prion candidates, and prionoids (Continued)

Prionoid Protein
determinant

Function Prion phenotype Organism Prionoid properties Reference

ASC Adaptor protein for
inflammasome
signaling

Inflammasome activation Human Non-amyloid helical
polymer, cell-to-cell
spreading
PYD domain in yeast:
Sup35C assay, detergent
resistant aggregates,
inheritance

[76, 77]

[LEF+] LEF-10 Viral late expression
factor

Downregulation of viral late gene
expression

Autographa
californica multiple
nucleopolyhedrovirus

Sup35C assay, detergent
resistant aggregates

[78]

MAVS* Signal transduction
from mitochondrial
membrane to cytosol

Activation of MAVS, initiation of
antiviral signaling

Human, mouse Self-templating, detergent
and protease-resistant fibers

[79]

[NU+] New1 PrD ATP binding cassette
protein

Susceptibility to [PSI+] induction Saccharomyces
cerevisiae

Sup35C assay, amyloid,
full New1 protein not shown
to form prions

[74, 80]
[68]

[NRP+] Nrp1** Putative RNA binding
protein

Saccharomyces
cerevisiae

Sup35C assay, detergent-
resistant aggregates, Hsp104
dependence

[68, 74]

p53 Transcriptional
regulator

Metastasis Human, mouse Large cytoplasmic inclusions,
cell-to-cell spreading

[43]

Islet amyloid
polypeptide (IAPP)

Glycemic regulation Type 2 diabetes Human, mouse Cell-to-cell spreading, self-
templating amyloid

[43]

Prion candidates Organism Reference

Amyloid A, amyloid-β, −synuclein, β2-microglobulin, immunoglobulin light chain, tau, transthyretin Human [43]

ASM4, CBK1, GLN3, GPR1, GTS1, HRP1, KSP1, LSM4, NGR1, NRP1, NSP1, PDR1, PGD1, PUB1, PUF2, RBS1, RLM1,
SAP30, YBL081W, YBR016W, YPL184C, YPR022C

Saccharomyces cerevisiae [68]

ASH1, AZF1, BUD2, CSR2, ERG11, FRE1, GMC1, HAA1, HAP4, HEH2, HRD3, ILV1, JNM1, KAP120, KAP95, MGA1,
MPH1, MRN1, MRPL10, MRS3, PBP2, PCL9, PIB1, POL32, PSP1, PUS4, RBS1, RLM1, SAP1, SBE2, SCD5, SED5,
SEN15, SLI15, SMP1, SNT1, SPC110, STE20, STE5, UBX7, ULP1, VTS1, YCK3, YGL036W, YFH1, YLR152C

Saccharomyces cerevisiae [81]

*Validation in non-native host organism. **Incomplete validation. In the prion nomenclature, brackets denote non-Mendelian inheritance and
capital letters denote dominance in crosses. Prion properties include: amyloid—prion was shown to form amyloid or detergent resistant
aggregates; inheritance—prion is inherited mitotically, meiotically, or as a fusion protein (Sup35C assay); chaperone dependence—prion is
dependent on particular chaperones for propagation. Prion candidates are proteins that cannot officially be classified as bona fide prions
because they lack experimental validation, but have the potential for inter-organismal spreading
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Proteins regulating the RNA life cycle, downstream of
transcription, are among the most prominent examples
of molecules that undergo phase separation. RNA-
binding proteins (RBPs) are particularly rich in disor-
dered, low-complexity sequences. Many RBPs possess
IDRs that have been shown to undergo liquid–liquid
phase transition in cells [20, 22, 23], thus driving the for-
mation of membraneless organelles important in RNA
metabolism (these include nucleoli, stress granules, P-
bodies, and Cajal bodies) [143]. As one example, con-
densation of components of the human miRISC complex
facilitates recruitment of deadenylation factors that pro-
mote degradation and silencing of mRNAs [144]. RBPs
have gained recent attention because, on the one hand,
their aggregation can drive the formation of these func-
tional membraneless RNP bodies, yet on the other hand,
mutations in their low-complexity sequences are causal
factors in neurodegenerative diseases, including amyo-
trophic lateral sclerosis (ALS) and multisystem
proteinopathy (MSP) [145]. Interestingly, nucleotide re-
peat expansions, one class of mutation associated with
neurotoxicity, which can cause gain or loss of function
of genes encoding RBPs, have also been shown to alter
the properties of RNAs. Specifically, repeat-containing
RNAs have been shown to form gels in vitro by creating
opportunities for multivalent base-pairing, and can accu-
mulate in aberrant and potentially toxic nuclear foci in
cells that sequester RBPs [146].

