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Abstract 

Background:  Structural variants (SVs), including deletions, insertions, duplications, and inversions, are relatively 
long genomic variations implicated in a diverse range of processes from human disease to ecology and evolution. 
Given their complex signatures, tendency to occur in repeated regions, and large size, discovering SVs based on short 
reads is challenging compared to single-nucleotide variants. The increasing availability of long-read technologies has 
greatly facilitated SV discovery; however, these technologies remain too costly to apply routinely to population-level 
studies. Here, we combined short-read and long-read sequencing technologies to provide a comprehensive popula‑
tion-scale assessment of structural variation in a panel of Canadian soybean cultivars.

Results:  We used Oxford Nanopore long-read sequencing data (~12× mean coverage) for 17 samples to both 
benchmark SV calls made from Illumina short-read data and predict SVs that were subsequently genotyped in a 
population of 102 samples using Illumina data. Benchmarking results show that variants discovered using Oxford 
Nanopore can be accurately genotyped from the Illumina data. We first use the genotyped deletions and insertions 
for population genetics analyses and show that results are comparable to those based on single-nucleotide vari‑
ants. We observe that the population frequency and distribution within the genome of deletions and insertions are 
constrained by the location of genes. Gene Ontology and PFAM domain enrichment analyses also confirm previous 
reports that genes harboring high-frequency deletions and insertions are enriched for functions in defense response. 
Finally, we discover polymorphic transposable elements from the deletions and insertions and report evidence of the 
recent activity of a Stowaway MITE.

Conclusions:  We show that structural variants discovered using Oxford Nanopore data can be genotyped with high 
accuracy from Illumina data. Our results demonstrate that long-read and short-read sequencing technologies can be 
efficiently combined to enhance SV analysis in large populations, providing a reusable framework for their study in a 
wider range of samples and non-model species.

Keywords:  Structural variation, Soybean genomics, Oxford Nanopore sequencing, Transposable elements, 
Population studies, Crop genomics, Structural variant genotyping
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Background
Structural variants (SVs), commonly defined as genomic 
variations involving at least 50 nucleotides, are a key 
source of sequence and functional variation in eukaryotes 
[1–4]. Indeed, SVs such as deletions, insertions, dupli-
cations, and inversions account for more variation in 
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sequence content than single-nucleotide variants (SNVs) 
in several species (e.g., [5–7]). In addition to their impli-
cation in human health [8], SVs play a role in key pheno-
types in crops such as soybean (Glycine max) [9], maize 
(Zea mays) [10, 11], tomato (Solanum lycopersicum) [12], 
wheat (Triticum aestivum) [13], and rapeseed (Brassica 
napus) [14]. Moreover, there is now clear evidence for the 
significant role played by SVs on ecological and evolu-
tionary processes in various non-model species [15].

Despite their undeniable functional importance, 
genome-wide population-scale assessments of SVs have 
lagged behind compared to SNVs due to the lack of 
power of short reads for SV discovery [2]. Tools that dis-
cover SVs from short reads typically rely on one or sev-
eral types of evidence, either in the form of split reads 
(SV breakpoint found within an individual read), discord-
ant read pairs (unusual orientation or distance between 
reads of a pair), or read depth (abnormally high or low 
coverage at a given position) [16]. Other methods rely 
on local or genome-wide de novo assembly to discover 
SV breakpoints at base-pair resolution. These methods 
can generally detect a larger number of SVs, but they 
tend to struggle with SVs located in repeated regions 
and on shallowly sequenced samples [17]. Unfortunately, 
benchmarks of tools that discover SVs from short reads 
consistently document sub-optimal sensitivity and preci-
sion, issues that can only be partly relieved by combining 
results obtained with different tools [18–20].

The increased availability of long-read sequencing 
technologies such as Oxford Nanopore and PacBio in 
recent years has benefited the study of SVs [21]. Indeed, 
their increased read length allows them to both cover 
the span of larger variants, such as long insertions and 
inversions, and to map more confidently in the low-com-
plexity regions where SVs tend to occur [2]. Several map-
ping-based methods for SV discovery from long reads 
have already been developed (e.g., [22–25]) and bench-
marked [26], typically performing better than methods 
using short reads. These approaches have recently been 
applied to provide genome-wide assessments of SVs in 
crops such as tomato [12], rice (Oryza sativa) [27], and 
rapeseed [28].

Despite the greater power of long reads for SV discov-
ery, their high cost and typically higher basecalling error 
rates make them unlikely to replace short-read technolo-
gies in the short term. In the meantime, methods that 
allow short-read data to use the insights gained from 
long reads are much needed in order to scale the study 
of SVs from the small cohorts sequenced with long-read 
technologies up to entire populations. In particular, using 
short-read data to genotype SVs discovered from long 
reads shows great promise to allow scaling up the insights 
gained from long reads. Indeed, any SV whose sequence 

is sufficiently well resolved could be genotyped from 
short reads as long as these can accurately map to the SV 
breakpoints. Although methods for genotyping SVs from 
short reads do exist (e.g., [29–31]) and have been applied 
to SVs discovered from long-read sequencing data (e.g., 
[32]), these approaches have yet to be widely adopted in 
plant genomics and best practices for their application 
in highly repetitive genomes such as that of soybean and 
other non-model species are still needed.

Previous studies have addressed the question of soy-
bean structural variation using either comparative 
genomic hybridization [33, 34], short-read sequencing [6, 
35], or pangenome approaches [32, 36, 37]. These studies 
have notably found evidence for an enrichment of SVs in 
genes related to defense response [33, 34, 37] and a role 
of SVs in determining traits such as seed coat pigmenta-
tion and iron uptake [32]. The use of a combined analysis 
of short and long reads could nevertheless provide new 
insights into soybean SV biology by allowing the study 
of sequence-resolved insertions efficiently and at a larger 
scale. Studies of transposable element (TE) polymor-
phisms in soybean, for example, have been limited to the 
identification of TE insertion boundaries [38], but long 
reads allow for the identification of full-length TE inser-
tions [39].

In this study, we use an approach that combines short-
read and long-read sequencing to improve discovery 
and genotyping of SVs in a soybean population. We first 
evaluate the overall performance of predicting and geno-
typing SVs from short reads in soybean and identify best 
practices for doing so. We next quantify the sensitiv-
ity and precision of genotyping Oxford Nanopore-dis-
covered SVs using Illumina sequencing data. Finally, we 
combine short-read and long-read approaches to gen-
erate a comprehensive set of SVs from a panel of Cana-
dian soybean varieties and apply this dataset to analyze 
population structure, relate SV location and frequency to 
potential impacts on gene function, and gain insights into 
soybean TE biology.

Results
Benchmarking of Illumina‑discovered variants
Our first objective was to assess the performance of SV 
discovery and genotyping in soybean based solely on 
short-read sequencing data. To do this, we merged SVs 
discovered using four different tools (de novo assembly + 
AsmVar, Manta, smoove, and SvABA) to create a set of 
candidate SVs and genotyped them in 102 samples using 
Paragraph. Note that we used different tools for SV dis-
covery (also referred to as SV calling) and SV genotyp-
ing; we direct readers to the “Methods” section and to a 
graphical summary of the methods applied in this paper 
(Additional file 1: Figure S1) [6, 24, 29–31, 40–54] to get 
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an overview of the pipeline. The total counts of filtered 
SV calls based on Illumina data per discovery tool, SV 
type, and SV size class are summarized in Table 1. Geno-
types called by Paragraph for 17 of the 102 samples were 
compared against a set of SVs called from Oxford Nanop-
ore data with a mean average depth of 12X using Sniffles 
and processed through a SV refinement pipeline (Addi-
tional file  1: Table  S1). The Oxford Nanopore SVs were 
used as a truth set due to the long reads’ superior power 
at SV discovery compared to short reads. Comparison 
between Paragraph genotype calls and this ground truth 
was performed by using the sveval R package to com-
pute genotyping sensitivity and precision for various SV 
types and size classes. Sensitivity was defined as the frac-
tion of SVs in the ground truth set (SVs called by Sniffles 
from Oxford Nanopore data) genotyped as the alterna-
tive allele (non-reference) from the Illumina data. Preci-
sion was defined as the fraction of SVs genotyped as the 
alternative allele from the Illumina data that were also 
observed in the truth set. We only considered homozy-
gous genotype calls for these benchmarks since we are 
analyzing inbred lines (see Additional file 1: Figure S2 for 
heterozygosity rates of the population).

