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Abstract

Cell membrane fusion and multinucleation in macrophages are associated with physiologic homeostasis as well as
disease. Osteoclasts are multinucleated macrophages that resorb bone through increased metabolic activity resulting
from cell fusion. Fusion of macrophages also generates multinucleated giant cells (MGCs) in white adipose tissue (WAT)
of obese individuals. For years, our knowledge of MGCs in WAT has been limited to their description as part of crown-
like structures (CLS) surrounding damaged adipocytes. However, recent evidence indicates that these cells can
phagocytose oversized lipid remnants, suggesting that, as in osteoclasts, cell fusion and multinucleation are required
for specialized catabolic functions. We thus reason that WAT MGCs can be viewed as functionally analogous to
osteoclasts and refer to them in this article as adipoclasts. We first review current knowledge on adipoclasts and their
described functions. In view of recent advances in single cell genomics, we describe WAT macrophages from a ‘fusion
perspective’ and speculate on the ontogeny of adipoclasts. Specifically, we highlight the role of CD9 and TREM2, two
plasma membrane markers of lipid-associated macrophages in WAT, which have been previously described as
regulators of fusion and multinucleation in osteoclasts and MGCs. Finally, we consider whether strategies aiming to
target WAT macrophages can be more selectively directed against adipoclasts.

Macrophages have a unique potential to fuse with them-
selves to form multinucleated giant cells (MGCs) [1]. Dur-
ing homeostasis, the majority of macrophages fuse
infrequently and reside in tissues as mononuclear cells.
The exception to this rule is the osteoclast of bone, a
multinucleated monocyte/macrophage [2] that originated
from embryonic erythro-myeloid progenitors and is re-
sponsible for the resorption of mineralized bone [3]. The
multinucleation capability of the osteoclast correlates with
its resorptive activity, suggesting that cell fusion confers a
specialized stage of differentiation lacking in the mono-
nuclear state [1]. The concept of a cellular gain of function
as a result of fusion/multinucleation is supported by a

recent discovery showing that multinucleated osteoclasts
can undergo fission to form osteomorphs, daughter cells
transcriptionally distinct from osteoclasts [4]. While oste-
oclasts regulate bone mass, pathological macrophage fu-
sion can be an immune response to infectious pathogens
(e.g. Mycobacterium tuberculosis) or foreign materials.
MGCs are derived from monocyte progenitors [4] but
their precise role within the granuloma is not yet clear.
On the other hand, foreign-body giant cells (FBGCs) can
be involved in the uptake of larger particles [5], an obser-
vation confirmed in vitro [6]. These observations suggest
that enhanced phagocytic clearance of large particulates is
an adaptive phenomenon resulting from macrophage fu-
sion and multinucleation.
The adipose tissue contains macrophages and during

obesity, their number increases significantly (up to 50%
of all cells) to correlate with metabolic dysfunction char-
acterized by inflammation, fibrosis and insulin resistance
[7–11]. Their histological description as crown-like
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structures (CLS) refers to MGCs associated with nec-
rotic adipocytes [12]; however, recent evidence demon-
strated that these MGCs can phagocytose lipid remnants
more efficiently when compared to unfused WAT mac-
rophages [13].
There is an intriguing association between lipids and

macrophage fusion. Cholesterol-rich MGCs have been
reported as a frequent and non-specific histological fea-
ture in lung biopsies [14]. Historically, the Touton giant
cell, which is frequently found in lesions containing high
levels of cholesterol and lipid deposits, has been de-
scribed as a product of fusion between macrophage-
derived foam cells [15]. Multinucleated foam cells have
been indeed observed as a result of high-fat diet in in-
flammatory sites such as the synovium [16]. Recent evi-
dence shows that common monocyte progenitors
accumulate cholesterol and lipids, which are required for
MGC formation [17]. These studies suggest that a lipid
rich microenvironment such as the white adipose tissue
(WAT) can be ‘fusogenic’ for resident macrophages.
Based on recent findings published by Braune and col-
leagues [13], and the existing literature on osteoclasts
and MGCs, we postulate that macrophage fusion and
multinucleation in the WAT may initiate a ‘gain of func-
tion’ to clear increasingly stressed adipocytes under
metabolically challenging conditions such as obesity.
Thus, in this review, we refer to MGCs of crown-like