Immunity
The innate immune system is an ancient and rapid first-
line defense that higher organisms deploy to defend
against invading pathogens. This system consists of in-
terconnected signaling pathways that activate inflamma-
tory responses in an effort to eliminate the pathogen, as
well as regulate different types of cell death, such as
apoptosis and necroptosis (programmed necrosis). These
pathways must be able to be rapidly deployed, but also



Table 2 Methods to evaluate and quantify protein assemblies

In vitro:

• The canonical approach to determine the amyloid nature of a protein
aggregate is by staining with dyes, such as Thioflavin-T (ThT) and
Congo Red, which selectively intercalate into the fibril and emit fluores-
cence at specific wavelengths in a quantitative fashion [100]. ThT-
based assays can measure kinetics of aggregation in high throughput
[28, 101, 102].

• Semi-denaturing detergent agarose gel electrophoresis (SDD-AGE)
characterizes the size distribution of large, detergent-resistant aggre-
gates in cell lysates [103].

• X-ray diffraction identifies the symmetry patterns of amyloid fibrils
[104].

• Solid-state nuclear magnetic resonance (ssNMR) is used to derive the
structural properties of fibrils [105–107]. Solution NMR is used to eluci-
date the early stage dynamics of aggregate formation [108, 109], and
the dynamics of conformational changes and interactions with other
proteins [110].

• Super-resolution microscopy techniques, such as PALM and STORM,
have revealed the morphology of fibers [111] and cryo-electron micros-
copy has recently produced high-resolution images of protein aggre-
gates [112, 113], all in fixed cells.

In vivo:

• Dynamic properties of protein assemblies can be studied with
microscopy techniques, such as fluorescence recovery after
photobleaching (FRAP) [114] and Forster resonance energy transfer
(FRET) [32].

• DAmFRET enables the determination of nucleation barriers of protein
assemblies in living cells [32].

• Super-resolution microscopy (PALM and STORM) has been applied to
living cells to measure the growth of amyloid fibrils [115, 116] and
visualize the nucleation process [33].

• yTRAP (yeast Transcriptional Reporting of Aggregating Protein) is a
genetic system enabling high-throughput sensing and control of pro-
tein aggregation states in yeast cells [117].

• A generic sensor of protein aggregation in mammalian cells uses a
fusion of HSP27 and GFP [118].

• Split protein systems, such as split TetR in mammalian cells [119] and a
tripartite β-lactamase in Escherichia coli [120], enable detection of the
solubility of a specific protein.

• Various phenotypic assays have been developed to detect prions by
linking prion state with a growth phenotype or reporter in yeast [54,
68, 72, 121–124].

