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Abstract

Background: Multicellular organisms are characterized by a wide diversity of forms and complexity despite a
restricted set of key molecules and mechanisms at the base of organismal development. Development combines
three basic processes—asymmetric cell division, signaling, and gene regulation—in a multitude of ways to create this
overwhelming diversity of multicellular life forms. Here, we use a generative model to test the limits to which such
processes can be combined to generate multiple differentiation paths during development, and attempt to chart the
diversity of multicellular organisms generated.

Results: We sample millions of biologically feasible developmental schemes, allowing us to comment on the
statistical properties of cell differentiation trajectories they produce. We characterize model-generated “organisms”
using the graph topology of their cell type lineage maps. Remarkably, tree-type lineage differentiation maps are the
rarest in our data. Additionally, a majority of the “organisms” generated by our model appear to be endowed with the
ability to regenerate using pluripotent cells.

Conclusions: Our results indicate that, in contrast to common views, cell type lineage graphs are unlikely to be
tree-like. Instead, they are more likely to be directed acyclic graphs, with multiple lineages converging on the same
terminal cell type. Furthermore, the high incidence of pluripotent cells in model-generated organisms stands in line
with the long-standing hypothesis that whole body regeneration is an epiphenomenon of development. We discuss
experimentally testable predictions of our model and some ways to adapt the generative framework to test additional
hypotheses about general features of development.
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Background
Contrary to intuition, the key molecules and mechanisms
that go into the development of a human (>200 cell types
[1]) are the same as those required to produce a hydra (just
7 cell types [2]). More generally, there is a huge diversity of
forms and complexity across multicellular organisms, but
key molecules of development in Metazoa and in multi-
cellular plants are conserved across the respective lineages
[3]. The basis of this diversity is illustrated by mathe-
matical models of development which explore possible
mechanisms of producing distinctive patterns found in
different organisms, for example, segments in Drosophila
[4], stripes in zebrafish [5], and dorso-ventral patterning
in Xenopus larvae [6]. At a much broader scale, single-cell
transcriptomics and lineage tracing techniques have made
it possible to map the diversity of forms of extant mul-
ticellular organisms [7]. Here, we ask about the limits of
diversity that development can generate. And reciprocally,
we ask what is common among all organisms that undergo
development.
Biological development is modular [8], and its out-

come rests on gene regulation that is switch-like, rather
than continuous [9, 10]. Keeping this in mind, we con-
structed a generative model of development with three
basic ingredients: asymmetric cell division, signaling,
and gene regulation [11]. Although much is known
about the detailed molecular machinery of develop-
ment [12], naturally, these details come from studies
on a few model organisms. We choose to not include
all these important particular features in our model
for the sake of efficiently and systematically sampling
a broad space of developmental schemes. Nonetheless,
our model is capable of expressing specific examples of
known developmental pathways, which we demonstrate
using the Drosophila segment polarity network analyzed
in [9].
We encode organisms in our model as lineage graphs,

which show differentiation trajectories of the various cell
types in the organism. Traditionally, mathematical mod-
els in the literature elucidate developmental mechanisms
responsible for known differentiation trajectories [13].
Here, we take the inverse approach, and at a much broader
scale, we sample across millions of biologically plausi-
ble developmental rules and map out the lineage graphs
they produce. We purposely do not include selection
in the model since it is almost impossible to conjec-
ture and quantify all potential selection factors, such as
efficiency, robustness, evolvability, and their intertwined
fitness effects on the developmental program. Instead,
we sample developmental rules uniformly to provide an
extensive chart of all possible programs without weighing
their relative advantage. Our approach allows us to iden-
tify emergent properties that arise from combinations of
the ingredients of biological development. We anticipate

that such properties are likely to be universal, regardless
of the selective pressures faced by these organisms.
By tuning just three biologically meaningful

parameters—which control signaling, cellular connectiv-
ity, and cell division asymmetry—our model produces a
rich collection of organisms with diverse cell type lineage
graphs, ranging from those with a single cell type to
organisms with close to a hundred cell types. Given the
coarse-grained nature of the model, we do not expect
model-generated organisms to resemble real organisms
in all aspects. Instead, we examine and find hallmarks
of multicellular organisms which originate from the
fundamental features of development included in the
model.
Notably, tree-like lineage graphs are rare in our model.

This could indicate that, contrary to popular belief, lin-
eage graphs of real organisms are not tree-like; they are
more likely to be directed acyclic graphs (DAGs). Addi-
tionally, an unanticipated outcome of our model is that
most organisms we generate are capable of whole-body
regeneration. Our result supports the hypothesis that
regeneration is an epiphenomenon of development, rather
than a function that evolved separately [14]. The model
also produces concrete predictions, and we discuss how
these predictions can be experimentally tested on animals
like Planaria and Ascidia, which are well-known models
of animal regeneration [15, 16].

Generativemodel of development
Organisms in the model contain genomes with N dis-
tinct genes. By “genes,” we refer not to single genes, but to
gene regulatory modules that control cellular differentia-
tion [17]. These genes encode for cell fate determinants.
In different cell types of an organism, different sets of
determinants can be present (1) or absent (0). We repre-
sent a cell state as a N-length binary string. For example,
for N = 3, a cell in state C =[ 101] contains determi-
nants 1 and 3 but not the determinant 2. (In Additional
file 1: Section 1.1, we demonstrate how we can also use
“determinants” to encode spatial information using the
well-known Drosophila segment polarity network as an
example.)
Cell types are ordered according to standard binary