Results show that the genotypes of deletions and inser-
tions could be called confidently with as few as two (2) 
supporting Illumina reads, which was used as a minimum 
threshold for all subsequent analyses (Fig.  1). At this 
threshold, sensitivity ranged between 50 and 65% and 
precision ranged from 70 to 95% for deletions, while sen-
sitivity ranged between 30 and 40% and precision ranged 
from 65 to 85% for insertions (Fig. 1). Precision was typi-
cally higher for intermediate-sized deletions (100–10,000 
bp) than for either extremes, while sensitivity was high-
est for smaller ones (50–1,000 bp). Precision was higher 
for larger insertions (100–1000 bp) than for small ones 
(50–100 bp), at the expense of lower sensitivity; virtually 

no insertions larger than 1 kb could be called from the 
Illumina data (Table  1). Sensitivity increased markedly 
when repetitive regions were ignored, with sensitivity 
increasing by up to 10–20% depending on the SV type 
and size class, while precision remained roughly simi-
lar (Additional file  1: Figure S3). Results for inversions 
showed moderate precision (in the range of 40–70%) and 
low sensitivity (range of 10–20%), while results for dupli-
cations showed both low precision (range of 10–20%) 
and sensitivity (15–20%) (Additional file  1: Figure S4). 
Poor performance was expected for inversions and 
duplications given the high complexity of those types of 
SVs. Excluding repeat regions did little to improve the 
results for duplications, but it did improve sensitivity by 
roughly 10% for inversions (Additional file 1: Figure S5). 
We observed a correlation between the Oxford Nano-
pore sequencing depth of a sample and the genotyp-
ing precision of deletions, insertions, and duplications 
for that sample, with this effect being most important 
for duplications (Additional file  1: Figure S6). This sug-
gests that samples that were less deeply sequenced with 
long reads (< 10× sequencing depth) may have failed to 
reveal some SVs, thus resulting in a seemingly lower pre-
cision. Indeed, subsampling analyses performed on some 
samples sequenced with Oxford Nanopore showed that 
the number of SVs discovered started to reach a plateau 
at ~10× in most cases and that sequencing depth gen-
erally had no effect on their accuracy (Additional file  1: 
Supplemental Methods and figures  S7 to S10). Assum-
ing this plateau extends to higher coverages, most sam-
ples do provide a fairly robust dataset for benchmarking, 
although a few would have benefited from increased 
Oxford Nanopore sequencing depth.

Next, we assessed whether filtering SVs based on 
their frequency in the population resulted in a higher-
quality SV set by removing putative false variants. 

Table 1  Number of SVs called from Illumina data per calling tool, SV type, and size class

a  Insertions ≥ 10 kb are not shown because none were called
b  DEL: deletions
c  INS: insertions
d  DUP: duplications
e  INV: inversions
f  merged: the dataset merged using SVmerge

[50 bp–100 bp[ [100 bp–1 kb[ [1 kb–10 kb[ ≥ 10 kba

Calling program DELb INSc DUPd INVe DEL INS DUP INV DEL INS DUP INV DEL DUP INV

asmvar 11,018 3575 0 0 14,877 2243 0 0 5748 1 0 0 4681 0 0

manta 9664 3358 453 0 12,378 1815 3114 0 11,463 0 4448 0 7325 5034 0

smoove 4168 0 22 45 6489 0 1208 149 4687 0 981 33 1794 975 47

svaba 7288 2284 673 21 6907 215 16,081 292 2969 0 1548 190 512 458 223

mergedf 17,199 5023 656 61 22,980 3165 9810 296 13007 1 4316 135 10,640 4696 178
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Fig. 1  Genotyping sensitivity and precision of A deletions and B insertions discovered from the Illumina data. Sensitivity was defined as the fraction 
of SVs in the ground truth set (SVs called by Sniffles from Oxford Nanopore data) genotyped as the alternative allele (non-reference) from the 
Illumina data. Precision was defined as the fraction of SVs genotyped as the alternative allele from the Illumina data that were also observed in the 
truth set. Each line and color represents one of 17 samples. The different plots correspond to different SV lengths. The points correspond to different 
filtering thresholds on the minimum number of Illumina reads required to support a genotype call. The asterisks indicate a minimum number of 
supporting reads of 2; points to the left of these for a given line represent increasingly stringent filtering threshold values (i.e., a greater number 
of reads supporting a genotype call). Some of the threshold values for the minimum number of reads supporting a genotype call are shown for a 
single sample in the upper left plot of panel A 
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Precision-recall curves computed for a range of 
homozygous ALT count (see “Methods” for more 
details) thresholds indicated that a filter based on a 
minimum of four alternate alleles observed across 
the population yielded a good compromise between 
sensitivity and precision for insertions and deletions 
(Additional file  1: Figure S11). This threshold was 
used to filter the set of SVs for all downstream analy-
ses. Filtering on the homozygous ALT count did not 
succeed in significantly increasing the genotyping 
performance of duplications and inversions (Addi-
tional file 1: Figure S12), so we decided to drop these 
SVs from downstream analyses. We also investigated 
whether a filter based on the number of distinct tools 
reporting a SV could be used to improve sensitivity 
and precision (Additional file  1: Figure S13). How-
ever, the drop in sensitivity when requiring more than 
one tool was generally too large to compensate for the 
increase in precision. Researchers valuing precision 
over sensitivity could however use this filter, as the 
gain in precision was considerable in some cases, like 
for large deletions.

As a consequence of their different approaches to SV 
discovery, and consistently with the drop in sensitivity 
observed when requiring multiple calling tools to con-
sider a variant (Additional file 1: Figure S13), the vari-
ous tools used showed different profiles in terms of the 
number of variants of different sizes and types discov-
ered (Additional file  1: Figure S14). The performance 
of the different tools used for calling SVs is shown for 
a single representative sample in figures  S15 and S16 
(Additional file  1). These results place Manta as the 
most important contributor of unique true positive 
SV calls for both deletions and insertions, followed by 
AsmVar. There is an obvious decrease in the false posi-
tive rate when combining evidence from several calling 
tools. However, individual tools still made significant 
contributions that justified their inclusion, with the 
exception of SvABA insertions which contributed few 
true positive SVs compared to the number of false pos-
itives (Additional file 1: Figure S16). SvABA insertions 
were still used for downstream analyses, but could be 
excluded for applications where the need for precision 
outweighs the need for sensitivity.

Re‑genotyping Oxford Nanopore‑discovered variants
In addition to using the SVs discovered from the Oxford 
Nanopore data as a truth set for benchmarking SV dis-
covery, we also assessed whether these could be accu-
rately genotyped using Illumina data. For that purpose, 
we merged the calls made from the Oxford Nanopore 
data of all 17 samples using SVmerge. These were used as 
input to Paragraph and re-genotyped using Illumina data 
from the same 17 samples. The genotypes were compared 
to the SV calls made by Sniffles directly from the Oxford 
Nanopore data results using the sveval package as was 
done for the Illumina SVs.

As was the case for Illumina SVs, two (2) Illumina reads 
were sufficient to confidently call SV genotypes in most 
samples (Fig. 2). At this threshold, sensitivity ranged from 
55 to 65% and precision ranged between 80 and 95% for 
deletions, while sensitivity ranged from 50 to 60% and 
precision ranged between 60 and 80% for smaller inser-
tions (Fig. 2). For deletions, sensitivity and precision were 
fairly consistent across size classes. For insertions, how-
ever, precision varied immensely from 20 to ~80% for 
1–10 kb insertions and from essentially 0 to 60% for inser-
tions larger than 10 kb. Further analysis showed that there 
was a correlation between the precision of insertion geno-
typing in these size classes and the N50 of Oxford Nanop-
ore reads of a given sample (Additional file 1: Figure S17). 
Therefore, it is likely that the poor precision observed 
for some samples is the result of limitations of the truth 
dataset rather than true genotyping errors. Indeed, larger 
insertions could not be validated in low-N50 samples 
because the small length of the reads prevented their dis-
covery in those samples. Yet, those large insertions could 
still be genotyped using the Illumina data provided that 
they were discovered in other samples with higher N50. 
As was the case for variants discovered from the Illumina 
data, sensitivity was higher when we excluded repeat 
regions, with sensitivity reaching 80% in some cases 
(Additional file 1: Figure S18).

Duplications discovered by Sniffles showed low sensi-
tivity and precision with both being in the 20–40% range 
(Additional file  1: Figure S19a). Inversions, however, 
could be accurately genotyped from the Illumina data, 
with a precision typically greater than 70%, but their sen-
sitivity was low at about 10–20% (Additional file 1: Figure 

Fig. 2  Genotyping sensitivity and precision of A deletions and B insertions discovered from the Oxford Nanopore data. Sensitivity was defined as 
the fraction of SVs in the ground truth set (SVs called by Sniffles from Oxford Nanopore data) genotyped as the alternative allele (non-reference) 
from the Illumina data. Precision was defined as the fraction of SVs genotyped as the alternative allele from the Illumina data that were also 
observed in the truth set. Each line and color represents one of 17 samples. The different plots correspond to different SV lengths. The points 
correspond to different filtering thresholds on the minimum number of Illumina reads required to support a genotype call. The asterisks indicate a 
minimum number of supporting reads of 2; points to the left of these for a given line represent increasingly stringent filtering threshold values (i.e., 
a greater number of reads supporting a genotype call). Some of the threshold values for the minimum number of reads supporting a genotype call 
are shown for a single sample in the upper left plot of panel A 

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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S19b). Concentrating on non-repeat regions moderately 
improved the results for duplications (Additional file  1: 
Figure  20a) but did so to a larger extent for inversions, 
with sensitivity reaching over 20% and precision being 
generally over 80% (Additional file 1: Figure S20b).

