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Abstract

Background: Prokaryotic viruses, which infect bacteria and archaea, are the most abundant and diverse biological
entities in the biosphere. To understand their regulatory roles in various ecosystems and to harness the potential of
bacteriophages for use in therapy, more knowledge of viral-host relationships is required. High-throughput
sequencing and its application to the microbiome have offered new opportunities for computational approaches for
predicting which hosts particular viruses can infect. However, there are two main challenges for computational host
prediction. First, the empirically known virus-host relationships are very limited. Second, although sequence similarity
between viruses and their prokaryote hosts have been used as a major feature for host prediction, the alignment is
either missing or ambiguous in many cases. Thus, there is still a need to improve the accuracy of host prediction.

Results: In this work, we present a semi-supervised learning model, named HostG, to conduct host prediction for
novel viruses. We construct a knowledge graph by utilizing both virus-virus protein similarity and virus-host DNA
sequence similarity. Then graph convolutional network (GCN) is adopted to exploit viruses with or without known
hosts in training to enhance the learning ability. During the GCN training, we minimize the expected calibrated error
(ECE) to ensure the confidence of the predictions. We tested HostG on both simulated and real sequencing data and
compared its performance with other state-of-the-art methods specifically designed for virus host classification
(VHM-net, WIsH, PHP, HoPhage, RaFAH, vHULK, and VPF-Class).

Conclusion: HostG outperforms other popular methods, demonstrating the efficacy of using a GCN-based
semi-supervised learning approach. A particular advantage of HostG is its ability to predict hosts from new taxa.

Keywords: Prediction of virus-host interactions, Deep learning, Graph convolutional neural network

Background
Prokaryotic viruses (shortened as viruses hereafter) play
an important role in the microbial system dynamics. They
regulate the ecosystem by limiting the abundance of their
hosts through ongoing lytic infections. Because of the
threat of antibiotic resistant pathogens, there is resurg-
ing interest of using phages as an alternative strategy to
treat bacterial infections [1]. A fundamental step in using
phages to treat bacterial infection is to identify the hosts
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of phages, which will provide the key knowledge of using
phages as potential antibiotics [2]. Besides phage ther-
apy, identifying the hosts of the novel phages have other
applications such as gene transfer search [3, 4], disease
diagnosis [5, 6], and novel bacterial detection [7].
However, despite its importance, the identified virus-

host relationship is only the tip of the iceberg. The
gap between the sequenced prokaryotic viruses and
the known virus-host relationship is expanding quickly.
Experimental methods, such as single-cell viral tagging
[8], can determine the virus-host relationship directly
from the biological experiments. However, these meth-
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ods are not only expensive but also time-consuming.
Even worse, few virus-host connections can be detected
since less than 1% of microbial hosts have been cultivated
successfully in laboratories [9, 10]. Thus, computational
approaches for predicting the host are in great demand.
There are three main challenges for computational pre-

diction of the virus-host relationships. First, the known
virus-host interactions are limited. One of the most
widely used datasets, the VHM dataset [11], contains
1426 viruses, which is only 37% of the known prokaryotic
viruses in RefSeq. The authors of PHP [12] added virus-
host relationships till 2020 from RefSeq. Together, two
datasets contain around 2,000 known virus-host relation-
ships. Considering that prokaryotic viruses are regarded
as the most abundant biological entities, the number of
known interactions is still very limited compared to the
unknown. Second, although sequence similarity between
viruses and prokaryotes has been used as an important
feature for host identification, not all viruses share sig-
nificant sequence similarities with their host genomes.
In the VHM dataset, about 54% of viruses have no
alignments with the host genomes. Therefore, sequence
similarity search cannot return any prediction for these
viruses. Third, the finding of broad-host-range (polyva-
lent) phages [13] shows that some phages can infect many
different species. This poses a potential risk for binary dis-
criminative models [14–16], which are designed for pre-
dicting whether a given virus-host pair represents a true
infection. In their training set, all known virus-host rela-
tionships are treated as positive samples. Then, they create
all-against-all virus-host pairs and often randomly select a
small subset (e.g., ~0.5%) of these pairs as negative sam-
ples to create a balanced dataset. Due to the small number
of negative samples, this sub-sampling method may fail to
represent the original data distribution and leads to over-
fitting. Also, because of the presence of polyvalent phages,
some pairs in the negative set can represent true infections
and thus, the learned models are not reliable.