• Transmissibility of bona fide prions is evaluated using cytoduction in
yeast [125].
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tightly controlled and balanced in order to prevent ex-
cessive inflammatory responses or cell death. Many sig-
naling components involved in these pathways are
capable of oligomerization to form higher-order assem-
blies, sometimes generically referred to as signalosomes
[147]. This capacity for oligomerization is an important
mechanism for increasing specificity of and amplifying
signal transduction [76].
One prominent example is the RIP1/RIP3 necrosome

mediating programmed necrosis, a form of cell death
(distinct from apoptosis) that represents an important
host defense mechanism [128]. Here, the RIP1 and RIP3
kinases form a functional amyloid-based signaling com-
plex to trigger programmed necrosis. Importantly, RIP1
and RIP3 kinase activation is required for this amyloid
complex formation, which in turn can further enhance
kinase activation through phosphorylation, thereby amp-
lifying/propagating the pronecrotic signal.
Another key host defense mechanism is activation of in-

flammatory responses. This is carried out by the inflamma-
some complex, which translates pathogen and cellular
danger signals recognized by sensors, such as NLRP3, into
inflammatory responses through the adaptor protein ASC.
Intriguingly, ASC was shown to be a bona fide prion in yeast
[76, 77, 129]. Thus, in response to upstream sensors, initial
oligomerization of ASC can result in prion-like nucleation;
this in turn enables the templating of other ASC molecules
to form large polymers capable of robustly recruiting
caspase-1 molecules to induce their activation and propagate
the inflammatory signal. Similarly, viral infection triggers the
prion-like aggregation of the mitochondrial antiviral-
signaling (MAVS) adaptor protein into fibrillar structures,
which in turn recruit other soluble MAVS proteins, amplify-
ing and stabilizing the antiviral response [76, 148]. These ex-
amples highlight how prion-like polymerization may provide
a (evolutionarily conserved) mechanism for highly sensitive
and robust response to cellular signals.

Memory
One of the most fundamental and remarkable aspects of
organismal behavior is the ability to make memories of
past events, and to subsequently modify behavior by
learning. Cells have multiple mechanisms for making
molecular memories that outlast the half-life of proteins.
One mechanism is prion-like aggregation [130, 149]. In
animals, the cytoplasmic polyadenylation element bind-
ing protein 3 is a highly conserved RBP (CPEB in Aply-
sia, Orb2 in Drosophila, and CPEB3 in mice) that plays
a role in the formation of new memories [56, 150, 151].
Specifically, prion-like aggregation of CPEB3 in the
synapses of stimulated neurons leads to the formation of
RNA granules that bind and drive translation of mRNAs
involved in synaptic plasticity and growth [57]. CPEB3,
and possibly also other RBPs, represents a fascinating
example of how conformational changes at the molecu-
lar scale can produce macroscopic changes in animal
behavior, linking molecular self-replication, cellular
memory, and neuronal memory.

Evolution
Since their initial discovery, we have come to understand
prions not only as causative agents of disease, but also as
sources of new and sometimes adaptive cellular func-
tions [47, 66, 88, 121, 136, 152–157]. This has been most
apparent in yeast, where several central regulators of in-
formation flow and metabolism have been determined to



Fig. 2 Protein assemblies play important roles in a variety of critical cellular processes. a In eukaryotic transcription, co-activators and transcription
(txn.) factors form highly dynamic protein condensates that recruit RNA polymerase II (RNA pol II) and drive robust gene activation. b RNA-binding
proteins (RBPs) and RNAs coalesce to form RNP granules, which serve different RNA processing functions, such as mRNA storage and degradation,
ribosome biogenesis, and localized translation. In one intriguing example, prion-like aggregation of CPEB3 promotes translation in activated
synapses to potentiate long-term memory. c Higher-order assemblies play key roles in innate immunity. For example, prion-like polymerization of
the MAVS adaptor protein in response to viral infection leads to amplification and stabilization of the antiviral response. d In yeast, stochastic
switching between [prion−] and [PRION+] states in a population of cells enables phenotypic diversification and may promote survival in uncertain
environments. Figure adapted from Fig. 1B in [136]. In prion nomenclature, brackets denote non-Mendalian inheritance and capital letters denote
dominance in crosses
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be prion proteins (Table 1). A canonical example is the
S. cerevisiae prion [PSI+], formed by the translation ter-
mination factor Sup35 [48]. At a low frequency, Sup35
converts from a soluble, functional conformation to a
self-templating prion. This allows ribosomes to read
through stop codons, uncovering previously silent
genetic variation on a genome-wide level, and thus
producing diverse and heritable phenotypes that are
often disadvantageous but that can provide advantages
in particular environments [158, 159]. This has led to
the provocative hypothesis that yeast prions may serve
as adaptive ‘bet-hedging’ elements to promote cellular
survival in stressful environments [160]. In support of
this was the discovery that hundreds of wild yeast strains
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contain heritable prion states, which frequently confer
beneficial phenotypes under selective conditions [88].
Other notable examples of yeast prions that enable