Population‑scale genotyping of the joint Oxford 
Nanopore‑Illumina SV dataset
In order to produce a population-scale SV dataset that 
could be used for downstream analyses, we merged the 
SVs discovered from the Illumina and Oxford Nanopore 
data to create a candidate SV set by obtaining their union 
using SVmerge. The SVs in this set were subsequently 
genotyped with Paragraph using the Illumina data of 
the 102 samples. Benchmarking results for deletions and 
insertions expectedly showed a precision that was in-
between that of the previous two benchmarks (Illumina 
SVs and Oxford Nanopore SVs), both when considering 
all regions (Additional file 1: Figure S21) and non-repeat 
regions only (Additional file 1: Figure S22).

The dataset was further filtered using knowledge 
gained from the benchmarking results presented above. 
Namely, we filtered out genotype calls with fewer than 
two (2) supporting reads and removed SVs with fewer 
than four (4) alternate alleles observed among homozy-
gous genotype calls (homozygous ALT count). Inversions 
and duplications were also removed for downstream 
analyses due to their poor performance in the bench-
marks. Unless otherwise noted, all downstream analyses 
were performed on the genotyped insertions and dele-
tions in both repeated regions as well as non-repeated 
regions. For simplicity, we refer collectively to insertions 
and deletions as SVs in the context of downstream analy-
ses, despite duplications and inversions being excluded.

The distribution of deletion and insertion calls within 
the reference genome is illustrated in Fig. 3c. There is a 
visible tendency for SVs to be more frequent in gene-rich 
euchromatic regions (Fig. 3a) where predicted SNVs are 
also more densely distributed (Fig. 3b), although this may 
be due only to a higher discovery power in euchromatic 
regions. The presence of SV hotspots on chromosomes 3, 
6, 7, 16, and 18 (Fig. 3c) is consistent with results previ-
ously obtained using comparative genomic hybridization 
by McHale et al. [34] and by a pangenome approach [37].

Population genetics analyses
To assess the quality of our population-scale SV dataset, 
we verified whether population genetics patterns inferred 
from SVs (deletions and insertions) yielded similar results 
to those inferred from SNVs, which are more commonly 
used for population genetics inference. For this purpose, 
we first computed population structure using fastStruc-
ture on both the SNV and SV datasets. The fastStructure 

analysis based on SNVs was used to assign all individu-
als to one of five (5) populations based on the population 
with the highest ancestry (q-value) for each individual. 
Both SNV and SV datasets were also used to compute a 
principal component analysis (PCA) and a neighbor-join-
ing tree for which support for nodes was assessed by 100 
bootstrap iterations.

Population structure analyses yielded very similar 
results for the SNV and SV datasets, with only 16 out 
of 102 samples not being assigned to the same popula-
tion by both analyses (Fig.  4). Out of these 16 samples, 
none had been assigned to a population with > 0.6 ances-
try by the SNV analysis, suggesting that all individuals 
with clear ancestry were classified similarly by the SNV 
and SV analyses. The PCAs did not cluster the samples 
belonging to different populations into starkly distinct 
groups because the panel under study does not display a 
strong structure to begin with. Still, both the SV (Addi-
tional file 1: Figure S23a) and the SNV PCA (Additional 
file 1: Figure S23b) roughly grouped individuals accord-
ing to their assigned population. Moreover, the PCA 
made from the SV genotype calls was at least as good at 
clustering together the samples belonging to the same 
population as the PCA made using SNVs was. Neighbor-
joining trees made from SNVs and SVs similarly grouped 
samples roughly according to their population assigned 
by the SNV fastStructure analysis (Additional file 1: Fig-
ure S24). Out of the 100 nodes in the SNV phylogenetic 
tree, 36 were found in the SV phylogenetic tree and 57 
were found in at least one bootstrap iteration of the SV 
tree. A two-sided Mantel test with 999 permutations 
computed on the distance matrices obtained from SNVs 
and SVs also found a significant correlation between both 
matrices with a Z-statistic of 560.8 and a p-value of 0.001. 
Overall, these results constitute a proof of concept that 
the population-scale SV dataset is the reflection of a bio-
logical reality and not an artifact.

Potential impact on genes
SVs can have a large impact on gene integrity or expres-
sion. Therefore, we annotated the SVs (deletions and 
insertions) in our dataset according to the genic features 
they overlapped. SVs occurred disproportionately less 
within coding sequences than would be expected based 
on the proportion of the genome covered by these fea-
tures, both when considering the whole genome and 
when restricting the analysis to non-repeat regions 
(Additional file  1: Table  S2). A slight underrepresenta-
tion of SVs was also observed within non-coding genic 
sequences, although this pattern was much clearer when 
concentrating on non-repeat regions. Both analyses also 
revealed a clear pattern of overrepresentation of SVs 
within regions 5 kb upstream of genes. The proportion 
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of SVs overlapping intergenic regions appeared to be less 
than expected when the analysis was performed on the 
whole genome, but this is most likely due to the fact that 
intergenic regions tend to be more repetitive and thus 
more difficult to probe. Indeed, when restricting the anal-
ysis to non-repeat regions, the proportion of SVs falling 
within intergenic regions was higher than their propor-
tion within the reference genome, suggesting enrichment 
of SVs. We also compared the observed proportions of 
SVs overlapping various genic features to what would 
be expected by random chance using a randomization 
test that shuffled the positions of SVs within 100-kb bins 
and computed the resulting overlaps. The 100-kb bins 
were used to locally restrict the SV position to take into 
account the repeat heterogeneity of the genome. This test 
confirmed the underrepresentation of SVs within coding 
sequences and their overrepresentation within intergenic 

sequences and regions 5 kb upstream of genes (Fig. 5a). 
The pattern for non-coding genic sequences, however, 
diverged from other lines of evidence by suggesting slight 
overrepresentation of deletions. Insertions, on the other 
hand, appeared to be underrepresented within non-
coding genic sequences, similar to the results shown in 
Table S2 (Additional file 1).

The distributions of insertion and deletion frequen-
cies depending on the features overlapped are shown in 
Fig. 5b. Statistical testing of the pairwise differences in 
mean SV frequencies depending on the genic features 
overlapped clearly showed that deletions overlapping 
coding sequences were less frequent (the frequency 
being lower by roughly 0.05) than those occurring else-
where in the genome (Additional file  1: Table  S3). For 
insertions, the only significant differences indicated a 
higher frequency (by roughly 0.02) in intergenic regions 

Fig. 3  Circos plot of the distribution of various features within 3-Mb bins along the reference assembly version 4 of Williams82. Results shown 
are based on the population-scale (102 samples) genotyping of SVs discovered using both Illumina and Oxford Nanopore data. A Gene density. B 
Density of SNVs called by Platypus. C Number of deletions (blue) and insertions (red) discovered within each bin. The bins with the 10% highest SV 
density (insertions and deletions considered together) are highlighted in gray. D Number of reference (blue) and polymorphic (red) LTR Copia and 
LTR Gypsy elements (summed together). E Number of reference (blue) and polymorphic (red) DNA transposable elements. The gray highlights in 
tracks D and E show the bins with the 10% highest polymorphic/reference ratios
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than in non-coding genic sequences or sequences 5 kb 
upstream of genes. A difference of similar magnitude 
was also observed between mean insertion frequency 
within intergenic regions and coding sequences, but the 
difference was marginally non-significant.

Finally, we conducted an enrichment analysis to 
check for over- and underrepresentation of gene ontol-
ogy (GO) Biological Process terms and PFAM protein 
domains in genes whose coding sequence is impacted 
by SVs that are frequent (≥ 0.5) in the population. 
Genes impacted by high-frequency SVs were highly 
enriched for functions involved in defense response, 
and somewhat less so for functions involved in the 
regulation of various pathways (Additional file  1: 
Table S4; Additional file 2). Underrepresented GO Bio-
logical Process terms were almost all related to various 
metabolic or biosynthetic processes (Additional file  1: 
Table  S5; Additional file  3). As was observed for GO 
Biological Process terms, the PFAM domain enrich-
ment analysis showed that genes impacted by high-
frequency SVs are overwhelmingly enriched in domains 
involved in defense response, such as NB-ARC, TIR, 
and Leucine-rich repeat domains (Additional file  1: 

Table  S6; Additional file  4). No PFAM domains were 
observed to be underrepresented (Additional file 5).

Transposable elements
Many SVs, especially larger ones, result from the mobi-
lization of TEs [12, 55]. With this in mind, we checked 
whether we could gain insights into soybean TE biol-
ogy from our SV dataset. To do so, we first queried the 
sequences of all insertions and deletions larger than 
100 bp in our dataset against a database of soybean 
TEs. Insertions and deletions that matched a TE with 
high confidence were annotated with the correspond-
ing TE type.