Related work
Several attempts have been made to predict hosts for
viruses based on the genomic sequences [17]. They can
be roughly divided into two groups: alignment-based
and learning-based models. Most of the alignment-based
methods utilize sequence similarity search between query
contigs and reference genomes of candidate hosts (bac-
teria or archaea). The rationale is that some viruses will
preserve the borrowed genetic fragment from hosts if
this genetic element brings an evolutionary advantage
[18]. In addition, some hosts can keep a record of phage
infection in CRISPR [18]. Specifically, spacer sequences
used in CRISPR systems in the host may contain such
short nucleotide sequences to prevent recurring infec-
tion [19]. Thus, CRISPR can be used as a strong signal

to identify host and BLAST [20] can be employed to
predict hosts for viruses according to the local similari-
ties. However, for newly identified viruses, there are two
main problems for alignment-based methods, which can
lead to unreliable predictions. First, viruses can share
short nucleotide sequences with hosts from different taxa.
According to the VHM dataset, 45.1% virus has multi-
ple alignment results with prokaryote in different taxa at
the order level. Alignment-based toolsmight assign wrong
taxonomic labels to viruses due to these ambiguous align-
ments. Second, these alignment-based methods rely heav-
ily on the candidate hosts reference database. If the host
genome is not in the database or if some viruses do not
share any regions with the database, the alignment-based
approaches cannot make predictions. Another solution
for host prediction is to utilize the sequence similar-
ity between viruses. For example, VPF-Class [21] takes
advantage of viral protein families (VPFs) and builds a
database based on the proteins from the IMG/VR system.
Then, for each input contig, VPF-Class will conduct pro-
tein family search and return a prediction based on the
alignment results.
Learning-basedmethods aremore flexible. For example,

VirHostMatcher (VHM) [11] and prokaryotic virus host
predictor (PHP) [12] utilize k-mer-based features for pre-
diction. VHM employs similar oligonucleotide frequency
patterns between viruses and hosts and predicts the can-
didate host with the smallest distance for each input virus.
PHP applies a Gaussian model to learn Gaussian distri-
butions for the known virus-host pairs and outputs the
probability for each input pair. Then, it uses the pair
with the highest probability to assign a label for each
virus. Unlike VHM and PHP, WIsH [22] predicts the host
taxon by training a homogeneous Markov model for each
potential host genome. The pre-trained Markov model
calculates the likelihood of the input sequence and finally
predicts the host with the highest likelihood. VHM-net
[14] is an improved version of the VHM algorithm. This
model integrates CRISPR, score of WIsH, and BLASTN
results and applies Random Markov field to generate pre-
dictions. A more recently published model, RaFAH [23]
uses alignment features to construct a random forest for
host prediction.
The latest machine learning methods, such as deep

learning algorithms, can also be used to predict hosts for
viruses. To avoid manually creating negative pairs, the
host prediction task can be formulated as a multi-class
classification problem, where the input set contains the
virus sequences and the labels are the taxa of their hosts.
For example, HoPhage [24] and vHULK [25] use a deep
learning algorithm on the alignment features. However, a
common problem of these methods is that they cannot
predict hosts from new taxa. For example, if the training
samples only contain hosts from taxa y1, y2, and y3, these
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methods cannot be easily extended to predict a new host
from group y4.

Overview
Although host prediction can be formulated as a
supervised-learning problem, the massive diversity of
viruses and the lack of known virus-host relationships
will influence the learning ability. Thus, we propose to
tackle the host prediction problem in the framework
of semi-supervised learning, which can better exploit
the co-related information between labeled and unla-
beled samples, including the organization of proteins
shared between viruses and the DNA sequence simi-
larities between viruses and prokaryote. We compared
our tools with the state-of-the-art methods specifically
designed for virus host classification: VHM-net, WIsH,
PHP, HoPhage, RaFAH, vHULK, and VPF-Class. We also
reported the results of BLASTN to show the perfor-
mance of the alignment-based model. The experimental
results demonstrated that HostG outperforms other pop-
ular methods. In addition, HostG can predict hosts from
new taxa.

Methods
In this work, we present a method that automatically pre-
dicts the taxonomic labels (phylum to genus) of the hosts
for viral contigs. Although host taxonomy prediction can
be conducted on species level or even strain level, con-
sidering both polyvalent phages and the lack of known
virus-host relationships, we focus on predicting the hosts’
taxonomic ranking from phylum to genus in order to
deliver more reliable results.
The key component of our method is the semi-

supervised learning model GCN [26]. GCN can flexibly
model the sequence-level relationships between viruses
or prokaryotes using a knowledge graph and conducts
convolution using node features and the topological struc-
ture. One big difference between CNN and GCN is that
each node in GCN can have a different convolutional fil-
ter/kernel depending on its connections with other nodes.
The convolution is conducted on each node using its
own feature and the combined feature of its neighboring
nodes. Thus, the information can be passed between the
labeled samples/nodes and the unlabeled samples/nodes.
In biological data analyses, there exist many topologi-
cal structures such as gene-sharing network, disease-drug
relationship graph, and diseases-gene relationship graph.
Utilizing these relationships in GCN has led to several
successful applications [27–31].
In our problem of predicting hosts for viruses, we will

create a knowledge graph that integrates three types of
information. First, although virus receptor binding pro-
teins play an important role in helping viruses attach to
the target hosts, many other proteins are involved in the

process of virus infection [32]. Thus, viruses sharing more
genes tend to infect host in the same taxonomic group.
The similarity of gene sharing can be represented by edges
between viruses. Second, viruses and their hosts can pos-
sess local sequence similarities, which is a feature used by
many available host prediction programs. The sequence
similarities can be modeled as edges between viruses and
hosts in the knowledge graph. Third, the nodes in the
knowledge graph can be encoded as numerical vectors
using a CNN for taxonomic classification of viruses. Then,
the graph convolutional layer is conducted for each node
and its neighbors based on the knowledge graph. The
error minimization process in training will help the model
fit labeled samples and back propagate the loss to the
whole graph. After training, the learned convolutional fil-
ters will then be applied to predict test samples that are
connected to the knowledge graph.