structures (CLS) as adipoclasts, the ‘fat-resorbing osteo-
clasts’ of the white adipose tissue (Fig. 1A, B). The term
adipoclast does not differentiate between the MGCs with
different nuclei numbers (binuclear, 2–4, > 4) and differs
from the designation lipid-associated macrophage
(LAM) by its unique multinucleated feature. The choice
of this term is based on the (i) wide description of the
CLS histologically in the white adipose tissue, (ii) their
recent functional annotation as catabolic cells following
fusion/multinucleation [13], and (iii) the functional ana-
logy with osteoclasts—hence the suffix ‘clast’.
We first describe the current knowledge on CLS

and their proposed function. We then review recent
advances in WAT single cell transcriptomics, with a
specific focus on TREM2 and CD9, membrane recep-
tors that have been previously described in macro-
phage fusion and multinucleation. We highlight the
respective roles of TREM2 and CD9 in osteoclasts, in
order to speculate on the adipoclasts’ origin and func-
tion. Finally, we discuss whether recent macrophage-
targeting therapies in the fat may be beneficial or
fine-tuned in targeting adipoclasts in obesity. The re-
view does not cover the polarization of macrophages
in adipose tissue nor the significance of WAT inflam-
mation in insulin resistance and metabolic disorders
in general—an area that is amply covered by excellent
reviews (some examples include [10, 18–23])

Fig. 1 A Representative CD68 immunohistochemistry (brown) showing multinucleated adipoclasts (red arrows) in the white adipose tissue of
obese patients undergoing bariatric surgery; scale bar, 50μm. B Macrophage fusion and multinucleation in health and disease. In addition to
osteoclasts, foreign body giant cells and MGCs, adipoclasts contribute to the clearance of stressed adipocytes in the white adipose tissue
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Crown-like structures are adipoclasts
The infiltration of immune cells in the obese adipose
tissue was shown in the 1960s [24, 25] and then over-
looked for almost four decades, except for an in vitro
study showing that insulin resistance in adipocytes can
be caused by a macrophage-derived mediator [26]. The
presence of macrophages in human and mice adipose
tissue was shown by several groups and while some re-
ported their tissue localization adjacent to adipocytes,
others highlighted their morphological appearance as
MGCs arising from cell fusion [11, 12, 27, 28]. Clement
et al. isolated CD14+ cells from the stromal vascular
fraction (SVF) of human subcutaneous WAT, using
CD14-coupled magnetic microbeads and confirmed the
presence of macrophages in adipose tissue by immuno-
histochemistry [27]. Two contemporaneous studies re-
ported the existence of macrophage syncytia (or
MGCs) in the WAT of genetically obese mice (ob/ob)
[11, 28]. From a histological point of view, Cinti et al.
were the first to designate the WAT multinucleated
macrophages as crown-like structures (CLS) [12], sur-
rounding necrotic or lipolytic adipocytes [12, 28].
Today it is well-established that adipose tissue CLS
contain multinucleated macrophages (i.e. adipoclasts;
Fig. 1A) and increase in frequency with obesity. The
origin of this augmented macrophage infiltration in the
WAT is thought to be blood monocytes [29] and the
literature on CLS has long assumed that these cells are
implicated in efferocytosis of dead adipocytes because
of their histological localization around dead adipo-
cytes. A recent study brought definitive evidence by live
imaging the WAT MGCs (i.e. adipoclasts) in mice,
showing that these cells can take up lipid remnants
which were not ingestible by mononuclear macro-
phages in the WAT [13]. A bead phagocytosis assay
confirmed these findings and showed that, like MGCs
[6], adipoclasts can phagocytose large particles [13].
Interestingly, confirming the previous associations be-
tween MGCs and lipids, adipoclasts display a relatively
high lipid content [13] and this is not surprising given
the fusogenic properties of the long-chain fatty acid
binding scavenger receptor CD36 in macrophages [30].
In summary, while it is well-accepted that adipo-

clasts are specialized in efferocytosis of damaged
adipocytes, many questions remain regarding the
mechanisms underlying this process, as well as the
other advantages that cell fusion and multinucleation
may confer in the context of prolonged obesity. Fur-
thermore, given the presence of mononucleated, often
foamy macrophages in WAT, it is necessary to con-
sider more trophic functions and crosstalk between
macrophages and adipocytes [31] including the role of
CD36 and other macrophage scavenger receptors [32],
as well as clearance functions.