epigenetic switching to endow cells with beneficial phe-
notypes in specific metabolic and environmental condi-
tions include [URE3] [47], [MOT3+] [88], and [GAR+]
[161]. In particular, the [SWI+] prion formed by the yeast
Swi1 protein represents an intriguing potential example
of bet-hedging. As the main subunit of the SWI/SNF
chromatin remodeling complex, Swi1 serves as a global
transcriptional regulator. When Swi1 adopts its prion
form, a variety of phenotypes can be induced, such as
growth phenotypes on alternative carbon sources, sensi-
tivity to antifungal agents, and, importantly, abolished
adhesion to other cells or substrates [162]. By maintain-
ing a small population of [SWI+] cells, an isogenic popu-
lation can effectively safeguard against unpredictable
environments via these diverse and potentially beneficial
phenotypes, for example, by providing an opportunity
for non-adherent [SWI+] cells to disperse to new loca-
tions to ensure re-population and survival [160].
Recently, the first bacterial protein capable of prion

formation (the Clostridium botulinum global transcrip-
tional terminator Rho [59]) and the first viral protein
exhibiting prion-like self-propagating activity (formed by
the baculovirus LEF-10 protein [78]) were discovered,
suggesting that prion-based mechanisms for phenotypic
diversification may be more pervasive than originally
thought. We expect that more of these elements will be
discovered with the development of new genetic tools to
characterize and validate putative prions from other or-
ganisms [117, 163].
Synthetic biology of protein assembly
Synthetic biology aims to synthesize complex biological
function using basic molecular parts, a bottom-up ap-
proach that has been productively used to study design
principles of cellular systems and purposefully manipu-
late them for useful applications [164–168]. While the
field has undergone tremendous growth [169], there are
still many challenges and limitations for engineering bio-
logical systems with predictive and ambitious functions
[170]. Relatedly, considerable biology remains largely
untapped from an engineering perspective. One pri-
mary example is protein self-assembly and aggregation.
Nature has ingeniously exploited this seemingly simple
and ancient form of establishing molecular interactions
to create emergent systems that accomplish many
complex cellular tasks. Synthetic biologists would be
well-served to bring these powerful elements into the
engineering toolbox and to develop methods for ma-
nipulating protein assembly systems for study and ap-
plication (Fig. 3).
From sequence to behavior
One vision of synthetic biology is programming cellular
behavior entirely at the level of DNA sequence. This
presents an immediate challenge for engineering protein
self-assembly systems, as these require an understanding
of protein structure and stability and often rely on disor-
dered and highly flexible structures. Indeed, while
powerful software suites like Rosetta, I-TASSER, and
QUARK can predict 3D structure of folded proteins
based exclusively on amino acid sequence [171, 172],
disordered proteins remain a challenge. To address this,
computational approaches using hidden Markov models
[173] and machine learning [174] have been developed
to score propensity for properties, such as disorder
[175], secondary structure [174], aggregation [176], prion
behavior [68, 84–86, 177], and propensity to phase-
separate [178, 179]. Genome-wide searches for PrDs
utilizing such computational approaches have enabled
the successful identification of new yeast prions, such as
[MOT+] [68] and [RNQ+] [180].
One approach often used by synthetic biologists to en-