Construction of the knowledge graph
Figure 1 (IV) sketches the knowledge graph. Viral and host
sequences are represented by circles and triangles, respec-
tively. All host nodes have their taxonomic labels. For
virus nodes, the colored ones are the training sequences
with known hosts and thus their labels are the taxo-
nomic labels of the hosts. White nodes represent query
virus genomes or contigs without host information (i.e.,
test data). The semi-supervised learning will finally assign
labels for the white nodes.
To encode the nodes, a pre-trained CNN is applied

to capture motif-related patterns from input sequence
(Fig. 1.I). There are two types of edges in the knowledge
graph: virus to virus and virus to host. The edge between
viruses represents sequence similarity and the similarity
between shared protein families. The edge between virus
and host nodes represents local similarities between the
genomes. By combining the nodes’ features and edges, we
construct a knowledge graph and feed it to the GCN for
training (Fig. 1.IV). In addition, in order to quantify the
confidence of the prediction, we combine the expected
calibrated error (ECE) and mean square error (L2) in the
training process. After training, the knowledge graph and
the learned convolution parameters are used to predict
the host for new viruses.Wewill discuss the details of edge
construction in the “Edge construction” section and node
encoding in the “Node construction.”

Edge construction
Virus-virus connection
In this section, we first introduce the method of con-
structing protein clusters, which are used to establish
edges between viruses (Fig. 1. III). There are three steps
to construct the protein clusters. First, we extract pro-
teins from all the virus sequences and apply DIAMOND
to measure the protein similarity. For available reference
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Fig. 1 The pipeline of HostG. I: Using the pre-trained CNN model to encode contigs into node feature vectors. II: Utilizing BLASTN to create
virus-host connections. III: Creating protein clusters using DIAMOND-based BLASTP and MCL. Then, the protein clusters will be employed to create
virus-virus connections. IV: Creating the knowledge graph by combining the node feature and edge connections. Then, GCN is employed to train
and assign taxonomic labels

genomes, the protein sequences are downloaded from
NCBI RefSeq. For query/new viral contigs, we conducted
gene finding and protein translation using Prodigal [33].
Then, we employ DIAMOND to conduct all-against-all
pairwise alignment between contigs’ translations and ref-
erence protein sequences. DIAMOND will output the
alignment of each protein pairs with E-values below a
given cutoff (the default cutoff is 1e−5). Second, based
on the alignment results, we can construct a protein sim-
ilarity network, where the nodes are the proteins, and the
edges represent the alignments. The edge weight is the
negative logarithm of the corresponding E-value. Finally,
the protein clusters can be identified by the Markov clus-
tering algorithm (MCL).

P(y ≥ c) = ∑min(a,b)
i=c

(a
i
)(n−a

b−i
)

(n
b
) (1)

Evirus−virus =
{
1, if − log

(
P(y ≥ c) × (N

2
)) ≥ τ1

0, otherwise
(2)

Following the idea in [34, 35] , we calculate the expected
number of sequences sharing at least an observed num-
ber of common proteins. By making a simplification that
all protein clusters have the same probability of being cho-
sen, we can calculate the probability of any two sequences
containing a and b protein clusters share at least c clus-
ters by Eq. 1, where y is the number of common pro-
tein and n is the number of protein clusters. Then we
calculate the expected number of sequence pairs with

at least c common proteins out of
(N
2
)
sequence pairs,

where N is the total number of sequences. As shown in
Eq. 2, the expected value will be finally utilized to deter-
mine whether there is an edge between two sequences.
The threshold τ1 is 1 by default. With the increase of c,
P become small enough to return a positive Evirus-virus.
Because the size of the protein clusters varies a lot, dif-
ferent clusters have different probabilities of being cho-
sen/shared. Eq. 1 is an inaccurate but practically useful
approximation in order to compute the background prob-
ability efficiently.

Virus-host connection
While Evirus-virus is used to evaluate whether two viruses
share a significant number of proteins, Evirus-host is used
to measure the sequence similarity between viruses and
host.We employ BLASTN to generate the sequence align-
ment significance between viruses and host. For P virus
genomes and B prokaryote genomes, we will create P × B
virus-host pairs. Then, as shown in Eq. 3, only pairs whose
BLASTN E-value smaller than τ2 (default 1e-5) will form
virus-host connections. Noted that if there are multiple
alignment results between a virus and a potential host,
we will only create one edge between them. In addition,
because we have some known virus-host connections
from the public dataset, we connect the viruses with their
known hosts regardless of their alignment E-values.