The complexity behind adipoclast function
During prolonged obesity, adipose tissue remodelling is
a well-described phenomenon that consists in depot-
dependent adipocyte death associated with macrophage
infiltration [33, 34]. Our limited understanding of adipo-
clast function is due to the complex aspects of the evolu-
tion of adipocyte cell state under metabolically impaired
conditions (see review [35]). During obesity, adipocytes
can undergo various forms of death [36]—apoptotic
[37], necrotic [12], and pyroptotic [38]. In addition, pre-
adipocytes (i.e. the precursor of adipocytes) have been
described to undergo senescence through different
mechanisms during obesity [39, 40]. On the other hand,
the macrophage clearance mechanisms of damaged adi-
pocytes were reported to be through lysosomal exocyt-
osis [41], in addition to phagocytosis [13]. By live-
imaging, a recent report showed the requirement of a
size threshold for efferocytosis of lipid remnants [42].
Adipocyte death induces a metabolically activated and
pro-inflammatory macrophage phenotype [42]. Paradox-
ically, the clearance of dead adipocytes by CLS was also
linked to preadipocyte proliferation [43], suggesting an
adipogenic role for adipoclasts. Adding to this complex-
ity, different fat depots (visceral vs. subcutaneous) can
display different prevalence in adipocyte cell death. It
was reported that CLS were widespread in visceral com-
pared with subcutaneous fat in genetically obese mice
(db/db and ob/ob) [44]. In keeping with this, adipoclast
infiltrates may differ between murine and human WAT.
In mice, a prolonged high-fat diet of 24 weeks is re-
quired to observe the adipoclasts histologically [13], sug-
gesting that prolonged obesity is a prerequisite for
multinucleation of these cells.
Hence adipoclasts have been linked to adipocytes in

different cellular states that describe broadly cellular
stress and ultimately death. This raises the question of
whether adipoclasts can ‘sense’ a particular adipocyte
state and whether their fusion from mononuclear mac-
rophages is triggered through adipocyte-derived markers
of stress. For instance, using a co-culture setup, it was
shown that adipocyte death triggers MGC formation
in vitro [13]. Further experiments will be crucial in order
to establish the exact mechanisms underlying this
process.

Adipoclasts and/or their precursors display
multinucleation markers
While it is accepted that obesity is associated with a shift
toward pro-inflammatory macrophage function [45–47],
WAT macrophages have a unique polarization state
(metabolically activated macrophages [48]) and paradox-
ically, crown-like structures contain the M2-like marker
CD206 (mannose receptor) and CD11c expressing mac-
rophages [49]. Recent single cell transcriptomics studies
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revealed the different subtypes of adipose tissue macro-
phages and their evolution upon obesogenic conditions
[50–54]. Two markers of white adipose tissue macro-
phages of particular interest include TREM2 and CD9.
Jaitin et al. were first to describe a TREM2-expressing
lipid-associated macrophage (LAM) subset in human
WAT [53], later confirmed by a separate study [51].
Similarly, CD9, another marker of LAMs [53], was found
to colocalize with the pan-macrophage marker CD68 in
human WAT [54]. Notably, TREM2+ and CD9+ LAMs
were found to be part of CLS [52, 53] and their fre-
quency increased with obesity in mice and humans [50,
51] with a shift toward a pro-inflammatory polarization
characterized by IL-1β and TNF production [51].
None of the single cell RNA-seq studies in the WAT

distinguished multinucleated macrophages (i.e. adipo-
clasts) from other macrophage subsets. Although tech-
nically challenging, this could have been attempted by
sorting LAMs with > 2 nuclei. The advantage of such an
approach would have been the identification of potential
precursors of adipoclasts, in order to make a distinction
between ‘fusion-competent’ LAMs and adipoclasts, as
well as the polarization state of each cell type. Neverthe-
less, the recent single cell transcriptomic approaches in
human WAT suggest that adipoclasts and/or adipoclast
precursors express TREM2 and CD9 [51–54].