ordering, i.e., the cell [101] can equivalently be written as
C5. We only look at whether a given cell type is present
or absent in organisms, rather than the number of cells of
any given cell type. Therefore, since each of the N deter-
minants can be either 1 or 0, there are at most 2N distinct
cell types in an organism and 22N cell type compositions
for organisms (Fig. 1a). Note that the number of distinct
organisms is larger than 22N , since different organisms
may have the same set of cell types but distinct lineage
graphs (Fig. 1g).)
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Fig. 1. Generative model. a An organism with N = 3 genes and two cell types. Circles represent all possible cell types. The organism is composed of
cell types represented by white circles and does not contain the gray cell types. Binary strings written inside the circles represent the presence (1) or
absence (0) of determinants in those cell types. b–e The rules for the development of the organism in a. b Cell division matrix CD. In the model,
daughter cell types cannot contain determinants not present in the mother cell type; therefore, in the figure, such positions in CD are represented
by empty boxes. For all j such that CD(i, j) = 1, cell type i produces cell type j upon cell division. c Signaling matrix SG. Determinants 1 and 3, which
are labeled in blue, act as signaling molecules. d Signaling adjacency matrix A. A(i, j) = 1 implies that cell type j receives all signals produced by cell
type i. The rows for cell types [000] and [010] are grayed out, since these cells produce no signaling molecules. e Gene regulation matrix GR.
GR(i, j) = 1 implies that cell type j is a stable cell type, and cell type imaps to cell type j. f Schematic of “organismal development” in the model. All
cell types synchronously undergo cell division according to CD; the daughter cells exchange signals according to SG and A, and cells respond to
signals through gene regulation according to GR. The process repeats until it reaches a steady state. Here, we show how the homeostatic organism
in a is obtained using the developmental rules matrices in b–e. g Lineage graph of the homeostatic organism in a

We represent development as a repeated sequence of
cell division, intercellular signaling, and gene regulation.

Cell division
Cells in the model undergo asymmetric cell division,
where daughter cells inherit determinants from the
mother cell in an asymmetric manner. That is, a deter-
minant that is present in the mother cell may not be
inherited by all its daughter cells due to unequal or insuf-
ficient partitioning during division [18]. In the model,
asymmetry of cell division is controlled by the parameter
Pasym ∈[ 0, 1], which is the probability that a daughter cell
does not inherit a given determinant from the mother cell;
Pasym = 0 implies symmetric division, where all daugh-
ter cells inherit all determinants from the mother cell; and
at Pasym = 1, no daughter cell inherits any determinants
from the mother cell.
Although in real multicellular organisms, a single cell

only divides into two daughter cells; a single cell type may
represent a population of cells, which need not all behave
in the same way [19, 20]. We capture this heterogeneity

by allowing cells in our model to divide into more than
two types of daughter cells. For any given organism in the
model, we predetermine the sets of daughter cells pro-
duced by any cell type randomly according to Pasym and
encode this in a binary matrix CD (Fig. 1b).
In real organisms, asymmetrically segregating determi-

nants actively influence functionality of cells. Some deter-
minants modulate the response of cells to signals, most
famously, the protein Numb, which is an inactivator of
Notch signaling, is asymmetrically segregated during the
division of neural, muscle, and hematopoeitic stem cells
[18]. Other asymmetrically segregating proteins act as sig-
nalingmolecules themselves, for example, the protein Dll1
segregates asymmetrically during neural stem cell division
and is sent as a signal to neighboring quiescent neural
stem cells [21].

Signaling
The number of distinct signaling molecules in an organ-
ism is controlled by the parameter Psig ∈[ 0, 1], which
is the probability that any determinant is a signaling
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molecule. Parameter Padj ∈[ 0, 1] controls signal recep-
tion; a cell type Ci can receive signals from a cell type
Cj with probability Padj. Additionally, during simulations,
cells can only receive signals from other cell types present
in the same time step, and recipient cells receive all the
signals produced by donor cells. As in the case of cell divi-
sion, for each organism, the set of signaling molecules,
and the pairs of cells that are allowed to exchange signals
are predetermined and stored in a binary vector SG and a
binary matrix A, respectively (Fig. 1c, d).

Gene regulation
The combination of determinants inherited by a daughter
cell during cell division and those received as signals from
other cells present in the same time step together regu-
late gene expression in this cell. Wemodel gene regulation
as random Boolean networks (RBNs) [22]; here, the tran-
scriptional states of genes depend on each other through
arbitrarily complex Boolean rules. Updates in gene states
lead to updates in the states of determinants, which in turn
result in updates in cell types. In this scheme, some cell
states update to themselves (stable cell type), and other
cell states ultimately update to one of the stable cell states;
that is, they lie in the basin of a stable cell type. Note that
a cell type in the model need not be a fixed point (single
cell state) of the gene regulatory network, it can also be
an oscillation (multiple cell states) [23]. In the latter case,
the cell type is represented by all cell states that are part of
the oscillation. Here, we are only concerned with the set
of cell states in the stable state, and not with the sequence
of cell states in oscillations.
In the model, instead of encoding RBNs explicitly, we

describe gene regulation directly as the set of stable cell
types and their basins. Stable cell types and cell states
in their basins are both chosen uniform randomly, as
described in detail in the “Methods” section. Generally,
gene regulatory networks with higher N have more stable
cell types, but basin sizes, on average, remain small (1–2
cell states) across all N (Additional file 1: Figure S3). For
each organism, we predetermine its gene regulation and
encode it in a binary matrix GR (Fig. 1e). The matrices
CD, SG, A, and GR should be viewed as summaries of all
processes that determine cell fate during the lifetime of
an organism, and a simulation of the model represents a
recapitulation of all these events. Our model is determin-
istic; for a given organism, thematrices CD, SG,A, and GR
are independently generated, and they remain fixed for
the rest of the simulation. The model is also synchronous;
all cell types in the organism divide simultaneously, after
which the developing organism is composed only of all
daughter cells produced in this step. These daughter cells
simultaneously exchange signals, in response to which the
states of all the determinants, in each daughter cell are
updated simultaneously according to GR (Fig. 1f ). A time

step in themodel represents a single repeat of cell division,
signaling, and gene regulation.
The process of development ends when the set of cell

types in a developing organism repeats itself. We call this
set of cell types the steady state of the organism, and the
number of time steps between two repeats the period of
the steady state. Since this is a finite and deterministic
system, starting from any initial condition, such a steady
state can always be reached. We call period 1 steady states
homeostatic organisms (Fig. 1f ). Although organisms with
complex, period >1 life cycles, such as land plants with
alternation of generation [24] exist in nature, in this
study, we focus on homeostatic organisms. We represent
homeostatic organisms as their cell type lineage graphs
(Fig. 1g). The nodes of this graph represent cell types in
the homeostatic organism, and directed edges represent
lineage relationships between these cell types. Let some
cell types A and B in a homeostatic organism be repre-
sented by nodes Va and Vb, respectively, in its lineage
graph. Then, there is an edge from Va to Vb if one of the
daughter cells of A gives rise to B after one round of cell
signaling and gene regulation.
In the model, all the cell state transitions that lead to

the homeostatic organism starting from an initial cell type
represent the process of development, while the home-
ostatic organism itself represents the product of devel-
opment. In this work, we study the properties of these
homeostatic organisms and their lineage graphs.