Evirus-host =
⎧
⎨

⎩

1, if virus-host interaction exists
1, if E − value < τ2
0, otherwise

(3)
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Node construction
Recent research shows that CNN has the ability to learn
motif-related features automatically [36, 37]. Following
[30], we take advantage of CNN to learn features common
to viruses of the same taxonomic group. These features
are used to encode each virus node. Figure 2 shows the
training (A) and encoding (B) modes in the CNN. In the
trainingmode, we use all the virus reference genomes with
known genus labels to train the model for phage genus-
level classification. In the encoding mode, the model is
used to output the feature vectors of the first dense layer
in the pre-trained CNN. This outputs represent encoded
features of the original genomes/contigs and will be the
node features in the knowledge graph.

CNN training
There are four steps in the training mode. Because CNN
only considers inputs with the same length, we first split
the input genome into 2 kbp segments. The segments have
the same labels as the original genome. Second, we train a
skip-grammodel to convert the sequence into a numerical
vector, because it can map proximate k-mers into similar
vectors in high dimensional space to improve the learning
ability [38]. Thus, each 2 kbp segment will be converted
into a matrix X ∈ R

2000−k×d. k is the length of k-mers. d
is the number of hidden units in skip-grammodel (default

100). Detailed description about the skip-gram model can
be found in supplementary file.

Zi,k(X) = wk
conv ∗ X[ i : i + d1 − 1] [ 1 : 100]+bk (4)

H(0) = [
Maxpool(Z0(X)), · · · ,Maxpool(ZNconv(X))

]

(5)

Third, the embedded matrix X will be fed to convolu-
tional layers. As shown in Fig. 2A, rather than stacking
convolutional layers, we apply multiple convolutional lay-
ers with different filter sizes in parallel. With the benefit
of this design, CNN can capture sequence patterns with
different lengths. For each convolutional layer, the fea-
ture value at location i in the kth feature map Zi,k(X) is
calculated by Eq. 4.wk

conv is the kth filter/kernel in the con-
volutional layer. d1 is the filter size. bk is the bias in the kth
featuremap. Each convolutional layer will generate a high-
dimensional tensor. Then, as shown in Eq. 5, we apply
max pooling to maintain the most important feature from
these tensors and concatenate them as H(0). Nconv is the
total number of convolutional layers used in the structure.
Detailed parameters are listed in the supplementary file.

H(l+1) = ReLU
(
H(l),w(l)

)
, l ∈ {0, 1} (6)

Fig. 2 CNN model used in HostG. A Train mode. B Encoding mode. T1, T2, and T3 represent the genomes of viruses that will be fed to CNN to
update parameters during back propagation in the train mode. E1, E2, and E3 represent the contigs/genomes that will be fed to pre-trained CNN for
encoding the sequences into numerical vectors in the encoding mode
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output of train mode = SoftMax
(
H(2),w(2)

)
(7)

Finally, H(0) will be fed to dense layers to compress
the information and make predictions. The dense layer is
interpreted as Eq. 6. H(l) is the feature map in the lth hid-
den layer. We apply the SoftMax function to generate the
predictions (Eq. 7) and minimize the error between labels
and predictions accordingly.

Virus nodes
In encoding mode, we use the pre-trained CNN to encode
viruses. We use genomes/contigs as input to feed the pre-
trained CNN. If the input genome is longer than 2kbp,
we follow the first step in the training mode and cut it
into several segments of 2kbp. As shown in Eq. 8, we use
the output vector of the first dense layer as the learned
encoded features. Thus, the pre-trained CNN will output
an encoded vector for each segment. We will add the vec-
tors of all segments and divide the summed vector by the
number of segments.

output of encoding mode = ReLU
(
H(0),w(0)

)
(8)

Host nodes
In order to ensure consistency in node encoding, we use
weighted averaged feature vectors of viruses to encode

host nodes. A virus-host connection with smaller a E-
value indicates higher similarity, and thus being assigned
with a bigger weight.

Nodehost =
∑Nvirus

i (i) ∗ (−log(Evalue(i)))
∑Nvirus

i (−logEvalue(i)))
(9)

As shown in Eq. 9, the feature vector of the host node is
calculated by its neighboring virus nodes in the knowl-
edge graph. Thus, host genomes from new taxa can still be
encoded as feature vectors. This encoding method allows
convenient extension of the knowledge graph to include
new labels as discussed in the “Extension to new labels”
section.

The GCNmodel
After constructing the knowledge graph, we train a GCN
to decide the taxonomic group of the viruses’ hosts. As
shown in Fig. 3, in the graph convolutional layer, each
node will use the information traversed from its’ neighbor.
Eq. 10 shows the basic concept of the graph convolutional
layer.