A total of 2586 deletions and 2391 insertions were 
annotated as TEs by this approach (Table  2; Fig.  3d,e; 
Additional file  6). These represent 8.4% and 9.1% of all 
deletions and insertions, respectively, and 14.9% and 
17.4% of those larger than 100 nucleotides. The propor-
tion of polymorphic TEs of different classes found within 
our dataset is consistent with their prevalence in the ref-
erence genome, except for DNA TEs which represent a 
much smaller proportion of the polymorphic elements 
compared to their prevalence in the genome. The number 

Fig. 4  Population structure computed on all 102 Canadian soybean cultivars using fastStructure with k = 5 on A SNVs called by Platypus from 
Illumina data and B SVs discovered from Illumina and Oxford Nanopore data, and subsequently genotyped with Illumina data using Paragraph. The 
proportion of ancestry attributed to each of five populations is shown along the y-axis for 102 cultivars displayed along the x-axis. The order of the 
cultivars and the color scheme are identical in both panels. The vertical dotted lines between panels denote the 16 cultivars for which the assigned 
population (i.e., the population with the highest ancestry for that cultivar) differs
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Fig. 5  Analysis of the overlap of SVs with gene models. A Distributions of the proportions of deletions and insertions overlapping various genic 
features as generated by a randomization test (5000 iterations). Observed proportions for each SV type and genic feature are indicated by a vertical 
dotted line. One-sided p-values are < 2 × 10−4 for all comparisons except for deletions overlapping genes, for which the p-value is 4 × 10−4. B 
Distribution of the allele frequencies of deletions and insertions depending on the genic features they overlap. Note the logarithmic scale on the 
y-axis. cds: SVs overlapping coding sequences; gene: SVs overlapping non-coding genic sequences; upstream5kb: SVs overlapping regions 5 kb 
upstream of genes, but not any genic sequences; intergenic: SVs that do not overlap any of the other features

Table 2  Number and span of polymorphic and reference transposable elements of different types

a  REF: transposable elements ≥ 100 bp in the reference genome
b  DEL: deletions relative to the reference that are annotated as TEs
c  INS: insertions relative to the reference that are annotated as TEs
d  N: number of reference elements, deletions or insertions matching given TE type
e  Mb: total length of reference elements of a given type, in Mb
f  kb: total length of polymorphic elements matching given TE type, in kb

REFa (%) DELb (%) INSc (%)

TE type Nd Mbe N kbf N kb

Copia LTR retrotransposons 91,241 (35.1) 170 (43.0) 1154 (44.6) 5594 (43.8) 1303 (54.5) 6692 (63.1)

Gypsy LTR retrotransposons 71,390 (27.5) 139 (35.2) 949 (36.7) 5745 (45) 718 (30) 2949 (27.8)

Non-LTR retrotransposons 8078 (3.1) 10 (2.5) 144 (5.6) 449 (3.5) 99 (4.1) 307 (2.9)

DNA TE 89,300 (34.3) 76 (19.2) 339 (13.1) 989 (7.7) 271 (11.3) 654 (6.2)
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of polymorphic elements per LTR retrotransposon family 
(Fig. 6a) and per DNA TE type (Fig. 6b) were largely con-
sistent with results previously reported for non-reference 
soybean TEs [38] except for DNA TEs of the CACTA 
superfamily for which we found almost no polymorphic 
instances.

We identified terminal inverted repeat (TIR) and target 
site duplication (TSD) sequences from local assemblies of 
the TE sequences for 40 different polymorphic SVs col-
lectively representing 17 entries in the SoyTEdb database. 
The polymorphic TEs for which we could identify TIR 
and TSD sequences were essentially miniature inverted-
repeat transposable elements (MITEs) ranging in size 
from 198 to 681 bp (longer sequences were too challeng-
ing to assemble properly). From these data, we computed 
the proportion of matching nucleotides between the two 
inverted repeats and averaged the values over the all sam-
ples bearing the TE insertion for a given SV (Fig. 6c). A 
high proportion of matching nucleotides can indicate the 
potential for active transposition because intact transpo-
sons should have identical or nearly identical TIRs. While 
the proportion of matching nucleotides was under 0.8 in 
most cases, three polymorphic TEs matching the Tc1-
Mariner superfamily and annotated as Stowaway MITEs 
presented a proportion of matching nucleotides > 0.9 
(Additional file 7).

We generated multiple alignments of the local assem-
blies at all sites where at least one sample had recogniz-
able TIR and TSD sequences. A visual analysis of these 
multiple alignments revealed that for all but one SV, the 
sequences that did not bear the insertion presented a sin-
gle occurrence of the TSD sequence. This observation is 
consistent with a scenario where the TE never inserted 
into the sequence, instead of having excised from it. The 
one exception to this observation is that of a 480-bp 
insertion of a Stowaway MITE at position 2,257,090 of 
chromosome Gm04. In this case, a visual analysis of the 
multiple alignment revealed that three different alleles 
are segregating in the population at the insertion site: 
(1) the reference allele (no insertion at the target posi-
tion), (2) a 480-bp insertion that corresponds to the TE 
insertion, and (3) a 6-bp insertion of nucleotides TAC​
GAG​ (Additional file  1: Figure S25; Additional file  8). 

Interestingly, this insertion is by far the one for which the 
percent similarity between the two TIR sequences was 
highest among the ones studied, at 96.3%. We hypoth-
esized that the 6-bp insertion resulted from the excision 
of the TE, with the TA nucleotides being remnants of 
the classical Tc1-Mariner TSD and the other nucleotides 
having been added during DNA repair following exci-
sion. If this is the case, then the haplotypes surround-
ing the insertion site should be very similar between the 
individuals with the TE insertion and those with the 6-bp 
insertion. Using a combination of SV calls made by Para-
graph and indel calls made by Platypus, we assigned 71 
individuals as homozygous for the reference allele, 9 indi-
viduals as homozygous for the TE insertion allele, and 14 
individuals as homozygous for the 6-bp insertion allele. 
We computed the alternate allele frequencies within each 
of these three groups for 156 SNVs located in a 39-kb 
linkage disequilibrium block surrounding the insertion 
site (Fig. 6d). The results clearly show high genetic simi-
larity between individuals bearing the TE insertion and 
those bearing the 6-bp insertion, consistent with the lat-
ter being derived from excision of the TE insertion. In 
fact, only three (3) SNVs showed contrasting allele fre-
quencies (difference in allele frequencies > 0.5) between 
these two groups (Fig. 6d), whereas 129 alleles were con-
trasted between the reference allele haplotype and the TE 
insertion allele haplotype. This suggests that the excision 
of the TE is a relatively recent event and that this TE may 
still be active in soybean.

Interestingly, one of the polymorphic Copia inser-
tions found in our dataset matches an insertion in the 
Glyma.20G090000 gene (also known as the PhyA2 gene 
corresponding to the E4 maturity locus) known to impact 
time to maturity in soybean [56]. In our dataset, this TE 
insertion had a frequency of 0.207, with 20 samples geno-
typed as homozygous for the alternative allele and a sin-
gle one genotyped as heterozygous.

Discussion
The rapid development of long-read sequencing plat-
forms such as PacBio and Oxford Nanopore in recent 
years has greatly enhanced the potential for studying 
structural variation. Although studies using long reads 

Fig. 6  Analysis of the polymorphic TEs found in this study. Comparison of the number of polymorphic TEs per A LTR family and B DNA TE type found 
in Tian et al. [38] and in this study. Differences in y- and x-scales are partly explained by the fact that counts for Tian et al. are summed over occurrences 
in all samples whereas our data counts each SV only once. Note that all scales are logarithmic. C Proportion of matching nucleotides between the two 
terminal repeats for TE sequences corresponding to 40 different SVs grouped by DNA TE superfamily and by the identifier of the TE sequence they 
matched in the SoyTEdb database. D Alternate allele frequencies of 156 SNVs located in a ~39-kb linkage disequilibrium block between positions 
Gm04:2,220,398 and Gm04:2,259,326. Frequencies were computed for three different groups of samples depending on their genotype at the TE 
insertion site (Gm04:2,257,090). absent: absence of the TE insertion, which corresponds to the reference allele (71 samples); present: presence of the 
480-bp Stowaway MITE (9 samples); excised: presence of a 6-bp insertion at the insertion site, putatively left by excision of the TE insertion (14 samples). 
The locations of three SNVs whose frequency in the “present” and “excised” groups diverge are shown with dotted vertical lines

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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to survey structural variation in crops have started to 
emerge (e.g., [12, 27, 28]), they did not explicitly address 
the question of using short reads to scale up SV analy-
sis from the small cohorts sequenced using long reads 
to larger populations, as has been done in humans 
(e.g., [57, 58]). This question is of interest because long-
read sequencing remains too expensive at the moment 
to apply at a large scale and because large amounts of 
already-existing short-read sequencing data could be lev-
eraged in that way. Scaling up the study of SVs is a nec-
essary prerequisite to getting a clear understanding of 
genome evolution and function, and applying this knowl-
edge to real-world problems [1, 15]. In this study, we 
demonstrate that a relatively small cohort of 17 samples 
sequenced to ~12× coverage with Oxford Nanopore can 
be combined with Illumina data to drive the study of SVs 
in a population of 102 Canadian soybean lines and gain 
insights into SV biology.