Results
Homeostatic graphs span a large range of sizes
We looked at millions of homeostatic organisms, span-
ning systems with N =[ 3, 4, 5, 6, 7] number of genes
(Additional file 1: Figure S3a). 99.88% of these homeo-
static organisms had lineage graphs with a single con-
nected component. In the following, we describe the
lineage graphs of these single-component homeostatic
organisms. While a majority of graphs in our data are
small (1–5 cell types), the largest graphs have 89 cell
types (Fig. 2d, Additional file 1: Figure S4a). Across dif-
ferent organisms, the number of cell types in lineage
graphs increases with the diversity of daughter cell types
produced (Additional file 1: Figure S4b,c) and decreases
with the level of signaling (Additional file 1: Figure
S4d,e,f ). Naturally, the number of edges in lineage graphs
increases with the number of cell types, but this increase
is slower than that expected for simple random graphs
(Additional file 1: Figure S5).

Diversity of lineage graph topologies and the dearth of
tree-like lineage graphs
Paths in a lineage graph represent differentiation tra-
jectories of the organism’s cell types. Here, we classify
lineage graphs into five topologies, each of which con-
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Fig. 2. Diversity of lineage graphs. A total of 4,852,994 graphs were used to generate the following figures. a Abundance of lineage graph
topologies. The bar represents the fraction of graphs that have a given topology. Graphs given along the bar are examples of model-generated
lineage graphs. Parameters (N, Pasym, Psig, Padj) used to generate these graphs: unicellular (3, 0, 0, 0), cyclic (4, 0.2, 0, 0.5), chain (5, 0, 0.4, 0.9), tree (6, 0,
0.4, 1), and DAG (4, 0.1, 0, 0.4). Colors indicate lineage graph topology: unicellular: dark gray; cyclic: light gray; chain: red; tree: black; and DAG: blue. b
Stacked histogram for topologies of lineage graphs obtained with different N. Heights of colored blocks represent the proportions of corresponding
topologies. c Distribution of basin sizes in the gene regulatory networks across different lineage graph topologies. For any given topology, the
height of bars indicates the fraction of lineage graphs of that topology that were obtained using a gene regulatory network whose average basin
size is given along the horizontal axis. d Stacked histogram showing distribution of number of cell types in homeostatic organisms with lineage
graphs of various topologies. See also Additional file 1: Figure S9

tain qualitatively different paths: (i) unicellular graphs,
(ii) cyclic: multicellular graphs that contain some cyclic
paths, (iii) chains: acyclic graphs with no branches, (iv)
trees: acyclic graphs with branches, and (v) other directed
acyclic graphs (referred to here simply as DAGs): acyclic
graphs with branches and links, which are edges that
connect different branches. Links represent the con-
vergence of multiple cell lineages to the same termi-
nal cell type. We ignore self-edges during lineage graph
classification.
In our data, unicellular graphs are the most abundant

(36%). Acyclic graphs (chains, trees and DAGs) comprise
about 25% of our graphs. Of these, trees are the rarest
(1% across all graphs), and chains are the most abundant
(14.3% across all graphs) (Fig. 2a,b). We find that even
after including “acyclized” versions of cyclic graphs in our
analyses—i.e., where wemerge all nodes belonging to each
strongly connected component into single nodes—trees

are still the rarest graphs (Additional file 1: Figure S18).
Although all topologies are spread widely across param-
eter space, different topologies are enriched in different
regions of parameter space (Additional file 1: Figure S6)
and differ in their graph size distributions (Fig. 2d, Addi-
tional file 1: Figure S9). Particularly, acyclic graphs are
more likely than cyclic graphs to be generated using gene
regulatory rules where stable cell types have smaller basins
(Fig. 2c). While the lineage graph topologies obtained at
any parameter value do vary depending onGR, at the sam-
ple sizes used in this study, details of GR do not influence
the distribution of lineage graph topologies (Additional
file 1: Figure S7)). To a large extent, these topologies can
be characterized by their in-degree and out-degree distri-
butions (Additional file 1: Figure S8a,b). However, we find
that acyclic graphs are slightly more enriched in our data
than in randomized graphs with the same in-degree and
out-degree distributions (Additional file 1: Figure S8c,d).
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Real homeostatic lineage graphs
Under normal circumstances, cellular differentiation is
expected to be irreversible; therefore, we analyzed the
acyclic graphs of our model in more detail. We charac-
terize acyclic graphs on the basis of two features: number
of branches (nb = the total number of paths from root
nodes to leaf nodes in the graph – 1) and number of links
(nl = number of edges in the graph – number of edges
in the maximal spanning tree of the graph) (Fig. 3b, see
also Additional file 1: Figure S11). While for all chain type
graphs, both nl and nb equal 0, for all tree type graphs,
nl = 0 and nb > 0. In Fig. 3c, we see that the fraction of
trees in our data remains low even if we relax the above
definition of trees and allow nl to be non-zero. Even con-
sidering a threshold “treeness” as high as nl/nb = 0.5, we
find that the fraction of tree-type graphs in our data only
increases from 0.01 to 0.013% (see also Additional file 1:
Figure S18). Therefore, in the following, we use only the
strict definition of trees, nl/nb = 0, as it does not affect
our main conclusions.
We compare the model-generated lineage graphs with

examples of real lineage graphs collected from the lit-
erature (Fig. 3a). While many reports of lineage graphs
exist in the literature, especially owing to recent single cell
transcriptomics studies, most graph reconstruction algo-
rithms are biased to report trees [29, 30], and hence are
not used in this study. We include only lineage graphs
constructed in an unbiased way in this comparison.