H(l+1) = ReLU
(
D̃− 1

2 ÃD̃
1
2H(l)θ (l)

)
, l ∈ {0, 1} (10)

Fig. 3 An example of the GCN structure in HostG. Circles represent virus nodes and triangles represent host nodes. Red color represent genus
Enterobacter and blue color represent genus Geobacillus. White color represent query viruses. Arrows in each layer represent the graph convolution
process in each layer. In the train mode, only labeled nodes will be used to minimize the loss. In the test mode, GCN will predict labels for the query
node



Shang and Sun BMC Biology          (2021) 19:250 Page 7 of 15

Out = SoftMax
(
H(2)θdense

)
(11)

A ∈ R
K×K is the adjacency matrix, where K is the num-

ber of nodes in the knowledge graph. Ã = A + I, where
I ∈ R

K×K is the identity matrix. D̃ is the diagonal matrix
calculated byDii = ∑

jÃij.H(l) is the hidden feature in the
lth layer andH(0) ∈ R

K×512 is the node feature vector. θ(l)

is a matrix of the trainable filter parameters in the layer.
Then, we feed the output of the graph convolutional layer
to a dense layer and utilize the SoftMax function to give
the final output (Eq. 11). θdense is the weight parameters
in the dense layer. During training, we calculate the Soft-
Max value for all nodes in the knowledge graph. Only the
SoftMax value of labeled nodes will be utilized to calculate
the loss and update parameters. Because all host nodes are
labeled, and thus, they are also used to minimize the loss.
After training, the SoftMax value of each unlabeled node
will be used to assign taxonomic label accordingly.
Since we have host prediction at multiple taxonomic

rankings, we will train one model for each taxonomic level
(from genus to phylum) separately. Specifically, we re-use
the same knowledge graph for training, but the label of the
nodes are different according to the taxonomic level. Since
there might exist inconsistencies in predicted host taxon-
omy, HostG will only output the higher taxonomic label
when a conflict occurs.

Expected calibrated error (ECE)
Recent research shows that the SoftMax value cannot
represent the real confidence of the prediction [39]. To
improve the prediction reliability of our method, we add
ECE [40] to the objective function and update parameters
with the L2 as shown in Eq. 12.

L = ECE + L2 (12)

ECE aims to minimize the differences between the Soft-
Max value and the accuracy. By updating parameters with
ECE, the prediction with a higher SoftMax value will have
a higher probability to be correct so that we can use the
SoftMax value to represent the confidence of the predic-
tion. We first define the ECE function. Suppose we split

the SoftMax value (ranging from 0 to 1) into Nb bins
with each bin covering a region of size 1

Nb
, such as [0,

1
Nb

), [ 1
Nb

, 2
Nb

), etc. As shown in Fig. 4. In each training
epoch, the model will output a prediction for each sam-
ple with the corresponding SoftMax value. Then, we can
calculate the accuracy and the average SoftMax value for
each bin. Finally, as shown in Eq. 13, ECE is computed by
the weighted sum of the difference between accuracy and
average confidence (SoftMax value) in each bin. T is the
number of total samples and Ti is the number of samples
in the ith bin. Acci is the accuracy of the ith bin. The aver-
age confidence in each bin can be computed by Eq. 14.
p̂(xij) is the SoftMax value of the jth sample in the ith bin.

ECE = ∑Nb
i

Ti
T

∣
∣Acci − conf i

∣
∣ (13)

conf i =
∑Ti

j p̂(xij)
Si

(14)

Then, we calculate the total loss of the current training
epoch according to Eq. 12 and update trainable parame-
ters in GCN. After training with ECE loss, the difference
between accuracy and average SoftMax value in each bin
will become smaller. The bin with a higher SoftMax value
achieves higher accuracy, and thus, the SoftMax values
can be used to represent the confidence of the predictions.

Extension to new labels
As the number of sequenced viruses or prokaryotes is
still increasing rapidly every year, there might exist viruses
infecting prokaryotes whose taxa are not included in cur-
rent virus-host databases. Many existing tools can only
predict the host whose taxa are in the training data. For
example, if the training sequences only contain hosts from
taxa y1, y2, and y3, These tools can only learn to predict
hosts with the three taxa. When the input viruses infect
hosts from y4, these tools are unable to give a correct
prediction.
Our semi-supervised learning model allows HostG to

extend to new host taxa by adding new nodes to the
knowledge graph. The main idea of graph extension is