In this work, benchmarks of SVs discovered from Illu-
mina data alone revealed sensitivity rates between 50 and 
65% and precision rates between 70 and 95% for dele-
tions, while sensitivity ranged between 30 and 40% and 
precision ranged from 65 to 85% for insertions. While 
these results may appear disappointing, they are in line 
with large-scale benchmarks performed on short-read 
SV callers and are consistent with known limitations to 
SV calling from short reads [18, 20]. Our benchmarking 
results for inversions and duplications proved to be so 
unsatisfactory that we decided not to consider them at all 
in downstream analyses, but again such poor results were 
expected based on previously published benchmarks 
[20]. For applications where precision is to be valued over 
sensitivity, our benchmarks provide guidance as to how 
combining evidence from various SV callers or concen-
trating on non-repeated regions improves the accuracy of 
SV genotyping.

We called SVs based on relatively low-depth Illumina 
sequencing, with effective sequencing depth ranging 
between 5× and 15× for most samples (Additional file 1: 
Table S7). While deeper coverage would necessarily have 
resulted in higher sensitivity and precision, at least two 
reasons explain how we could achieve reasonably good 
performance despite limited coverage. First, the inbred 
status of the cultivars studied makes it easier to call 
variants because all reads originating from a genomic 
location where a variant is located should support the 
existence of that variant, instead of only half of the reads 
in the case of heterozygous genotypes. This also makes 
it possible to confidently call the genotype of a variant 
as homozygous from only a few reads. Second, the two-
step approach adopted here (discover SVs on all samples 
first, and genotype them using a dedicated SV geno-
typer afterwards) made it possible to efficiently combine 

information across all samples. Therefore, a variant could 
be genotyped from as few as two reads in a given sam-
ple even if the coverage at that variant’s position did not 
allow it to be discovered in that sample in the first place. 
The results presented in this study therefore show that 
low Illumina sequencing depth should not limit the pop-
ulation-scale study of SVs as long as appropriate methods 
for SV discovery and genotyping are used.

We were especially interested in calling and genotyp-
ing large (> 1 kb) insertions given the potential of long 
reads to relieve the inherent limitation of short reads 
to span large repeats and effectively assemble into long 
insertions. Indeed, for insertions discovered from short 
reads only, estimated sensitivity was low at ~ 40% for 
those in the range 50–100 bp and ~ 30% for those in 
the range 100–1000 bp; virtually no insertions larger 
than 1000 bp were discovered. The improved sensitivity 
obtained when focusing on non-repeated regions (up to 
~ 60% for insertions in the range 50–100 bp) shows that 
a large part of the problem indeed comes from repeated 
regions. However, entirely removing these regions from 
analyses is an unsatisfactory solution as polymorphisms 
in these regions may still be relevant to a particular study 
question. To compensate for limitations in SV discovery 
from short reads, we assessed whether Illumina reads 
could be used to genotype SVs discovered from Oxford 
Nanopore data on a smaller cohort of 17 samples. The 
greatest added value of this approach arguably comes 
from the possibility to accurately genotype large (> 1 kb) 
insertions in many samples without having to sequence 
all samples using more costly long-read sequencing. This 
is an encouraging result because it shows that such inser-
tions can be successfully genotyped using Illumina data 
even though they could not be discovered from this same 
data. This is because long reads provide the full contigu-
ous sequence of insertions, which the Illumina reads can 
then map to. Combined with a novel pipeline for refining 
the breakpoints and sequence content of SVs discovered 
from Oxford Nanopore sequencing data prior to geno-
typing, this approach should enable the study of SVs in 
large populations for which short-read data is already 
available.

Reliably benchmarking the performance of SV geno-
typing depends on the existence of a gold standard truth 
dataset, which is the main limitation of our study as there 
exists no such standard yet for soybean. Our ground 
truth dataset was based on SVs called from Oxford 
Nanopore data only using a single SV caller, Sniffles. 
While Sniffles was warranted for this purpose based on 
published benchmarks [26], combining other SV call-
ers and data types (such as PacBio sequencing or optical 
mapping) may have resulted in a more accurate ground 
truth dataset. Indeed, Oxford Nanopore reads alone do 
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not provide a perfect truth for benchmarking, especially 
for SVs under 100 bp [2]. This limitation was apparent for 
some of the results observed in our study. For example, 
some of the samples appeared to have low genotyping 
precision for larger insertions, but this was most likely 
due to these insertions not being discovered in samples 
with lower read N50 and thus appearing as false posi-
tive genotype calls. Similarly, the sequencing depth of 
the Oxford Nanopore data used here was not sufficient 
to provide a solid reference dataset for benchmarking 
duplications. Nevertheless, subsampling analyses and the 
analysis of the relationship between Oxford Nanopore 
sequencing depth and genotyping precision revealed that 
samples sequenced at 10× depth or higher provided suf-
ficient coverage for the discovery of deletions and inser-
tions, the two most abundant types of SVs. Moreover, as 
expected, the proportion of false positive calls by Sniffles 
did not vary with sequencing depth for these SVs, there-
fore providing robust results for use in benchmarks. For 
the few samples with < 10× sequencing depth, however, 
lower sequencing depth did result in fewer SVs being dis-
covered in the Oxford Nanopore data and thus an appar-
ent drop of genotyping precision in those samples.

Follow-up analysis on our population-scale SV data-
set confirmed that this dataset reproduced previously 
described population genetics patterns, a validation 
approach commonly used in other population-scale SV 
studies (e.g., [59, 60]). We indeed found that a structure 
analysis yielded highly similar results whether it was 
computed from SVs or SNVs. Similarly, a PCA and a 
phylogenetic tree based on SVs summarized the popula-
tion structure just as well as the same analyses based on 
SNVs. Together, these results suggest that the SV geno-
type calls on the 102-sample population are accurate and 
can be used to draw inferences on population structure 
just as well as SNVs.

Perhaps more importantly, the SV dataset produced 
here met our expectations regarding the genome-wide 
distribution of SVs and their location relative to predicted 
gene models. The location of SV hotspots found here 
is consistent with previously reported results [34, 37]. 
Moreover, GO term and PFAM domain enrichment anal-
yses confirmed previous observations that SV-enriched 
genes are involved in plant defense response [33, 34, 
37]. Several lines of evidence in our results also suggest 
a strong functional constraint on the location of SVs in 
the soybean genome. Notably, SVs were strongly depleted 
within coding sequences compared to what would be 
randomly expected, and insertions were depleted within 
non-coding genic sequences. There was also a clear ten-
dency for enrichment of SVs in regions upstream of 
genes, but whether this is simply due to lower functional 
constraints or a role of SVs in regulating gene expression 

remains to be investigated. Functional constraints on the 
frequency of SVs could also be observed from our data, 
as deletions impacting coding sequences were less fre-
quent than those occurring elsewhere in the genome and 
insertions were enriched within intergenic regions, which 
are arguably less functionally important. Based on these 
results, we suggest that many of the deletions located 
within coding sequences may have a deleterious impact 
and could therefore become targets for breeding.

The large insertions and higher power of SV discov-
ery within repetitive regions that was afforded by the 
Oxford Nanopore sequencing data gave us an opportu-
nity to study soybean TE biology more deeply than previ-
ous reports. The numbers of TEs associated with various 
superfamilies was largely consistent with results previ-
ously reported by Tian et al. [38], except for DNA TEs of 
the CACTA superfamily which were a lot less common 
in our data. We observed the same pattern of general 
concordance with previously reported results except for 
CACTA elements when comparing our data to that of 
Istanto [61]. The reason why we found almost no poly-
morphic CACTA elements compared to these studies 
is unclear, but we hypothesize that it may be due to our 
more stringent requirements for TE annotation. Indeed, 
we required the length of the queried SVs to be close to 
that of their matching counterpart in the database. Many 
of the SVs in our dataset indeed matched CACTA ele-
ments following the BLASTN query, but almost all of 
them failed to pass the filter. Our annotation results 
are probably conservative for other types of TEs as well 
because the database we used is likely incomplete, as it is 
based on the analysis of a single reference genome.

Our data also allowed us to generate original findings 
related to DNA TEs in soybean, which have received rela-
tively little attention from past studies. We report results 
that suggest that most DNA TE insertion polymorphisms 
in soybean result from past insertion of TEs rather than 
from excision of existing TEs. The relatively low propor-
tion of polymorphic DNA TEs compared to their preva-
lence in the genome also suggests that these elements are 
overall fairly inactive in soybean. However, we did docu-
ment one case in which recent excision of a Stowaway 
MITE from its insertion site appears to have occurred, 
such that three alleles (the reference allele without the 
insertion, the TE insertion, and the allele resulting from 
the excision of the TE) are present within the population. 
This element represents a prime candidate to study the 
potential activity of DNA TE transposons in soybean.