The currently available real lineage graphs are still too
few to statistically infer their features. Nevertheless, from
this small sample, it appears that real lineage graphs, espe-
cially mammalian ones, contain more branches and fewer
links than model-generated graphs. This could indicate
that the model is not sufficient to fully capture lineage
graph topologies, or alternatively, that additional, unbi-
ased real lineage graph reconstructions are required for
rigorous analysis.

Homeostatic organisms contain pluripotent cells
We next looked at functional properties of model-
generated homeostatic organisms; in particular, we tested
whether these organisms can regenerate using pluripo-
tent cells. We define a pluripotent cell as any single cell
type which develops into a homeostatic organism using
the same rules (GR, CD, A, and SG) used to generate this
organism in our data. We find that in 92.6% of organisms
with acyclic lineage graphs (and 97% of all organisms),
there is at least one pluripotent cell type which is a part
of the homeostatic organism. Since homeostatic organ-
isms are stable products of the process of development, we
consider them to be adult organisms. And we call pluripo-
tent cells which are part of homeostatic organisms adult
pluripotent cells.
Among real organisms, there exist both organisms

which contain adult pluripotent cells (e.g., planaria) and
those that do not (e.g., humans). In our data, in 82.9% of

Fig. 3. Lineage graphs of real organisms. a Lineage graphs from real organisms: Volvox: R = reproductive cell, S = somatic cell [25]; human
hematopoietic system: P = progenitor cells, Me = megakaryocytes, E = erythrocytes, B = basophils, L = lymphocytes, D = dendritic cells, Mo =
monocytes, N = neutrophils [26]; hydra: Ec = ectoderm, En = endoderm, IS = interstitial cell, H = hypostome, T = tentacle, F = foot, E = egg, S =
sperm, GN = ganglion neuron, SN = sensory neuron, B = battery cell, N = nematocyst, Z = zymogen granule cell, GM = granular mucous granule cell,
SM = spumous mucous granule cell [27]; and the mouse entero-endocrine system: G = goblet cell, E = EC cell, K = K cell, D = δ cell, X = X cell, L = L
cell, I = I cell, N = N cell [28]. b Scatter plot of the number of branches versus the number of links for acyclic lineage graphs with nl and nb <= 20.
The inset shows the nl versus nb scatter plot for all acyclic graphs. Noise has been added to points to make density of points more apparent.
1,217,108 graphs were used to generate this plot. c Relaxed definition of treeness: the x-axis represents nl/nb , our measure of a threshold for
“treeness.” nl/nb = 0, represents the traditional, strict definition of trees, whereas at nl/nb = 1, all branched acyclic graphs are considered trees. At
intermediate values, the fraction of graphs labeled as trees increases slowly. A total of 521,136 graphs were used to generate this plot
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acyclic lineage graphs (73.3% of all graphs), pluripotent
cells are more likely to be part the adult organism than not
(Fig. 4a).
Evidently, organisms that contain adult pluripotent cells

are more disposed to be regenerative than those that do
not. We therefore measure regenerative capacity of an
organism as the fraction of cell types in the organism
that are adult pluripotent cells

(
fp

)
divided by the frac-

tion of all cell types (irrespective of whether it is a part of
the adult organism or not) that are pluripotent

(
fg

)
. We

call an organism regenerative if its regenerative capacity
is greater than 1. We find that regenerative capacity dif-
fers among different topologies (Fig. 4b, Additional file 1:
Figure S13a). Notably, while most chains are regenera-
tive, most tree-type graphs have very low regenerative
capacity (see Additional file 1: Figure S19 for regenerative
capacities using relaxed definition of trees). More gener-
ally, this distribution of regenerative capacities serves as
an example of correlations between high-level functions of
organisms with their lineage graph topologies. Such asso-
ciations could form the basis for natural selection favoring
certain topologies over others in real multicellular organ-
isms.

Signal transduction influences regeneration trajectories
The high level of adult pluripotent cells in homeostatic
organisms is surprising, since cell fates within the organ-
ism are constrained due to signaling, and cells taken out
of the context of signaling from other cell types in the
organism are not expected to regenerate the other cell
types.
In order to test the mechanism of regeneration in the

model, we asked two questions: (1) how much does cell
fate in the organisms depend on signaling? and (2) what
do regeneration trajectories look like? If regeneration does
not depend on signaling, cell types should exactly retrace
their paths in the homeostatic lineage graph, irrespective
of the presence of other cell types (Fig. 5a).
To answer the first question, we define the fate of a cell

typeC in a homeostatic organism as the set of all cell types
that receive an edge from cell type C in the lineage graph
of the organism. Note that the above definition refers to a
proximal cell fate, where only the immediate descendants
of a cell type are considered. We call a cell type indepen-
dent if it has the same cell fate when taken out of the
homeostatic organism, as it does within the organism. We
find that across all parameter regions, homeostatic organ-
isms are enriched in independent cell types (Additional
file 1: Figure S14). While about 32% of all independent
cells, pooled from all acyclic graphs, are adult pluripotent
cells, 90% of all adult pluripotent cells are independent
(Additional file 1: Figure S15). That is, in the model, prox-
imal cell fates, especially those of adult pluripotent cells,
are likely to be independent of signaling.

To resolve the second question, note that if regeneration
trajectories recapitulate the homeostatic lineage graph, (a)
only root nodes, which are nodes from which all other
nodes of the lineage graph are reachable, can be adult
pluripotent cells, and (b) regeneration trajectory lengths
mustmatch the longest of theminimumpath lengths from
the root node to any of the leaf nodes in the lineage graph.
Now, necessarily, there can be no more than a sin-

gle root node in an acyclic graph. Some acyclic graphs,
for example, convergent trees (Additional file 1: Figure
S10), even lack root nodes. In our data, only 7.4% acyclic
graphs lack a root node, and of these, 85.4% indeed lack
adult pluripotent cells. And 90.4% of the time, in rooted
acyclic graphs, the lengths of regeneration trajectories
starting from pluripotent root nodes do match the maxi-
mum path length in the respective lineage graphs (Fig. 5d).
But, among these rooted, regenerative acyclic graphs,
only 62.9% have root nodes that are pluripotent. Over-
all, 41.6% of adult pluripotent cells are not root nodes
(Fig. 5c). Regeneration trajectories starting from such
non-root adult pluripotent cells are bound to be differ-
ent from paths in the homeostatic lineage graph (Fig. 5b),
and therefore must involve signaling. Consistently, lin-
eage graphs with non-root adult pluripotent cells aremore
likely to be generated at higher values of Psig and Padj than
lineage graphs with only root pluripotent cells (Additional
file 1: Figure S16).
To summarize, although cell fates for most cell types