gineer new synthetic protein systems is to leverage the
functional modularity of certain protein domains. Fortu-
nately, many PrDs have been found to be modular,
which allows transfer of prion-forming capability onto
new proteins by simply fusing them to PrDs [181]. These
fusions can allow the activity of a protein to be regulated
in a manner that depends on the prion conformation
[68]. Moreover, because of the modular nature of PrDs,
synthetic proteins harboring multiple PrDs could be
generated, enabling artificial cross-seeding of aggregates
and the study of higher-order prion interactions [117].
Another approach for engineering self-assembling pro-

tein systems based on sequence is to take advantage of
studies using de novo peptides [182–184]. These studies
have shown that tunable and reversible phase behaviors
can, to some degree, be encoded into de novo synthetic
proteins by combining low complexity domains in par-
ticular arrangements [183]. Using this knowledge, re-
searchers have generated synthetic peptides with
predictable phase behaviors [8, 182, 183, 185], synthetic
prion domains [186], as well as redesigned bacterial
amyloid proteins for application as structural biomate-
rials [187, 188], adhesives [189], and nanowires [190].
For example, researchers fused the Escherichia coli CsgA
protein, responsible for curli amyloid fiber formation, to
the mussel foot protein (Mfps) in order to create a syn-
thetic protein capable of generating a fibrillary structure
of adhesive proteins that outperforms mussel foot in ad-
hesion to underwater surfaces [189].

Making circuit and pathway connections
One focus of synthetic biology is the construction of
genetic circuits, networks of interacting regulatory



Fig. 3 Application of higher-order protein assembly in synthetic biology. a Synthetic membraneless organelles, formed using proteins that undergo phase
separation, can be used to enforce orthogonality of regulatory connections and biochemical reactions. This principle was recently used to create synthetic
orthogonally translating (OT) organelles as sites for producing proteins that incorporate unnatural amino acids. b Exacting control over the formation of
intracellular protein assemblies using optoDroplets. In this scheme, IDRs fused to light-inducible oligomerization domains enable the induction of phase
separation by illumination with light. c Protein assembly systems as the basis of sensing and signal processing devices. Left: Protein assemblies can undergo
dramatic changes in structure in response to small variations in environmental conditions, enabling exquisite sensing capabilities. Right: Changes in aggregation
can be used to control downstream cellular processes. In the yTRAP system, the solubility state of an assembly domain is coupled to the activity of a synthetic
TF and consequent activation of GOIs. d Prion proteins can exist stably in distinct conformational states, offering the potential to create synthetic memory
devices based on prion switching
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molecules that can manipulate information flow in living
cells. Fundamental to genetic circuit design is the ability
to make user-defined molecular interactions. Owing to
the relative ease of engineering specific and orthogonal
protein–DNA interactions, synthetic biologists have
made great strides in building and exploring applications
of transcriptional circuits [170, 191–197]. Building
blocks for these circuits include naturally occurring mi-
crobial transcription factors (TFs) with well-defined
DNA binding motifs as well as synthetic TFs that use
programmable DNA-binding domains, such as zinc fin-
gers, TALEs, or CRISPR/dCas9 [198–200]. Similarly,
synthetic RNA-based circuits have been designed to
great effect by exploiting simple Watson–Crick base-
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pairing interactions [201–204]. On the other hand, en-
gineering protein-based systems, such as synthetic sig-
naling circuits, has been more limited in part because of
the inherent difficulty in making programmable pro-
tein–protein interactions [205, 206]. To date, synthetic
biologists have relied on a relatively limited set of well-
characterized, folded interaction domains to accomplish
this task, for example, using leucine zippers and PDZ
domains to enable recruitment of signaling proteins and
pathway modulators [207–209]. More recent work has
begun to expand this protein toolkit to viral proteases
[210, 211] and even synthetic phospho-regulon motifs
for building phosphorylation circuits [212].
Protein self-assembly could be used to enhance many