TREM2 and CD9: a parallel between adipoclasts
and osteoclasts
The existence of CD9+ and TREM2+ adipoclasts is
worth highlighting from a macrophage fusion perspec-
tive, especially given the relevance of these two mem-
brane proteins in osteoclast and MGC fusion and
multinucleation.
Besides its widely studied role in microglial phagocytosis

[55] and neurodegeneration [56, 57], TREM2 (the trigger-
ing receptor expressed on myeloid cells 2) is essential for
macrophage multinucleation as part of a signalling path-
way that includes DAP12 and Syk [58]. TREM2 regulates
osteoclast formation [59–61] and a recent report shows its
regulatory role in granuloma formation through recruit-
ment of mycobacterium-permissive macrophages [62].
Furthermore, deletions or loss-of-function mutations in
either DAP12 or TREM2 are causally associated with
Nasu–Hakola disease, a dementia associated with bone
cystic lesions [63, 64]. Importantly, mutations in TREM2
and DAP12 induce defective multinucleation in osteo-
clasts, resulting in impaired bone resorption [60]. Trem2
is a trans-acting genetic regulator of a macrophage multi-
nucleation gene co-expression network [65, 66], which
also includes genes belonging to the Pi3K-mTORC1 path-
way that controls osteoclast multinucleation and bone
mass [66]. The TREM2-PI3K-mTOR axis is indeed well-
defined in microglia [67] and the activation of PI3K

signalling is a common feature of osteoclasts and MGCs
[58, 68].
Jaitin et al. identified TREM2, not only as a marker,

but also as a driver of the LAM cell molecular program
as lipid uptake and storage were abrogated in the ab-
sence of Trem2 [53]. Interestingly, apolipoprotein E
(ApoE) is a Trem2 ligand [69, 70] and both Trem2 and
ApoE are expressed by a subpopulation of tumour-
associated macrophages [71]. Macrophages can fuse with
tumour cells and contribute to tumour heterogeneity
[72], but a potential role of Trem2 in this process is yet
to be found. The lipid sensing role of TREM2 has been
shown as part of the microglia response [73] but also
during infection, as TREM2 is capable of recognizing
mycobacterial cell-wall mycolic acid (MA)-containing
lipids [62]. This raises the possibility of a lipid uptake
through TREM2 that can be a prerequisite mechanism
for macrophage fusion and multinucleation. Local lipid
changes are principal regulators of adipose tissue macro-
phage recruitment [74]. Interestingly, single cell RNA-
sequencing analysis of aortic CD45+ cells from athero-
sclerotic high-fat diet-fed (Ldlr-/-) mice identified macro-
phages with high Trem2 expression, specialized in lipid
metabolism/catabolism and enriched in the osteoclast
gene signature [75]. If one extrapolates these findings to
the WAT, it is plausible that Trem2 expressing macro-
phages accumulate lipids and become fusogenic, giving
rise to adipoclast precursors and adipoclasts. Fusion and
multinucleation could be considered as the final differ-
entiation step of these precursors. However, the exact
Trem2-dependent and lipid-related mechanisms allowing
the transition from fusion-competent adipoclast precur-
sors to adipoclasts remain to be identified, and in that
sense, some parallels drawn from knowledge on osteo-
clast lipid metabolism may be of relevance. Cholesterol
is indispensable for membrane fusion and osteoclast v-
ATPase activity [76, 77] and Ldlr-/- mice have defective
osteoclast fusion [78]. Since osteoclast formation,
survival and morphology are highly dependent on ex-
ogenous cholesterol/lipoproteins [79], adipoclast integ-
rity and function may also be under the influence of a
cholesterol-rich environment in the adipose tissue. Simi-
larly, saturated fatty acids enhance osteoclast survival
[80] and palmitic acid increases RANKL-mediated osteo-
clast differentiation [81]. On the other hand, short-chain
fatty acids such as propionate and butyrate induce meta-
bolic reprogramming of osteoclasts and downregulate
essential osteoclast genes [82]. This suggests that indi-
vidual lipid species may have opposing roles on osteo-
clast differentiation and fusion and therefore the lipid
dynamics in the WAT during obesity may determine the
formation of adipoclasts. In this regard, it has been
shown that ablation of fat cells in adult mice can induce
massive bone gain [83]. As the diet and microbiome
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significantly contribute to the reserve and processing of
fatty acids, the lipid composition of WAT under obeso-
genic conditions [84] can be a pivotal factor in determin-
ing adipoclast formation and function.
Tetraspanins are a superfamily of membrane proteins,