in organisms are independent of signaling, almost half
the time, signal exchange definitely plays a role in regen-
eration, and regeneration trajectories of organisms are
different from paths in their homeostatic lineage graphs.
Parallels to these results can be seen in the development
and regeneration of ascidians, which undergo “mosaic
development,” where cell fates are independent of cel-
lular context and are determined by autonomous spec-
ification [31]. But the level of plasticity during asexual
budding (which can be seen as a form of programmed
whole body regeneration) in colonial ascidians, which are
model organisms both formosaic development and regen-
eration, points to a “non-mosaic” mode of regeneration
[32].

Discussion
The process of development and its molecular mechanism
are inherent in all metazoans and in all plants [3]. It is
therefore difficult to design experiments that could dis-
tinguish between emergent traits associated with devel-
opment and traits that have evolved on top of it. Here,
we have developed a minimal model where we can look
at development in the absence of complications due to
cross-talk with other biological processes. In our model,
we include only those ingredients of development that
are shared across all multicellular organisms, while not
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Fig. 4. Regenerative capacity. a Scatter plot showing the regenerative capacity for all N = 7 organisms generated with a fixed gene regulation
matrix GR using different matrices CD, A, and SG (for cell division, cellular adjacency, and signal transduction, respectively). Each point represents an
organism. The x-axis is the fraction of all cell types that are pluripotent (fg). The y-axis is the fraction of cell types in the organism that are adult
pluripotent cells

(
fp

)
. Noise has been added to the position of points to make their density more apparent. Colors of points indicate the topology of

their lineage graphs (as in Fig. 2): unicellular: dark gray; cyclic: light gray; chain: red; tree: black; DAG: blue. Points above the gray band are
regenerative organisms (with fp/fg > 1). A total of 13,177 graphs were used to generate this plot (see also Additional file 1: Figure S12). b Box plot of
proportion of regenerative graphs of different topologies across all organisms in the data (see also Additional file 1: Figure S13a). For each GR used
in our data, for a given graph topology, we looked at the fraction of graphs with regenerative capacity > 1 (equivalent to the fraction of points of a
certain color that occur above the gray band in a). Boxes represent quartiles of the data set. Lines inside the box show the median, while whiskers
show the rest of the distribution. Outliers are shown as diamonds. A total of 4,852,994 graphs were used to generate this plot

ascribing any particular form or mechanism to these pro-
cesses. This allows us to identify universal traits that
are inherent to development, regardless of the details of
the process, or the distinct selective pressures different
organisms may be subject to. We see such a prominent
emergent trait in our model: ability of whole body regener-
ation (WBR) through pluripotency. Concurrently, WBR,
although absent in many animals, such as mammals, is
widely spread across basal metazoan phyla.
Note that such basic traits can still be subject to selec-

tion through regulatory processes on top of the key
ingredients of development. Below, we discuss major
assumptions and limitations of our model and con-
trast these with mechanisms that occur in biological
organisms.

• Considerations of space and time: Spatial
arrangement of cells and cell movements are
important and highly regulated aspects of
development. Two cells having the same cell type but
occupying different niches are likely to receive
different sets of signals and therefore are expected to
behave differently [12]. Cells are also conjectured to
lose potency as development progresses, such that cell
types present in later stages of development are likely
to give rise to fewer cell types than those present in
the earlier stages [33]. Such a process can be captured
in the model by using developmental rules endowed

with a flow such that cell types appearing later in
development have lower potency. The final outcome
of development is highly likely to be affected in those
organisms where such a mechanism operates.
Although in the current study, due to our focus on
widely exploring asymmetric cell division, signaling,
and gene regulation, we do not explore the important
aspects of space and time; we provide a recipe for
how they can be included in future studies: in
Additional file 1: Section 1.1, using the example of the
Drosophila segment polarity network; and we show
how space can be encoded within the framework of
the model. Developmental time can be included
using a similar approach.

• Independent processes: Cell division, signaling, and
gene regulation are treated as independent processes
in the model. This is likely to be false in real animals.
Primarily, this implies that not all regions of
parameter space explored in this work are
biologically feasible. In particular, cells in the model
follow a simple program for asymmetric cell division
that is intrinsic to cell types. But extrinsic control of
asymmetric cell division, involving cues from
surrounding cells, does occur in animals [18].
Extrinsic control of asymmetric cell division could
lead to a decrease in the independence of cell fates on
cellular context which we see in the model, which
could affect regenerative capacity.
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Fig. 5. Regeneration trajectories. a, b Schematics of regeneration trajectories.Yellow circles represent cell types in a homeostatic organism, and
black edges represent lineage relationships. Adult pluripotent cells are outlined in red. Red edges represent lineage relationships between the
organism’s cell types during regeneration. a Here, the root node is the only adult pluripotent cell and regeneration trajectories exactly match the
paths in the lineage graph. In cases where signaling does not play a role in determining cell fate, all regeneration trajectories are of this kind. b Here,
a non-root node is a pluripotent cell, and therefore, necessarily, regeneration trajectories cannot be perfectly aligned with paths in the lineage
graph. In these cases, signaling is definitely involved in governing cell fates. Dashed red edges imply that cell-types other than those present in the
homeostatic organism may be produced during regeneration. c Stacked histograms for cell types of different categories pooled from organisms
with different lineage graph topologies. Different cell type categories are represented with different colors. Non-pluripotent cells are represented in
grays; root nodes: light gray; not non-root nodes: dark gray. Adult pluripotent cells are represented in colors: root nodes: light brown, non-root
nodes: dark brown. Heights of colored blocks represent the proportions of corresponding cell types. A total of 1,217,108 graphs were used to
generate this plot. d Scatter plot showing the maximum path lengths across lineage graphs vs the lengths of regeneration trajectories from
pluripotent root nodes for acyclic lineage graphs that contain them. Each point represents an organism. Noise and transparency has been added to
the position of points to make their density more apparent. A total of 699,986 graphs were used to generate this plot

• Chemical signaling: In our model, signal recognition
is based on identities of the donor and the recipient
cells. In contrast, in real organisms, cells contain
receptors that recognize signal molecules, rather than
recognizing the donor cells that produce those
signals. Firstly, since there are fewer kinds of signal
molecules than there are cell types, it is likely in this
chemical recognition scheme that a cell type will
receive the same set of signals even if some other cell
types in the organism are changed. That is, cell fate is
likely to be even more robust to changes in cellular
context than the present model. In our model, cell
fates of most pluripotent cells are independent of
cellular context. Therefore, a version of the model
with chemical recognition is also likely to yield
regenerative organisms.