of these efforts. For example, in eukaryotic transcrip-
tional circuits, it is well-appreciated that genes are natur-
ally regulated by large, multivalent TF complexes, rather
than through the one-to-one interactions commonly
used in synthetic circuits. The regulation of genes via
multivalent assemblies provides opportunities to inte-
grate many signals at a promoter and to achieve highly
cooperative (‘digital’) transcriptional responses. In an ex-
citing and extreme case of this, condensate formation at
genomic loci has recently been shown to be associated
with eukaryotic transcription initiation, and has been
implicated in enabling highly cooperative and robust
gene regulation [126, 137, 139]. Our group recently pio-
neered a method for engineering synthetic, multivalent
TF complexes that utilize cooperative assembly to regu-
late genes, and showed that cooperative TF assemblies
enable the construction of genetic circuits with complex
signal processing behavior in yeast [192]. This frame-
work could be extended to incorporate post-
translationally regulated IDRs [213] in order to explore
whether transcriptional condensates can be synthetically
engineered and used to enable new forms of transcrip-
tional control [214].
Protein self-assembly also represents an alternative

mode of programming regulatory connections for syn-
thetic protein circuits, one that can efficiently facilitate
the creation of many multivalent interactions. For ex-
ample, by creating fusions to modular IDRs, signaling
proteins can be directed to scaffold or phase separate,
thereby increasing the specificity and efficiency of a sig-
naling task. Moreover, the formation of these assemblies
can be controlled in a variety of ways. One interesting
way is through post-translational modifications, which
are known to dramatically alter the biophysical proper-
ties of an IDR. For example, phosphorylation can dis-
mantle RNA granules [215], while methylation [216],
acetylation [213], and SUMOylation [217] can promote
the dissolution of several types of condensates. Exploit-
ing these post-translational modifications, either via
synthetic or endogenous mechanisms, could provide a
means to control the formation and reversal of protein
assemblies that bring together regulatory proteins of
interest.

Constructing synthetic organelles
The ability to control the formation of assemblies offers
the intriguing possibility for compartmentalizing bio-
chemical reactions into spatially separated “synthetic or-
ganelles”. These could be programmed to serve as
factories for the production of complex chemicals [218]
or signal transduction hubs in synthetic signaling cir-
cuits, or spatially separate synthetic processing units in-
side the cell. This strategy offers a number of unique
advantages for synthetic biology. First, constraining reac-
tion components into a small compartment creates a
“reaction crucible” that can increase the efficiency of en-
zymatic reactions [219]. Second, biochemical specificity
is inherently enforced by spatially separated compart-
ments, thus effectively insulating synthetic circuits and
addressing a key challenge in synthetic biology of com-
ponent cross-talk. Finally, multiple co-existing assem-
blies could in principle be encoded in a single cell, each
performing new and different reactions. In a very recent
and striking example of this concept, researchers de-
signed an artificial membraneless organelle capable of
sequestering and supporting orthogonal protein transla-
tion machinery (mRNA, suppressor tRNA, unnatural
amino acid tRNA synthetase, and ribosomes) to effi-
ciently produce proteins that incorporate unnatural
amino acids [220] (Fig. 3).
The formation of intracellular organelles can be synthetic-

ally and spatiotemporally controlled by new methods, such
as optoDroplets [219]. OptoDroplets are composed of a pro-
tein fusion between the IDRs of RBPs, such as FUS and
DDX4, and the blue-light inducible oligomerization domain
CRY2. Light-stimulated oligomerization of CRY2 serves to
increase local concentration and nucleate the formation of
assemblies. Critically, the assembly properties of optoDro-
plets can be adjusted based on the protein fusion and the
light stimulation. Low intensity light and short exposures
lead to reversible droplets, whereas high intensity or in-
creased exposure induces formation of more stable, amyloid-
like aggregates.
Synthetic organelles that carry out desired reactions