Conclusions
In conclusion, our study shows that Oxford Nanopore 
and Illumina sequencing data can be efficiently combined 
to study structural variation in soybean. In particular, 
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large insertions that cannot be discovered from short-
read data alone could be genotyped using short-read 
data and thus allow the insights gained from long-read 
sequencing to scale up to a larger population. This frame-
work, combined with a novel pipeline for refining the SVs 
discovered using Oxford Nanopore data, should extend 
easily to other species and allow the wealth of already-
existing Illumina data to be leveraged for SV analysis. 
In addition to confirming previous results regarding the 
chromosomal distribution of SVs in soybean and their 
association with genes involved in defense response, we 
also report novel insights into functional constraints 
to the occurrence of SVs and into soybean TE biology. 
Moreover, the SV catalog described here is freely avail-
able and can be used as a resource for SV genotyping 
by the soybean research community. Beyond the work 
presented here pertaining to SV discovery from Oxford 
Nanopore data specifically, we envision that genetic vari-
ation discovered by studies such as ours and others (e.g., 
[32, 36, 37]) could eventually be integrated in a single 
pangenome for soybean. Together with emerging tools 
for using pangenomes as a reference, such as Giraffe and 
the associated vg toolkit [57], this should help further the 
study of complex topics such as structural variation and 
transposable elements.

Methods
Illumina sequencing and read processing
Sample selection and acquisition of Illumina sequenc-
ing data has been described in previous work [6]. Briefly, 
102 Canadian soybean cultivars and breeding lines were 
selected to encompass the full range of genetic variation 
found among Canadian short-season germplasm and 
sequenced on the Illumina HiSeq 2500 platform. Paired-
end reads ranging in size from 100 to 126 nucleotides 
were obtained depending on the sample (see Additional 
file  1: Table  S7 for metadata on Illumina sequencing 
data). This sequencing data is available on the NCBI 
Sequence Read Archive (SRA) through BioProject acces-
sion number PRJNA356132 [62].

All reads were adapter- and quality-trimmed using 
bbduk from the BBtools suite v. 38.25 [63]. We aligned 
reads using bwa mem v. 0.7.17-r1188 [64] with default 
parameters. Paired-end alignment mode was used except 
for reads that were left unpaired following adapter and 
quality trimming, which were aligned in single-end 
mode. We used a reference genome consisting of assem-
bly version 4 of the Williams82 reference cultivar [65] 
concatenated with reference mitochondrion and chlo-
roplast sequences retrieved from SoyBase [66]. Reads 
aligned using paired-end and single-end mode were then 
merged, sorted, and indexed using samtools v. 1.8 [46] 
and read groups were added using bamaddrg [67]. The 

sorted and indexed BAM files were used as input for all 
downstream analyses requiring mapped reads.

Structural variation discovery from short reads
We called SVs on all 102 samples using four differ-
ent tools: AsmVar [68], Manta [69], SvABA [70], and 
LUMPY-based [71] smoove [72]. We selected this combi-
nation of tools based on the complementarity of their SV 
detection approaches, widespread use within the com-
munity, and performance reported in published bench-
marks. Manta and LUMPY (on which smoove is based) 
performed consistently well across various published 
benchmarks [18–20]. SvABA also performed well in the 
benchmarks published by Kosugi et  al. [20]. Finally, we 
also chose AsmVar because of its purely assembly-based 
approach (contrasting with the other tools) and its use 
in a previous large-scale variation discovery project [73]. 
When calling SVs, we limited the analysis to deletions, 
insertions, inversions, and duplications since their altera-
tions in sequence can be precisely represented to allow 
genotyping from the alignment of sequence reads. While 
we did not explicitly study translocations, alterations in 
sequence that result from a translocation may still appear 
in the dataset as an insertion at one genomic location 
and a deletion at another, even if they are not annotated 
as such. Similarly, we did not explicitly study copy num-
ber variants, but variants defined under this umbrella 
term are still included in our dataset as deletions and 
duplications.

AsmVar calls SVs by comparing de novo genome 
assemblies to a reference genome. Prior to assembly, we 
merged reads that were still paired after trimming using 
FLASH v. 1.2.11 [74]. The rationale behind this was 
that the short size of the inserts in our sequencing data 
allowed several of the read pairs to be merged into longer 
sequences. Reads were grouped into three libraries (sin-
gle-end reads from bbduk, single-end reads merged by 
FLASH, and paired-end reads left unmerged by FLASH) 
and assembled with SOAPdenovo2 v. 2.04 [75] using the 
sparse_pregraph and contig commands, and a k-mer size 
of 49. Contigs were not further assembled into scaffolds 
because we aimed to only call SVs whose sequence was 
entirely resolved. The resulting contigs were aligned to 
the reference genome using LAST v. 1047 [76] by first 
calling the lastal command with options -D1000 -Q0 -e20 
-j4 and then the last-split command with options -m 0.01 
-s30. Variants were called on the LAST alignments using 
ASV_VariantDetector from the AsmVar tool suite (ver-
sion of 2015-04-16) with default parameters. The pipeline 
was run on each sample independently and results were 
subsequently concatenated to obtain a single AsmVar 
VCF file. Variants with a FILTER tag other than “.” were 
filtered out from the resulting call set.
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We ran manta v. 1.6.0 with default parameters in 10 
batches of 10 or 11 randomly grouped samples because 
it did not scale well to the whole population. We used 
the candidate SVs (and not the genotype calls them-
selves) identified by each run for further processing 
and filtered them by removing unresolved breakends 
(SVTYPE=BND). The filtered variants were then con-
verted from symbolic alleles (i.e., DEL, DUP, INS) to 
sequence-explicit ALT alleles using bayesTyperTools 
convertAllele v. 1.5 [31] and combined into a single VCF 
file using bcftools merge (version 1.10.2-105) [46].

We ran SvABA v. 1.1.3 separately on all samples using 
the command svaba run with options --germline -I -L 
6. SvABA produces two different variant sets: one for 
indels, which are already coded as sequence-explicit, and 
another for SVs which are coded as paired breakends. We 
therefore classified SVs into defined types (DEL, DUP, 
INV) based on breakpoint orientation and converted 
them to sequence-specific ALT alleles using an in-house 
R script. The resulting sequence-explicit variants were 
merged using bcftools merge.

We ran smoove v. 0.2.4 on all samples using a series of 
commands. First, smoove call was run separately on each 
sample using default parameters. The variants identified 
were then merged into a single VCF file using smoove 
merge, smoove genotype with options -x -d, and smoove 
paste. Symbolic alleles (<DEL>, <DUP>, and <INV> 
alleles) were converted to explicit sequence representa-
tion using bayesTyperTools convertAllele.

A series of common filters were applied to the SV 
output of all four tools before using them for down-
stream analyses. Specifically, we removed variants span-
ning less than 50 bp or more than 500 kb, those located 
on unanchored scaffolds or organellar genomes, or any 
variant that was not classified as either a deletion, inser-
tion, duplication, or inversion. The 500-kb threshold 
was chosen to ensure computational efficiency in down-
stream applications, but SVs larger than these are also 
expected to be very rare in soybean germplasm [32]. We 
also converted multiallelic variants into biallelic records 
and standardized the representation of all alleles using 
bcftools norm.

Oxford Nanopore sequencing
We selected 17 samples for Oxford Nanopore sequenc-
ing among those sequenced by Illumina. Sixteen (16) of 
them were randomly selected among a subset of 56 lines 
belonging to a core set of Canadian soybean germplasm, 
while the remaining sample (CAD1052/OAC Embro) 
had been selected and sequenced before the others based 
on its higher Illumina sequencing depth. Although sam-
ple selection did not explicitly maximize the number of 
potential SVs assessed, we did verify that the resulting set 

covered the range of variation found in Canadian soybean 
germplasm based on an existing phylogenetic tree [6].

Our sample preparation and sequencing protocols 
evolved throughout the project as we gained experience 
with Oxford Nanopore sequencing. Therefore, we out-
line our latest methods here, but more details regard-
ing the procedures used for each sample can be found 
in Table  S8 (Additional file  1). Accessions selected for 
sequencing were germinated in Jiffy peat pellets (Jiffy 
Group, Zwijndrecht, Netherlands) on the benchtop. 
Young trifoliate leaves were collected between 2 and 3 
weeks after germination, flash frozen in liquid nitrogen 
upon harvest, and stored at − 80 °C until DNA extrac-
tion. Single trifoliate leaves weighing between 20 and 
60 mg were used for each extraction. Liquid nitrogen-
frozen leaves were pulverized on a Qiagen TissueLyser 
instrument (Qiagen, Hilden, Germany) with metal beads 
for four cycles of 30 s each at 30 Hz. The resulting pow-
der was immediately transferred to a CTAB buffer (2% 
CTAB, 0.1 M Tris-HCl pH 8, 0.02 M EDTA pH 8, 1.4 M 
NaCl, 1% (m/v) PVP) and incubated at 60 °C in a water 
bath for 45 min. The lysate recovered after centrifugation 
at 3500 rcf for 10 min was then subjected to an RNase A 
treatment for another 45 min at 60 °C, followed by the 
addition of an equal volume of 24:1 chloroform:isoamyl 
alcohol to the sample and stirring to an emulsion. Follow-
ing centrifugation at 3500 rcf for 15 min, the supernatant 
was recovered and mixed with a 0.7 volume of cold iso-
propanol. This mix was stored at – 80 °C for 20 min and 
centrifuged at 3500 rcf for 30 min, after which the liquid 
was removed. Tubes were rinsed twice with cold 70% 
ethanol, with a centrifugation step after each addition of 
ethanol. After the last rinsing, tubes were left to dry for 3 
min after which pellets were resuspended in 100 μl elu-
tion buffer (Tris-HCl 0.01 M and EDTA 0.001 M, pH 8) 
at 37 °C for an hour, and then stored at 4 °C until use.