• Other schemes: In the current model, we use the
following scheme of development: cell division,
followed by signaling among daughter cells and gene
regulation in response to signals exchanged. But

there are other reasonable schemes which can also be
considered. For example, a scheme where cell
division is followed by an additional step of gene
regulation before signal exchange is also plausible. In
the current model, daughter cells contain subsets of
the contents of the mother cell, and in this sense are
more similar to each other than to daughters of other
mother cells. Therefore, in the current scheme,
signals received from a sister cell are likely to be less
effective in changing cell state than are signals
received from other daughter cells. Gene regulation
right after cell division would lead to a diversification
of daughter cells, which is therefore likely to increase
the level of effective signaling among daughter cells.
In our model, level of signal exchange is controlled by
Padj, and we find that pluripotency increases, albeit
modestly, with Padj (Additional file 1: Figure S13e).
Therefore, we expect that switching to this other,
more elaborate scheme of development would still
lead to high regenerative capacity.
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• Additional parameters: The effect of processes such
as asynchronous gene state updates [34] and time
delays involved in transfer of information about gene
state updates [35] has been tested on the Drosophila
segment polarity network and found to have
interesting effects on the robustness of phenotypes.
Such processes could add to the richness of lineage
graphs we obtain from our model, but come with the
cost of additional parameters, which would limit the
breadth of the sampling.

• Cell death: Cells in the model do not die. Not
including cell death in the model results in lineage
graphs where each node has at least one out-edge.
We anticipate that including cell death would reduce
the number of cycles in lineage graphs, leading to an
increase in the proportion of acyclic graphs
(Additional file 1: Figure S17). Since regenerative
capacity is linked to lineage graph topology, cell death
could be an important factor in determining
regenerative capacity. We also anticipate that
including cell death could add a sense of
developmental time to the model.

Although here we only provide intuitive arguments for
what alternate versions of the model might yield, the
framework of the model is easily amenable to manipula-
tions, and differently constructed versions can be tested in
the future.
The present model makes several predictions regarding

general features of development and multicellular organ-
isms. It suggests that the presence of adult pluripotent
cells should be a widespread trait in multicellular life
forms. In plants, we are already aware of pluripotent cells
in the root and shoot meristems. But among animals, a
wider investigation of regeneration and its mechanisms
will be required to test this idea. A recent example of
such a study is [36], where the authors test the ancestral
nature of regeneration in Nemertaean worms, which are
not classical model organisms.
The distribution of acyclic lineage graph topologies in

our data reflect the complexity and diversity of forms
of multicellular animals that biological development is
expected to produce. Small (2-node) chains are the most
abundant acyclic lineage graphs in our data (Fig. 2d, Addi-
tional file 1: Figure S9c). In line with this, the simplestmul-
ticellular organisms, such as Volvox carteri [25], an alga
which evolved multicellularity only recently, has a chain-
like lineage graph. Interestingly, some cyanobacteria, such
as Anabaena spaerica [37], which display multicellular-
ity during nitrogen starvation, also have chain-like lineage
graphs.
Tree-type lineage graphs are rare in our data (Fig. 2a, b),

tend to be small, and convergent rather than divergent
(Additional file 1: Figures S9e, S10). This could indicate

one of two things: This could imply that lineage graphs
of complex organisms are unlikely to be tree-like. Our
data suggests that they are more likely to be directed
acyclic graphs (DAGs), i.e., organisms have higher lev-
els of trans-differentiation than expected (Fig. 3b, Addi-
tional file 1: Figure S11). Or, it could mean that more
complex regulation, on top of the ingredients of this
model, is at play in real organisms which lead to com-
plex tree-like lineage graphs. A perhaps presumptuous,
but interesting possibility is that tree-like lineage graphs
were selected for because of their low regenerative capac-
ity. There exist arguments and speculation over whether
mammals, among other animals, selectively lost the ability
to regenerate, and why [38].
These questions surrounding the topologies of lineage

graphs are likely to be resolved very soon in the future,
given the rapid developments in single-cell transcrip-
tomics technology. A notable recent study is that of Plass
et al. [39], where they assemble the whole organism lin-
eage graph for Planaria. A possible hurdle comes from
the fact that in such studies, lineage relationships can-
not be directly accessed and are instead inferred using
distances between cellular transcriptomes obtained at
different times. Moreover, current methods for lineage
reconstruction using single-cell transcriptomics data are
not unbiased; in [39], although lineage reconstruction
yielded a complex graph, the authors highlight the best
supported spanning tree of this graph. Current lineage
reconstruction methods work best if a particular topology
for lineage graphs is already anticipated, and most meth-
ods are designed to only find chains and trees [29, 30]. In
contrast, a study by Wagner et al. [40], where single-cell
transcriptomics is used in conjunction with cellular bar-
coding, provides an example of a lineage reconstruction
method which is unbiased towards particular topologies.
In agreement with our result, the authors of this study
found that zebrafish development is best represented by a
DAG.
Lastly, we discuss how certain predictions of our work

can be experimentally tested. Our work suggests that in
colonial ascidians, which reproduce asexually using a vari-
ety of budding structures, the pattern of regeneration
should be “non-mosaic,” where regeneration trajectories
do not recapitulate lineage trajectories in the homeo-
static organisms. In contrast, our model suggests that in
Planaria, where pluripotent c-Neoblasts appear to occupy
the root node [39], regeneration trajectories are likely to
reflect the homeostatic lineage graph. These predictions
can be addressed by lineage reconstruction experiments
that compare homeostatic lineage graphs with lineage
graphs produced during regeneration of these organisms.
Our results also suggest that in organisms such as

Planaria and perhaps colonial Ascidia, where regenera-
tion is based on adult pluripotent cells [15, 16], these cells
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are likely to be independent of cellular context; that is,
their proximal cell fates should not change when taken
out of the body or transplanted to other cellular con-
texts. In Planaria, c-Neoblast independence could explain
the coarse pattern of distribution of specialized neoblasts
across the planarian body, and also why the distribution of
specialized neoblasts produced does not depend on which
organ is amputated [15]. Recent development of a method
to culture neoblasts in the lab [41] make it possible to
experimentally test neoblast independence.