can also be engineered with other classes of self-
assembling proteins, including modular folded proteins.
One notable example involves the encapsulin family of
proteins [221]. These bacterial proteins assemble into
large, hollow nanocompartments, which can be loaded
with cargo proteins that have been equipped with an en-
capsulation tag [222]. By tagging enzymes of a biochem-
ical pathway, a desired reaction can be physically
constrained and efficiently performed within the nano-
compartment [223].
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Cellular sensing and signal processing
Cells have exquisite sensitivity for a diverse array of
chemical and biological stimuli and the ability to actuate
appropriate responses to these signals. Synthetic biolo-
gists aim to co-opt these systems in order to create engi-
neered cellular sensors and signal processing devices
that are responsive to desired ligands and stimuli.
Protein assembly systems have unique features that can
potentiate these efforts. For example, protein assemblies
can undergo dramatic changes in structure in response
to small variations in environmental conditions. A strik-
ing example of this exquisite sensitivity involves the
yeast stress granule polyA-binding protein 1 (Pab1),
which undergoes phase separation and hydrogel forma-
tion in response to increases in temperature [23]. Specif-
ically, in cells, this protein is soluble in the cytoplasm at
30 °C and readily forms droplets at 46 °C. Within this
physiological range of temperatures, Pab1 was shown to
form droplets of increasing size as temperature was in-
creased in in vitro studies.
In addition to considering assemblies as direct sensors

of physiological changes, significant technological efforts
are underway to enable sensitive detection and process-
ing of aggregation states inside living cells. One recently
developed technology, termed distributed amphifluoric
FRET (DamFRET), uses fusions to a photoconvertible
fluorophore to quantify protein aggregation states based
on FRET signal [32]. DamFRET can provide information
about the proximity and conformation of protein mono-
mers as a function of their concentration. As such, it is
useful for quantifying the kinetics of nucleation of a pro-
tein aggregate in cells. Nucleation is a rare, kinetically
slow, and unfavorable step that precedes a highly favor-
able elongation step, leading to a stable aggregate. Since
most proteins exist in solution at concentrations near
the nucleation barrier, stochastic nucleation events may
occur. By increasing protein concentration, the probabil-
ity of nucleation events increases in a way that is intim-
ately related to the sequence properties of the
biomolecule. By evaluating how mutations in protein se-
quence affect the critical concentration for nucleation,
DamFRET experiments are able to elucidate the se-
quence properties that affect nucleation kinetics and
therefore favor or disfavor protein aggregation.
Changes in aggregation can also be coupled to and

used to control downstream cellular processes. One ex-
ample of this capability was demonstrated in the design
of the yTRAP (yeast Transcriptional Reporting of Aggre-
gating Protein) system, a genetic tool we developed for
high-throughput sensing and control of protein aggrega-
tion states in yeast cells [117] (Fig. 3). Specifically, by
fusing an aggregation-prone protein domain of interest
to a synthetic TF, the activity of the synthetic TF is
coupled to the solubility state of the protein domain of
interest. Therefore, in the “soluble state”, the yTRAP
module is free to regulate its cognate synthetic reporter
locus, whereas in the “aggregated state”, the module par-
ticipates in cellular aggregation quantitatively affecting
the transcriptional activation. This framework enables
high-throughput genetic and chemical screens to dis-
cover aggregation-prone domains and modulators of
their aggregation. Additionally, this mechanism could be
adapted to create more elaborate synthetic protein as-
sembly systems that control other cellular processes.