Samples were size-selected using the Short Read 
Eliminator kit of Circulomics (Circulomics, Baltimore, 
MD, USA) following the manufacturer’s instructions. 
The size-selected DNA resuspended in the SRE kit’s EB 
buffer was then purified using SparQ magnetic beads and 
resuspended in ddH2O. Typically, between 500 ng and 1 
μg of this DNA was used for Oxford Nanopore library 
preparation using the SQK-LSK109 genomic DNA liga-
tion kit (Oxford Nanopore Technologies, Oxford, UK). 
The library was prepared according to the manufacturer’s 
instructions except for the following details: (1) DNA 
fragmentation was not performed prior to library prepa-
ration, (2) 80% ethanol was used instead of 70% ethanol, 
(3) the bead elution time following DNA repair and end-
prep was increased from 2 to 10 min, (4) the bead elu-
tion time following adapter ligation and clean-up was 
increased from 10 to 15 min and carried out in a water 
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bath set to 37 °C. Typically, between 150 and 400 ng of 
the prepared library quantified using a Qubit fluorom-
eter (Thermo Fisher Scientific, Waltham, MA, USA) were 
used as input to a FLO-MIN106D flowcell (R9 chemistry) 
and run on a MinION for 48 to 72 h using default volt-
age settings. While most accessions were sequenced on a 
single flow cell, three accessions for which the initial yield 
was low (< 9 Gb) were sequenced a second time (using 
DNA from a different plant) to provide sufficient data for 
downstream analyses. More details regarding the Oxford 
Nanopore sequencing of the samples can be found in 
Table S9 (Additional file 1).

Structural variation discovery from Oxford Nanopore data
Raw FAST5 sequencing files were basecalled on a GPU 
using Oxford Nanopore Technologies’ guppy basecaller 
v. 4.0.11 with parameters --flowcell FLO-MIN106 --kit 
SQK-LSK109. Basecalled FASTQ files obtained from 
a single flow cell were concatenated into a single file 
which was used for downstream analyses. Adapters were 
trimmed using Porechop v. 0.2.4 [77] with the option 
--discard_middle. Adapter-trimmed reads were aligned 
using NGMLR v. 0.2.7 [24] with the option -x ont. The 
resulting alignments were sorted and indexed using 
samtools.

At this stage, we merged the BAM files of samples that 
were sequenced on two different flowcells and called SVs 
using Sniffles v. 1.0.11 [24]. We ran Sniffles with param-
eters --min_support 3 (minimum number of reads sup-
porting a variant = 3, default = 10), --min_seq_size 1000 
(minimum read segment length for consideration = 1000, 
default = 2000), and --min_homo_af 0.7 (minimum alter-
nate allele frequency to be considered homozygous = 
0.7, default 0.8). We chose relaxed parameters compared 
to the defaults because our samples are inbred cultivars 
and heterozygosity should therefore be nearly non-exist-
ent. In order to evaluate the impact of sequencing depth 
on SV calling with Sniffles, we performed a subsam-
pling analysis using some of the samples and report the 
detailed methods and results in Additional file 1 (Supple-
mental Methods and Supplemental Figures S7 to S10).

We applied a series of filters to the SVs in order to 
remove any spurious calls that could affect downstream 
analyses. Any variants called on organellar genomes or 
unanchored scaffolds were filtered out, along with any 
variants smaller than 50 nucleotides or larger than 500 
kb. We only retained deletions, insertions, inversions, and 
duplications for further analyses, discarding unresolved 
breakpoints (SVTYPE=BND) as well as other complex 
types such as DEL/INV, DUP/INS, INVDUP, and INV/
INVDUP. We removed variants called as heterozygous 
since heterozygous genotype calls are very likely to be 
spurious in these inbred lines. In order to avoid calling 

artificial variants in ambiguous regions of the genome 
(stretches of “N” due to imperfectly assembled regions 
of the reference genome), we also removed variants that 
overlapped any “N” in the reference as well as any inser-
tion located less than 20 nucleotides away from any “N” 
in the reference.

The location of SVs as well as the insertion sequences 
reported by Sniffles are necessarily imperfect as they are 
based on error-prone Oxford Nanopore reads (on aver-
age 8–10% error rate based on the percent identity of our 
alignments). We therefore assembled a pipeline to refine 
the breakpoint location and the sequence content of the 
deletions and insertions found by Sniffles. Duplications 
and inversions were not considered for SV refinement 
because the inherent complexity of these variants made 
it difficult to accurately assemble them from our data. 
We briefly describe the pipeline here, but more details 
can be found in Additional file  1 (Supplemental Meth-
ods, Table S10 and Figures S26 to S28). Our breakpoint 
refinement pipeline starts by locally assembling all reads 
that were mapped by NGMLR to positions ± 200 bp 
from the location of the SV using wtdbg2 v. 2.5 [42]. The 
same reads are then aligned to the assembled sequence 
using minimap2 v. 2.17-r974 [43] to polish the assembly 
sequence using the consensus module of wtdbg2. The 
resulting polished assembly is subsequently aligned to the 
local region of the reference genome using AGE (commit 
6fa60999, github.​com/​abyzo​vlab/​AGE) [40]. The coordi-
nates of the SV and insertion sequence content are then 
optionally updated from the information provided by 
the AGE alignment. When the alignment did not suggest 
suitable replacement coordinates or insertion content for 
a given SV, we simply used its representation as initially 
defined by Sniffles for downstream analyses instead. Fol-
lowing breakpoint refinement, the representation of the 
alleles was standardized using bcftools norm.

Structural variant genotyping and benchmarking
We genotyped SVs on all 102 Illumina samples with Para-
graph v. 2.4a [29] using three different candidate SV sets. 
The first candidate SV set included only variants discov-
ered from the Illumina data and was used to assess the 
performance of SV discovery from Illumina data alone. 
The second candidate SV set included only variants dis-
covered from Oxford Nanopore data and was similarly 
used to assess the performance of genotyping those vari-
ants with Illumina data. The third and last candidate SV 
set comprised variants discovered using both Illumina 
and Oxford Nanopore data and was used for the popu-
lation-scale analyses on population genetics, location of 
variants relative to gene models, and polymorphic TEs. 
Despite the superior performance of long-read data 
for SV discovery, we decided to also include variants 

http://github.com/abyzovlab/AGE
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discovered from the Illumina data in the final SV set as 
they encompassed all samples.

For genotyping SVs discovered from Illumina data, the 
VCF files of all discovery tools (AsmVar, Manta, SvABA, 
smoove) were merged together using SVmerge (com-
mit 6a18fa3d2, github.​com/​nhans​en/​SVana​lyzer) [45] 
with parameters -maxdist 15 -reldist 0.2 -relsizediff 0.1 
-relshift 0.1. Parameters were chosen in order to merge 
slightly differing representations of alleles that were puta-
tively identical from a biological point of view while pre-
serving true allele diversity at a given position.

SVs discovered from Oxford Nanopore data were also 
merged across samples using SVmerge with the same 
parameters as described above. However, for Oxford 
Nanopore variants, we modified SVmerge’s default 
behavior which selects an allele randomly from a given 
SV cluster. Instead, we forced the random selection to be 
made among the alleles that had been refined by the SV 
refinement pipeline, if any, to favor those alleles whose 
representation was hopefully closer to biological reality.

For the last candidate SV set combining Illumina and 
Oxford Nanopore variants, the two datasets described 
above were merged using SVmerge. The default behav-
ior of SVmerge was again overridden by systematically 
sampling among the alleles found by Illumina whenever 
a SV cluster contained alleles found by both Illumina and 
Oxford Nanopore. Despite the greater power of Oxford 
Nanopore data in discovering SVs, our reasoning was 
that if a variant was discovered by both sequencing tech-
nologies, then the Illumina data was likely more precise 
given its higher basecalling accuracy. While many false 
positive SV calls are likely to have made their way in the 
candidate SV dataset, our approach has been to feed 
Paragraph with a candidate set as exhaustive as possible 
for genotyping and rely on the accuracy of its genotyping 
model to avoid genotyping false positive SVs. Under this 
assumption, the genotypes of SVs that simply do not exist 
in the dataset should be called as homozygous for the ref-
erence allele in all samples. Consistent with this expecta-
tion, 32.3% of the SVs in the raw output of Paragraph had 
an alternate allele frequency of 0.

The methods used for genotyping were identical for all 
three candidate SV sets. We prepared the VCF files for 
input to Paragraph by removing variants located less than 
1 kb away from chromosome ends and padding the allele 
representations as required by Paragraph. We genotyped 
the 102 Illumina samples aligned by bwa mem following 
the recommendations outlined by Paragraph for popula-
tion-scale genotyping, i.e., the variants were genotyped 
independently for each sample with multigrmpy, setting 
the -M option to 20 times the average sequencing depth 
for the sample.