and among them, CD9 and CD81 are closely related and
known to control cell–cell fusion as they negatively regu-
late fusion of osteoclasts and MGCs [85, 86]. These pro-
teins facilitate the organization of integrins and influence
macrophage motility [87]. CD9/CD81 double-null mice
spontaneously develop MGCs in the lung, showing en-
hanced osteoclastogenesis in the bone and signs of accel-
erated ageing with atrophy of adipose tissue [86, 88].
Interestingly, while CD9 has been robustly linked to WAT
macrophages [51, 53, 54], CD81 has been recently de-
scribed as a beige adipocyte progenitor cell marker and
regulator of de novo beige fat biogenesis following cold
exposure [89]. The potential involvement of CD81 in adi-
poclast differentiation and function remains to be identi-
fied. Given that CLS have been described to be an
adipogenic niche for adipocyte progenitor cells [43], CD81
may be involved in a possible adipocyte progenitor-
adipoclast/adipoclast-precursor interaction. Notably, tetra-
spanins are the only inhibitors of fusion that have been so
far identified. Because their downregulation induces mem-
brane fusion [1, 90], CD9 and CD81 may be expressed in
adipoclast precursors and undergo down-regulation when
fusion occurs. Hence, the transcriptomic characterization
of CD9+ mononucleated and multinucleated cells in the
WAT can confirm the precise role of tetraspanins in adi-
poclast formation.
In summary, the presence of TREM2+CD9+ adipoclasts

or adipoclasts precursors seems to correlate with WAT
inflammation and the severity of obesity-related patholo-
gies (Fig. 2). In support of the pathogenic role of adipo-
clasts, a scar-associated and pro-fibrotic TREM2+CD9+

subpopulation of macrophages was identified in cirrhotic
human liver [91]. These scar-associated macrophages were
conserved in mice and express osteopontin (SPP1) [91], a

protein that regulates FBGC formation [92] and osteoclast
fusion and resorption [93]. Whether the scar-associated
macrophages can fuse with each other remains to be con-
firmed. In non-alcoholic steatohepatitis (NASH), a specific
macrophage population is characterized by high levels of
expression of Trem2 [94] and other lipid-associated
macrophage markers, forming hepatic CLS [95]. A NASH
diet causes a partial loss of Kupffer cell identity, induction
of Trem2 and Cd9 expression, and cell death in mice [96].
Interestingly, the expression of Trem2 and Cd9 is a result
of substantial reprogramming of the Kupffer cell regula-
tory landscape due to the prolonged exposure to the
NASH diet [96]. Hence, an interesting parallel can be
made with TREM2+CD9+ adipoclasts, which may form as
a result of chronic obesogenic conditions, whereby mem-
brane fusion and multinucleation are likely to induce
changes in the transcriptomic/epigenetic landscape, allow-
ing phagocytosis of damaged adipocytes. In addition to
metabolic tissues, TREM2+CD9+ microglia in the brain
may play a pathogenic role. It is intriguing that lipid-
droplet-accumulating microglia (a subgroup presumably
distinct from the disease-associated microglia expressing
TREM2 and CD9 [97]), represent a dysfunctional and pro-
inflammatory state in the ageing brain [98].