Engineering memory and inheritance
Memory is fundamental to computation by man-made
devices. Similarly, the ability to store memory of past
events is a universal feature of living systems, and is a re-
quirement for a number of fundamental biological pro-
cesses, such as environmental adaptation, cellular
differentiation, and multicellular development. Biological
memory in this case is defined as the conversion of a
transient signal into a sustained response. Implementing
synthetic systems that achieve cellular memory has been
a long-standing goal of synthetic biologists, dating back
to the origins of the field. Among the first artificial gen-
etic circuits reported was the genetic toggle switch, in
which two bacterial transcriptional repressors were ar-
ranged in a mutual inhibitory network to give rise to
bistability, i.e., a system that can switch between two
stable states [224]. Since then, many other molecular
mechanisms for encoding cellular memory, naturally in-
spired or otherwise, have been implemented and ex-
plored [225, 226]. These can be broadly divided between
epigenetic (transcriptional feedback loops, heritable
chromatin changes, etc.) [227–229] and inducible DNA
mutations/alterations [230–234]. Taken together, this
work has yielded foundational synthetic elements for
building more sophisticated biological systems that en-
able cell state changes, memory of gene expression
states, and cellular devices that record lineage and envir-
onmental information.
Yeast prions have several properties that, in principle,

make them excellent candidates for building stable syn-
thetic memory [225]. First, they exhibit bistability, mean-
ing that a given cell can stably exist in either a [prion−]
or [PRION+] phenotypic state. Second, cells can revers-
ibly transition between the two stable states in all-or-
none fashion [235]. Third, the states propagate for long
biological time scales: because the aggregated prion con-
formation is transmitted through the cytoplasm, these
confomers and their associated phenotypes are robustly
inherited by progeny. Taken together, this forms the
basis of bistable switches that can set, reset, and store
long-lived biological memory [236]. These capabilities
were recently demonstrated in the construction of a syn-
thetic memory device that recorded a transient
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environmental event into a population of yeast cells
using prion switching [117]. Specifically, by placing ex-
pression of a novel [PSI+]-inducing factor under the con-
trol of a temperature-sensitive promoter, cells could be
programmed to remember a short exposure to elevated
temperature over ten generations later. These types of
prion-based memory elements could be deployed in
populations to record and report on environmental vari-
ables experienced in natural or industrial contexts, such
as in industrial bioreactors.
Prion conformations and their associated phenotypes

are inherited in a dominant non-Mendelian fashion [48].
As such, they effectively act as the epigenetic analogs of
gene drives, genetic systems that bias the standard Men-
delian inheritance of a specific allele to increase its
prevalence in a population [237]. Manipulating these ele-
ments could thus open up the possibility for driving or
reshaping the inheritance of an epigenetic trait in a
population. As a first step toward this goal, prion alleles
with the propensity to cure prions were identified and
used to construct anti-prion drives (APDs), systems that
can reverse the dominant inheritance of prions (and in
some cases eliminate them) [117]. In the future, engi-
neered strains carrying prion and APD elements could
be deployed in wild-type populations to compete and
perform population-level control of desired epigenetic
traits. Building out this toolkit of manipulable prion-like
elements should provide synthetic biologists with new
strategies for engineering computational and evolution-
ary functions into cells and populations.

Concluding remarks
Protein self-assembly remains a little explored and
exploited mechanism for synthetic biology and cellular
engineering; but it could offer many advantages, such as
the ability to program emergent nonlinear behaviors and
catalyze drastic cellular changes with a relatively small
set of constituent parts. However, the unique properties
of these systems can also make them difficult to design
and manipulate. For example, challenges associated with
designing and manipulating disordered and self-
assembling proteins include: (1) The high false positive
rate of structure prediction algorithms. This necessitates
experimental validation of assembly formation for each
predicted protein or domain. (2) Predicting and design-
ing the stoichiometry of disordered protein assemblies.
This will require an increased understanding of the basic
biophysics of assembly formation, or either focusing on
applications that are insensitive to stoichiometry or
using structured protein domains to introduce well-
defined molecular interactions. (3) Lack of methods for
precisely controlling formation and dissociation of as-
semblies. Here, the use of engineered post-translation
modifications known to modulate assembly formation
could be highly advantageous, but will require the devel-
opment of synthetic tools for exacting control over these
signaling events. Overall, through the combination of
synthetic biology manipulation, quantitative studies, and
an increased understanding of their underlying biophys-
ics, we can make possible an era of creating designer
protein assemblies for application and study.
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