Fig. 4 Example of ECE. Red circles are wrong predictions and green circles are correct predictions. p̂(x) is the SoftMax value of sample x. Nb is the
total number of bins
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to integrate new taxonomic labels by adding more host
nodes into the knowledge graph. Because all the labeled
nodes (including some virus nodes and all host nodes)
will be used to calculate the loss and update parame-
ters when training, these new labels will be propagated
through the topological structure. Therefore, HostG not
only learns from the existing virus-host interactions,
but also learns the similarity between viruses and new
prokaryotes to predict a new host taxa. An example is
sketched in Fig. 1 (IV). When we need to extend the GCN
to include new hosts taxa (orange nodes) that do not
exist in the given dataset, we will create nodes to repre-
sent these hosts. Edges connecting to the new nodes can
be constructed conveniently according to Evirus-virus and
Evirus-host described in the “Edge construction” section.
Then, GCN will learn and traverse the information within
the knowledge graph and the new taxonomic label can
also be propagated by the edges. In this case, HostG can
predict the new taxa for query viruses. We will demon-
strate that after adding the new taxa, the model can still
achieve reliable performance in the experiments. Thus,
users can conveniently extend HostG to any taxa accord-
ing to their needs.

Results
Data and performance metrics
We benchmarked our tool against other recently pub-
lished host prediction tools on three datasets. The first
one is the VHM benchmark dataset [11]. The taxa of both
viruses and host in the dataset come from the Interna-
tional Committee on Taxonomy of Viruses (ICTV) and
NCBI Taxonomy database. There are 1,426 virus-host
relationships in the dataset, compiled from the NCBI Ref-
Seq before 2015. Within the 1426 relationships, 48 viruses
infect archaea and 1378 viruses infect bacteria. The sec-
ond dataset is a benchmark dataset from PHP [12], which
contains 671 virus-host interactions submitted between
2015 and 2020 (referred to as the TEST dataset hereafter).
Within the 671 interactions, 21 viruses infect archaea and
650 viruses infect bacteria. The third dataset was recently
constructed using single-cell viral tagging [8]. The authors
identified 139 pairs of virus-host interactions. The hosts

of the three datasets come frommany different taxonomic
groups as shown in Table 1. We will show the prediction
performance at each taxonomic level accordingly.

Experiment design
We compared our tools with several state-of-the-art tools:
WIsH [22], PHP [12], HoPhage [24], VPF-Class [21],
VHM-net [14], vHULK [25], and RaFAH [23]. We also
recorded the output of BLASTN to show the performance
of the alignment-based tool. To compare HostG [41] with
other tools fairly, we followed their experiment design and
also used the same metrics: prediction rate and accuracy.
These toolsmay return a null prediction for some samples.
For example, BLASTN cannot predict the host for a virus
if the viral sequence cannot be aligned with any prokary-
otic genomes in the database. Thus, prediction rate is used
to quantify the percentage of predicted samples as shown
in Eq. 15. It is worth noting that the prediction rate is
used as recall in the benchmarked tools even though some
of the predictions are not correct. Eq. 16 shows the for-
mula to calculate the accuracy, which is computed only for
samples with predicted labels.

prediction rate = number of predicted samples
number of total samples

(15)

Accuracy = number of correct predictions
number of predicted samples

(16)

The experimental results are organized as follows. First,
we show the comparison between HostG and other tools
at each taxonomic level. We also show that virus-virus
connections can help host prediction when there is no
significant alignment between viruses and host genomes.
Second, we show that after combining the ECE with the
L2 in GCN, the SoftMax value can represent the confi-
dence of the prediction. Users can achieve higher accuracy
with a little sacrifice of the prediction rate by specifying a
confidence threshold. Third, we test how contigs of differ-
ent lengths influence the performance of host prediction.
Finally, we evaluate the extension ability of HostG on
detecting hosts of new taxa on the second real sequencing
dataset. We also compared the running time of different
tools.

Table 1 Virus-host interactions in three datasets

The VHM dataset The TEST dataset Single cell tagging dataset

1426 virus-host interaction 671 virus-host interaction 139 virus-host interaction

Labels of the hosts (taxonomic rank)

Phylum 7 Phylum 7 Phylum 2

Class 13 Class 13 Class 4

Order 36 Order 29 Order 4

Family 67 Family 48 Family 5

Genus 113 Genus 64 Genus 12
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Fig. 5 Average accuracy of 10-fold cross validation on VHM dataset.
X-axis: taxonomic rankings. Y-axis: accuracy

The performance of host taxonomy prediction
We trained our model on the VHM dataset (interactions
before 2015) and tested it on the TEST dataset (inter-
actions between 2015 and 2020). The model parameters
are learned using 10-fold cross validation on the VHM
dataset. Fig. 5 shows the average accuracy of the 10-fold
cross validation. The detailed training method of the 10-
fold cross validation on the VHM dataset can be found
in the supplementary file. We also recorded the BLASTN
results with the E value cutoff 1e−5. We predict the
hosts using both majority vote and the best alignment
for BLASTN. The majority vote strategy assigns the most
common alignment host to the virus. The strategy of the
best alignment assigns the label using the host with the
best alignment. The latter yielded better performance and
we thus reported the results in Fig. 6. The performance of
majority vote can be found in Additional file 1: Fig. S1.
We compared the performance of HostG with other