Targeting macrophages and/or adipoclasts in
obesity?
To date, it is well-accepted that obesity triggers the re-
cruitment of monocytes into adipose tissue to promote
inflammation, which itself may cause ectopic fat depos-
ition in the liver and insulin resistance [99, 100]. The
discovery of adipose tissue TNF [101, 102] and a decade
later the monocyte-chemoattractant protein 1 (MCP-1)
[103, 104], proved the importance of WAT inflammation
and its indisputable macrophage component in the
metabolic syndrome. Logically, this has seen the emer-
gence of macrophage-targeting therapies that were ini-
tially aiming to inhibit the recruitment of these cells
[105–107]. With the increasing recognition of

Fig. 2 The transition from obese to severely obese state is characterized by increased macrophage infiltration and the formation of TREM2 and CD9 expressing
pro-inflammatory macrophages that eventually give rise to multinucleated adipoclasts surrounding stressed adipocytes. How fusion/multinucleation affects the
expression TREM2/CD9 and whether this causes de novo expression of adipoclasts markers is yet to be determined
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macrophage metabolism in the regulation of its immune
function [108], novel initiatives target mitochondrial
function in macrophages [109, 110], given the relevance
of mitochondrial oxidative phosphorylation in diet-
induced obesity [111]. Drug delivery approaches, includ-
ing nanomaterial-based ones targeting macrophages,
hold promise [112]. Furthermore, in addition to their
professional phagocytic activity and plasticity [113], tis-
sue macrophages have unique features that differentiate
them from surrounding cells. For instance, their en-
hanced sensitivity to changes in intracellular potassium
levels and inflammasome activation [114], makes them
attractive targets for Na+/K+-ATPase blockers such as
ouabain [115]. A recent study exemplifies the strategic
relevance of macrophage-targeted pharmacological inter-
ventions in obesity: macrophage-derived PDGFcc pro-
duction is regulated by diet and increases lipid storage
by white adipocytes [116].
When considering macrophage-targeted treatments in

adipose tissue, it is crucial to keep in mind the hetero-
geneity and master regulatory role of macrophages in
the development and homeostatic function of adipose
tissue. It has become evident that macrophages express
organ-specific genes in addition to canonical macro-
phage genes, a phenomenon referred to as niche-specific
programming [96, 117]. The recently identified sympa-
thetic neuron-associated macrophages increase with
obesity and can be targeted for the browning of white
fat [118]. This shows the heterogeneity of adipose tissue
macrophages, which should be taken into account in any
pharmacological approach aiming to reduce obesity-
related complications. During homeostasis, many aspects
of the mature function of macrophages are controlled by
CSF1 and IL-34, which both bind CSF1R, a receptor re-
stricted to cells of the myeloid lineage. Furthermore,
Trib1, an adaptor protein involved in protein degrad-
ation, is critical for the differentiation of tissue-resident
macrophages [119], while receptors known to be prefer-
entially expressed by mononuclear phagocytes such as
TREM2 [55, 120] and MARCO [121, 122], regulate an
array of tissue-resident macrophage function including
efferocytosis (TREM2) and scavenging (MARCO). The
genetic deletion of Csf1r in rats and Trib1 in mice re-
duces adipose tissue mass [119, 123], while Trem2-/- and
Marco-/- LAMs lose their efficacy in lipid buffering [53,
124]. Of note, CSF1R on microglial cells can control
hypothalamic control of energy homeostasis in mice
[125, 126] which suggests that CSF1R may be respon-
sible for local and systemic control of adiposity. When
considering macrophage-targeted therapies, a possible
non-myeloid expression of some markers (e.g. Trem2)
should be taken into consideration as it may influence
metabolic health [127]. Altogether, these studies suggest
that healthy macrophage differentiation and function is

an unconditional part of adipose tissue homeostasis and
therapeutic approaches must differentiate between opti-
mal macrophage presence and pathological infiltration
and accumulation of these cells.
Based on current knowledge, adipoclasts are likely to

form when relatively high numbers of macrophages infil-
trate the adipose tissue due to prolonged obesity. It is
still not clear whether adipoclasts are only homokaryons
or whether they can also form by fusion of mononucle-
ated macrophages and adipocytes. Here we argue that
inhibiting adipoclast formation may improve insulin sen-
sitivity. Rather than global approaches aiming to target
adipose tissue macrophages, one can envisage inhibition
of adipoclast formation. However, such therapies require
a better understanding of adipoclast formation and the
identification of novel markers that differentiate mono-
nucleated precursors from multinucleated fused cells.
Integrating transcriptomic, epigenetic and metabolic
events that accompany cell fusion and multinucleation
in the WAT will fine-tune cell-based therapies in obesity
and metabolic syndrome.
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