Conclusions
Development transforms single-celled zygotes into multi-
cellular adults by combining three basic processes: asym-
metric cell division, cell signaling, and gene regulation.
Despite undergoing this common set of developmental
processes, multicellular organisms display a huge vari-
ety of forms. In this work, we use a generative model
of development to gauge the extent of possible diversity
of multicellular forms. We explore the forms of “organ-
isms” generated by our model in terms of their cell type
lineage maps. Our data indicates that cell type lineage
maps are unlikely to be tree-like, and instead that organ-
isms are likely to undergo a much higher level of trans-
differentiation than anticipated. Additionally, “organisms”
generated in our model contain adult pluripotent cells
and are thus likely to be capable of whole-body regen-
eration. This observation supports the view that whole
body regeneration is an epiphenomenon of development.
Regenerative capacity differs among organisms with dif-
ferent lineage graph topologies, tree-type lineage graphs
having the lowest regenerative capacities. These differ-
ences could potentially serve as a basis for selection biased
towards certain topologies. Our results also suggest that
regeneration trajectories are likely to deviate from paths
in the cell lineage graph and could involve cell types
not present in the adult organism. To summarize, our
work ties together the process of development and the
phenomenon of regeneration and suggests many testable
hypotheses, which can be addressed through experiments
on well-established model organisms but, more impor-
tantly, through a wider sampling of cell differentiation
trajectories across multicellular organisms.

Methods
Surveying the combinatorial space of developmental
schemes
We considered organisms with N = {3, 4, 5, 6, 7} genes.
For each N, we have looked at {100, 100, 100, 92, 25} ran-
domly generated gene regulation matrices (GR), respec-
tively. For each GR, all values from [ 0, 0.1, 0.2, . . . , 1.0]
were used for the parameters Pasym, Psig, and Padj. A dis-
tinct set of developmental rules matrices (CD, A, and SG)
was generated for each set of parameter values. And for

each set of rules matrices, 10 randomly chosen cell types
were used as initial conditions (in case of N = 3, all
8 cell types were used). In all, we have looked at about
((100+ 100+ 100+ 92+ 25)× 113 × 10) ≈ 5.5× 106 sys-
tems. A total of 4,858,643 of these converged within 1000
time steps into homeostatic organisms.

Model details
All codes used to generate and analyze data are written in
Python3.6 or Octave 5.2.0.

Asymmetric cell division
In our model, for any cell type Ci, we generate different
sets of daughter cell types Di using the parameter Pasym ∈
[ 0, 1]; for any daughter cell type Dii1 ∈ Di, ∀k ≤ N ,

if (Ci(k) = 0) then
(
Dii1(k) = 0

)
, and

if (Ci(k) = 1) then
(
Dii1(k) = Ber(Pasym)

)

We encode cell division in a binary matrix CD2N×2N ;
CD(i, j) = 1 if cell type Cj ∈ Di, else CD(i, j) = 0 (Fig. 1b).

Signaling
The probability that a gene in the model produces
a signaling molecule is Psig ∈[ 0, 1]. Formally, let
SG = {0, 1}N be a binary vector. Then, gene k pro-
duces a signaling molecule if SG(k) = 1, where
SG(k) = Ber

(
Psig

)
(Fig. 1c). Let SGj = {0, 1}N be the

set of signals produced by cell type Cj. For any gene
k, SGj(k) = 1 ⇐⇒ (

Cj(k) = 1
) ∧ (SG(k) = 1).

Parameter Padj ∈[ 0, 1] gives the probability of signal
reception. We encode signal reception in a binary matrix
A2N×2N . Cell type Ci receives all signals produced by cell
type Cj if A(j, i) = 1, where A(j, i) = Ber

(
Padj

)
. Ci receives

no signals from cell type Cj if A(j, i) = 0 (Fig. 1d). Cells
can only receive signals from other cell types present in
the same time step. Let Tt = {0, 1}2N be a binary vector,
where Tt(i) = 1 if cell type Ci is present in the time step t.
Tt represents the state of the organism at time step t. For
some cell type, Ci present at time step t, let Csig

i represent
its state immediately after signal exchange. In cell types
that receive a signal, the corresponding genes are set to 1
(Fig. 1f ). That is:

Csig
i (k) = 1,

if (Ci(k) = 1) ∨
(∑2N

j=1
(A(j, i) × SGj(k) × Tt(j)) > 0

)

Gene regulation
We define gene regulation in the model as a set of stable
cell types and cell types in the basins of these stable cell
types. As mentioned earlier, stable cell types need not be
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fixed points (single-cell state) of the gene regulatory net-
work; they can also be an oscillation (multiple cell states).
Oscillatory stable cell types are represented as the set of
all cell states that compose the oscillation.
Formally, a system with N genes can have n ≤ 2N stable

cell types {S1, S2, . . . , Sn}, where Sx is itself a collection of
nx cell states

{
Cx1 , . . .Cxnx

}
such that x1 < x2 < . . . < xnx .

For any two cell types Sx and Sy, if x < y, then x1 < y1.
We encode gene regulation in a binary matrixGR2N×2N .