virus host classification tools in Fig. 6. To ensure a fair
comparison, we retrained vHULK and RaFAH using our
training data. Other learning models are either hard to
retrain or were previously trained using similar training
data as ours and thus we directly tested them using the

pre-trained models. For alignment-based method VPF-
Class, we directly used their database and run it on the
TEST dataset. Figure 6 shows that HostG outperforms
other pipelines across different ranking. With the increase
of the ranking, the performance of all pipelines increases.
This is expected because the higher taxonomic ranking
has more relationship data to learn. In addition, features
of higher-ranking taxonomic groups tend to be more
distinctive. The results show that HostG achieves both
high prediction accuracy and prediction rate. Although
the performance of BLASTN in Fig. 6 is better than
some of the learning-based pipelines, BLASTN can only
return predictions for 65.5% of the viruses in the TEST
dataset. All other methods predicted the hosts for more
than 90% of the viruses. We also recorded the prediction
results using provided parameters of RaFAH and vHULK
in Additional file 1: Fig. S2. The results are much better
than Fig. 6. This is likely caused by the overlap between
the TEST dataset and the data used for training the latest
RaFAH and vHULK models.
Then, we further investigated the performance of the

learning-based models for viruses that lack significant
alignments with reference prokaryotic genomes. In this
experiment, only viruses without BLASTN alignments
will be used as test sequences. The results in Fig. 7 reveal
that HostG still renders the best performance even when
there are no statistically significant alignments between
query virus and host.We also evaluated how the similarity
between testing sequences and training sequences affects
the prediction performance. The performance shown in
Additional file 1: Fig. S2 reveals that sequence with higher
similarity will achieve a better accuracy

Improvement of GCN with ECE
As described in the “Expected calibrated error (ECE)”
section, we combine ECE and L2 to update the parame-
ters in GCN. We divide the SoftMax value into 10 bins,
so each bin covers a region of size 0.1. Figure 8 shows the

Fig. 6 Host prediction accuracy from genus to phylum on the TEST dataset. X-axis: taxonomic rankings. Y-axis: accuracy
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Fig. 7 Host prediction accuracy for contigs without alignment results. X-axis: taxonomic rankings. Y-axis: accuracy

results before (Fig. 8A) and after (Fig. 8B) adding ECE in
the training process. After adding ECE to the objective
function, the bin with higher confidence (SoftMax value)
has higher accuracy. For example, The number of samples
with SoftMax values above 0.8 is 76, which corresponds
to the accuracy of 95.7% and prediction rate of 56%.
Thus, adding ECE to L2 allows us to achieve higher accu-
racy with a sacrifice of prediction rate. Users can adjust
the threshold of confidence (SoftMax value) according to
their needs.
Other learning-based tools also provide a score for

ranking their predictions. We first sorted the prediction
according to the SoftMax value (or the score provided by
other tools) and then showed the comparison at genus,
family and order level in Fig. 9 and Additional file 1: Fig.

S3. As expected, the accuracy and tends to decrease with
the increase of the prediction rate. Figure 9 and Addi-
tional file 1: Fig. S3 indicate that HostG can achieve higher
host prediction accuracy than most of the existing tools
under the same prediction rate across different taxonomic
ranking. In addition, HostG achieves 100% accuracy at the
order, family, and genus level when the SoftMax thresh-
olds are 0.88, 0.89, and 0.94, respectively.We also recorded
the F1-scores of different tools in Additional file 1: Fig. S5.
The result shows that HostG can achieve higher F1-score
across different prediction rates.

Performance on short contigs
While the previous experiments were conducted using
whole genomes, we will investigate how the length of

Fig. 8 Accuracy vs. confidence (SoftMax value) before and after adding the ECE loss at the order level. ECE decreases from 13.16 to 2.61. X-axis:
confidence (SoftMax value). Y-axis: accuracy
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Fig. 9 Comparison of the accuracy and prediction rate on the learning-based tools at the rank of genus. Each data point on a line corresponds to a
different confidence threshold. X-axis: prediction rate. Y-axis: accuracy

input contigs influences the prediction performance. First,
following the experimental setting in “The performance of
host taxonomy prediction” section, we randomly selected
a start position and sampled contigs in three different
lengths (3kbp, 5kbp, 10kbp) from the viral genomes in
the TEST dataset. Then we ran all the pipelines and
recorded the predictions. As shown in Fig. 10, although
the performance of the all methods decreases with the
decrease of the contigs’ length, HostG still outperforms
the state-of-the-art methods at three taxonomic rankings.
Figure 11 shows the classification performance of HostG

with a SoftMax threshold above 0.8. Although there is a
sacrifice of prediction rate, the predicted labels become
more accurate for the short contigs. The results suggest

that HostG is still reliable for short inputs when users
specify a stringent SoftMax cutoff.

Extension to hosts with new taxonomic labels
To test the performance of HostG on predicting the hosts
from new taxa, we designed two experiments using the
139 new virus-host pairs obtained by single-cell viral tag-
ging [8]. In this dataset, the genus labels of the host
genomes are new compared to the 1426 virus-host rela-
tionships in the VHM dataset. Thus, lacking training
samples on these new labels prevents supervised learning
models such as CNN from predicting the correct labels
for the 139 new viruses. However, HostG can conveniently
include hosts from new taxa by adding the corresponding

Fig. 10 Prediction performance on short contigs. X-axis: length of the input contigs. Y-axis: accuracy
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Fig. 11 Prediction performance on short contigs with SoftMax threshold above 0.8. Line-plot: the accuracy vs. length of contigs. Bar-plot: the
prediction rate vs. length of contigs

nodes in the knowledge graph. Then, the new taxonomic
label can be propagated by edges during training.
As shown in Fig. 12, we considered two scenarios

that can benefit from label extension. In Fig. 12A, the
user lacks specific information about the hosts of some
query viruses and thus, add nodes for all 60,105 prokary-
otic genomes obtained from the NCBI genome database
(before 2020) to extend the knowledge graph. Of the 60k+
genomes, 86 genomes have the same genus label as the
real host genomes. Thus, as mentioned in 1, the genus
label of the real hosts can be integrated into the original
graph. To add the difficulty, we also removed the real host
genomes to test whether the model can predict the hosts’
genus label when the real host genomes are not included.
Figure 12B focuses on the second scenario where the user
has access to the real host genomes, such as those assem-
bled from the same type of environmental samples. So,

nodes of 289 prokaryotic genomes given by the single-cell
tagging dataset are added to the graph.
Figure 13 shows the results of HostG trained on

the extended knowledge graphs. Because PHP supports
model retraining for label extension even when the train-
ing set does not contain the labels of the host species,
we compared the accuracy with the outputs of PHP. As
shown in Fig. 13, the extended version of HostG can
achieve higher accuracy in both cases. As expected, both
HostG and PHP have better performance when the actual
host genomes are used as the labeled sequences, which
is expected. When the actual host genomes are not in
the knowledge graph, HostG can still utilize the prokary-
otes in the same taxa to make more reliable predictions
than PHP.
We also recorded the results of HostG with the highest

20% SoftMax values and PHP with the highest 20% scores.

Fig. 12 Two methods to extend the knowledge graph for new host labels. A Graph extension by adding 60,105 prokaryotic genomes and 139
query viruses. B Graph extension by adding 289 prokaryotic genomes in the single-cell tagging dataset and 139 query viruses
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Fig. 13 Prediction performance on the single-cell viral tagging dataset. “-86”: trained and predicted on extension-86 shown in Fig. 12 A. “-289”:
trained and predicted on extension-289 shown in Figure 12 B

As shown in Fig. 14, imposing the thresholds renders
higher accuracy.

Discussion
As shown in the experiments, the performance of
alignment-based methods heavily rely on the reference
database. The ambiguous hits or lack of shared regions
with host genomes can decrease the classification accu-
racy and the prediction rate. Existing learning-based tools
like PHP cannot achieve good performance at low tax-
onomic ranking, such as genus and family. The results
become even worse when the query contigs are short.
In this work, we demonstrated that HostG outperforms
the state-of-the-art methods for host prediction. Rather
than only using the DNA patterns from virus-host pairs,
we also consider the protein similarity between viruses
to construct the knowledge graph. Then, the semi-

supervised learning method, GCN, enables HostG to
exploit features from both labeled and unlabeled nodes in
the knowledge graph and predict hosts for query viruses.
To ensure the reliability of HostG, we employed ECE to
calibrate the confidence of the predictions so that users
can achieve higher accuracy by setting a threshold accord-
ing to their needs. Finally, we demonstrated that HostG
can predict new taxonomic labels through the extension
capability of the knowledge graph.
Although HostG has greatly improved host prediction,

we have several goals to optimize in our future work.
First, the length of the contigs will influence the classifica-
tion performance. In order to improve the accuracy of the
short contigs, we will investigate whether more biological
features can be incorporated in the knowledge graph con-
struction. Second, as shown in Additional file 1: Table. S2
in the supplementary file, HostG has longer running time

Fig. 14 Prediction accuracy for contigs with the highest 20% SoftMax values (or scores). X-axis: taxonomic ranking. Y-axis: accuracy
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than some tools. The bottleneck of HostG is the calcula-
tion of the alignment similarities. We will explore whether
the alignment can be replaced by a more efficient method
to save computational resources.

Conclusions
In this work, we present a semi-supervised learning
model, named HostG, to conduct host prediction for
novel viruses. We tested HostG on both simulated and
real sequencing data and the results demonstrated that it
outperforms the state-of-the-art pipelines. This work will
help to identify virus-host interactions in metagenomic
data and will extend our understanding of newly identified
viruses.
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