To generate GR for a given organism, we pick the num-
ber of stable cell types n ≤ 2N according to the uniform
random distribution. First, we assign cell states that form
the basins of these stable cell types: Cell states are uni-
form randomly partitioned among the n basins. We then
choose cell states that form the stable cell type fromwithin
the corresponding basins: let Bx be a basin, then for some
j such that

(
Cj ∈ Bx

)
,
(
Cj ∈ Sx

)
with probability 0.5. For all

i such that Ci ∈ Bx, GR(i, j) = 1 if
(
Cj ∈ Sx

)
.

Homeostatic organisms and their cell type lineage graphs
Let us consider an organism in stateTt at time step t. Right
after cell division, let the state of the organism be repre-
sented by Tdiv

t . After division, the organism is composed
of all the daughter cells produced in that time step. That
is:

Tdiv
t (i) = 1, if ∃j ≤ 2N s.t.

(
Tt(j) = 1

)∧(CD(j, i) = 1)

These daughter cells exchange signals among them-
selves. Let T sig

t represent the state of the organism right
after signal exchange. Then:

T sig
t (i) = 1, if ∃j1 ≤ 2N s.t. Tdiv

t (j1) = 1, where
∀k s.t. Ci(k) = 0,Cj1(k) = 0, and

∀k s.t.Ci(k)=1,
(
Cj1(k) = 1

)

∨
(∑2N

j2=1
(A(j2, j1)×SGj2(k)×Tdiv

t (j2))>0
)

The signals received by a cell type activates its gene reg-
ulatory network. Gene regulation updates the set of cell
types according to the following expression: ∀i ≤ 2N ,

Tt+1(i) = 1, if ∃j s.t.
(
T sig
t (j) = 1

)
∧ (GR(j, i) = 1)

Therefore, the organism is only composed of stable cell
types. Let the system have n ≤ 2N stable cell states. Then,
we can equivalently represent the state of the organism at
time step t as a binary vector TSC

t =[ 0, 1]n, such that for
x ∈ {1, 2, . . . n}.

TSC
t (x) = 1 ⇐⇒ (Tt(i) = 1) ∧ (∃Ci ∈ Sx)

We call states of the organism such that TSC
t+1 = TSC

t
homeostatic organisms (Fig. 1f, g).

We represent the homeostatic organism as a cell type
lineage graph. The nodes of the graph represent stable cell
states that are present in the homeostatic organism, and
directed edges represent lineage relationships between
these stable cell states. Let the stable cell states Sx1 and
Sx2 both be present in the final organism, and let them
be represented by nodes Va and Vb of the lineage graph,
respectively. Then, there is an edge from Va to Vb if one of
the daughter cells of Sx1 gives rise to Sx2 after one round
of cell signaling and gene regulation (Fig. 1g). That is:

LetCi ∈ Sx1 and Cl ∈ Sx2.
Then, there is an edge Va → Vb if

∃j s.t. CD(i, j) = 1

and, in this organism,Csig
j = Ck

where GR(k, l) = 1

Assignment of topologies to lineage graphs
We categorize lineage graphs into 6 topologies: unicel-
lular, strongly connected component(SCC), cyclic, chain,
tree, and other directed acyclic graphs (DAG). We ignore
self-edges while assigning these topologies. A lineage
graph is called unicellular if it has only a single node. For
all other topologies, we used the networkx (version 2.2)
module of Python3.6. A lineage graph is called SCC if the
graph has more than 1 node and contains a single strongly
connected component, it is called cyclic if the graph con-
tains cycles and has more than one strongly connected
component, it is called a chain if networkx classifies it as a
tree and the maximum in-degree and out-degree are 1, it
is called a tree if networkx classifies it as a tree and max-
imum in-dergee or out-degree is greater than 1, and it is
called a DAG if networkx classifies it as a directed acyclic
graph but not a tree.

Lineage graph randomization protocol
We represent a lineage graph with e edges as a matrix
Ee×2, where E(i, 1) and E(i, 2) represent the source and the
target node of edge i, respectively. To randomize lineage
graphs, we used a protocol that preserves in- and out-
degrees of each node; we randomly choose pairs of edges
from the graph and swap their target nodes. Let the ran-
domized graph Erand be initially identical to E. Then, for
any two edges of the lineage graph i, j, we propose a swap:

Erand(i, 2) = Erand(j, 2), and Erand(j, 2) = Erand(i, 2)

The swap is accepted if there is no edge k such that:

(Erand(k, 1) = Erand(i, 1)) ∧ (Erand(k, 2) = Erand(j, 2)), or
(Erand(k, 1) = Erand(j, 1)) ∧ (Erand(k, 2) = Erand(i, 2))
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The above condition ensures that the total number of
unique edges in E and Erand remain the same. We swap
edges 1000 times for each lineage graph to randomize it.

Independent and intrinsically independent cell types
We call a cell type independent if it has the same cell fate
when grown outside the organism as it does when it is a
part of the organism. The cell fateCfate

i of some cell typeCi
in the organism is given by the set of cell types receiving an
edge from the node Ci in the organism’s lineage graph. To
decide whether a given cell type Ci is independent or not,
we separate this cell type from the rest of the organism and
allow it to undergo one round of cell division, signaling,
and gene regulation, according to the same matrices CD,
SG, A, and GR that were used to generate the organism
from which it was taken. Let us call the resulting set of
cell types Creg

i . We call the cell Ci independent if C
reg
i is

identical to Cfate
i .

For some cell types, the basis of their independence is an
insensitivity to signals produced in the organism. In such
a case, the set of signals produced by the daughter cells
of the cell type is sufficient to satisfy the maximum set of
signals that each of the daughter cells can receive.
Let the set of daughter cells of cell typeCi in an organism

be Di. ∀Cj ∈ Di let Recallj represent the maximal set of
signals that it can receive, when all 2N possible cell types
are present together. That is, for all signaling molecules k
such that SG(k) = 1,

Recallj (k) = 1, if �2N
l=1

(
A(l, j) ∧ (Cl(k) = 1)

)

And let RecDj be the set of signals it receives from within
the set of cells Di, i.e.,

RecDj (k) = 1, if �Cl∈Di

(
A(l, j) ∧ (Cl(k) = 1)

)

If for all Cj ∈ Di, Recallj = RecDj , Ci is intrinsically
independent.
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