We compared the genotyping results of the three gen-
otyped datasets against the Oxford Nanopore SV set in 
order to assess genotyping sensitivity and precision. For 
this analysis, the set of variants called from the Oxford 
Nanopore data by Sniffles and subsequently refined was 
considered to be the truth. Structural variation calls 
made from Oxford Nanopore data may also be errone-
ous, especially for smaller variants [2], so this approach 
of treating Oxford Nanopore dataset as the ground truth 
is necessarily imperfect but nevertheless provides a good 
comparison basis for our purposes.

We compared the SV genotype calls to the ground 
truth set using the R package sveval v. 2.0.0 [30]. For 
each of the 17 samples for which Oxford Nanopore data 
was available, we compared the genotype calls made by 
Paragraph to the SVs identified in the Oxford Nanop-
ore data for that sample. SVs genotyped as homozygous 
for the alternate allele by Paragraph and present in the 
Nanopore set were considered true positives, while SVs 
genotyped as homozygous for the alternate allele by Para-
graph but absent from the Nanopore set were considered 
false positives. Note that, for benchmarking purposes, we 
essentially ignored heterozygous genotype calls made by 
Paragraph since the truth set only contained homozygous 
calls as expected for inbred lines. Sensitivity was defined 
as the ratio of the number of true positive calls to the 
total number of SVs in the truth set, and precision as the 
ratio of the number of true positive calls to the sum of 
true and false positive calls. We computed sample-wise 
precision-recall curves for various SV size classes and SV 
types by using a range of read count thresholds (number 
of reads required to support a genotype call) to filter the 
Paragraph genotype calls. We required sveval to explic-
itly compare insertion sequences by setting ins.seq.comp 
= TRUE, but we otherwise used default settings. We 
extended sveval’s functionality by also assessing duplica-
tions under the same overlap conditions as the package 
already provides for deletions and inversions. Bench-
marks were performed both on the complete set of SVs 
and on a subset of SVs located in non-repeat regions in 
order to assess the contribution of repeats to genotyp-
ing errors. A SV was defined as belonging to a repetitive 
region if it had a 20% or higher overlap to regions in the 
repeat annotation for the Williams82 assembly version 4 
retrieved from Phytozome [78].

For the SVs discovered by Illumina, we computed addi-
tional precision-recall curves by filtering the SVs in the 
dataset genotyped by Paragraph based on two different 
metrics of SV quality: (1) the number of times the alter-
nate allele is observed in homozygous genotype calls 
across the whole population (referred to hereafter as the 
homozygous ALT count) and (2) the number of calling 
tools (out of a maximum of four) that originally reported 

http://github.com/nhansen/SVanalyzer
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the SV. The more stringent homozygous ALT count was 
used instead of alternate allele frequency as a measure of 
the frequency of the SV in the population since true SVs 
are expected to be homozygous for the alternate allele in 
these inbred lines. Note that both of these quality meas-
ures (homozygous ALT count and the number of tools 
supporting an SV) effectively filter SV records and not 
individual genotype calls. The objective of these analyses 
was to see whether filtering on SV frequency or calling-
tool support for variants could result in a higher-quality 
dataset.

Population genetics analyses
We used the set of merged Illumina and Oxford Nanop-
ore SVs genotyped by Paragraph to evaluate whether SV 
calls could replicate population genetics analyses (struc-
ture, PCA, and phylogenetic tree) made from SNV calls. 
We applied methods similar to Torkamaneh et al. [6] in 
order to compute population structure for the 102-sam-
ple population. We called SNVs using Platypus v. 0.8.1.1 
[52] with parameters --minMapQual=20 --minBase-
Qual=20 --maxVariants=10 --filterReadsWithUn-
mappedMates=0 --filterReadsWithDistantMates=0 
--filterReadPairsWithSmallInserts=0. We filtered Platy-
pus calls to keep only biallelic SNVs located on any of the 
20 reference chromosomes. We only retained SNVs with 
a minor allele frequency ≥ 0.05, proportion of missing 
sites ≤ 0.4, and heterozygosity rate ≤ 0.1. The resulting 
1.27 M SNVs were converted to PLINK BED format [53] 
and used as input to fastStructure v. 1.0 [79] using k = 5 
as determined by Torkamaneh et al. [6]. A PCA was also 
computed on those SNVs using PLINK v1.90b5.3 with 
default parameters. Finally, we used the same SNV data-
set to build a neighbor-joining phylogenetic tree with the 
PHYLIP package v. 3.697 [80] using pairwise distances 
computed with PLINK. We computed support for each 
node in the tree using a bootstrapping approach by sam-
pling with replacement from the VCF file of SNVs 100 
times and computing a new neighbor-joining tree from 
each such sample. The number of bootstrap trees sup-
porting each node was then assessed using the prop.
clades function the ape R package v. 5.4.1 [81].

The same population genetics analyses were also per-
formed on the population-scale dataset of Illumina/
Oxford Nanopore SVs genotyped with Paragraph. For 
these analyses, we filtered SV genotype calls by setting 
those with less than two supporting reads to missing. We 
also removed duplications, inversions, and records with 
a homozygous ALT count < 4 or a proportion of missing 
sites ≥ 0.4. The resulting filtered SV dataset was used to 
compute population structure with fastStructure, PCA 
with PLINK, and neighbor-joining tree with PLINK and 
PHYLIP using the same methods as described for SNVs. 

To test for correlation between the pairwise distance 
matrices computed from SNVs and SVs, we performed 
a two-sided Mantel test with 999 permutations using the 
mantel.test function of the ape R package.

Since the statistical methods implemented by the pro-
grams used above do not depend on an evolutionary 
model of changes in DNA sequence but rather simply on 
genotype calls, these methods could be applied to the SV 
dataset in exactly the same way as for SNVs.

Potential impact on genes
We annotated deletions and insertions based on their 
overlap with various gene features. We retrieved the posi-
tions of the gene models for Williams82 assembly 4 from 
Phytozome [78] and determined for each SV whether it 
overlapped any of the following genic features: coding 
sequences, non-coding genic sequences, and regions 5 kb 
upstream of genes. These categories were mutually exclu-
sive, such that an SV overlapping both coding and non-
coding sequences was only labeled as “coding sequences.” 
Similarly, an SV was only labeled as “5 kb upstream” if it 
did not overlap any genic sequences. The SVs that over-
lapped none of the features described above were labeled 
as “intergenic.”

We first used these annotations to assess whether SVs 
were over- or underrepresented within particular genic 
features by comparing the observed proportions of dele-
tions and insertions overlapping each feature to what 
would be expected by chance. We used three different 
measures of random expectation of the proportion of 
SVs overlapping genic features. The first measure was a 
naive comparison to the proportion of the genome corre-
sponding to each genic feature. This comparison is how-
ever biased because repetitive regions (which are largely 
non-genic) are less effectively queried for SVs than non-
repetitive genic regions. Therefore, we also replicated the 
analysis by excluding repeated regions, which provided a 
second measure of random expectation. Finally, we per-
formed a randomization test by estimating the distribu-
tion over the proportions of SVs that would be expected 
to overlap each genic feature by random chance. This 
was done by shuffling the start positions of SVs within 
the 100-kb genome-tiling bins in which they are located 
5000 times and annotating them with the genic features 
overlapped. We used 100-kb bins tiled along the whole 
genome instead of shuffling the positions genome-
wide to take into consideration the heterogeneity of the 
genome while allowing SVs to be repositioned in a gene-
agnostic manner.

We also used the genic feature annotations to study 
differences in mean alternate allele frequencies of SVs 
depending on the features they overlapped. We averaged 
the frequencies of insertions and deletions overlapping 
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each of the four genic features and computed the differ-
ence between the mean SV frequencies for each of the 
six possible pairwise combinations of features. SVs with 
a frequency of 1 in the population were excluded from 
this analysis because they might be due to errors in the 
reference assembly. Statistical significance was assessed 
using a randomization test by shuffling the genic feature 
annotations 10,000 times to get a distribution of mean 
SV frequency differences between feature groups under 
a random scenario. We computed one-sided p-values by 
comparing the observed values to the random distribu-
tions thus generated, using a significance threshold of α 
= 0.05 / 6 = 0.0083 to compensate for multiple testing.

Finally, we carried out enrichment analyses of GO 
[82] Biological Process terms and PFAM domains [83] 
to assess whether high-frequency gene-impacting SVs 
were associated with particular biological functions. 
We identified insertions and deletions with an alternate 
allele frequency ≥ 0.5 and < 1 among those overlapping 
coding sequences and found 546 genes overlapped by 
such SVs. These genes constituted our gene set of inter-
est for the enrichment analyses. We used the GOstats 
Bioconductor package v. 2.56.0 [54] along with GO and 
PFAM annotations for Williams82 assembly version 4 
retrieved from Soybase on April 20, 2021, to test this 
gene set for over- and underrepresentation of particular 
GO Biological Process terms or PFAM protein domains. 
We only tested GO terms and PFAM domains that were 
represented by at least 20 and 10 genes, respectively. For 
the GO terms, we used the conditional test as imple-
mented in GOstats and the GO.db annotation package 
v. 3.12.1 [84]. We applied a Bonferroni correction to the 
p-values of both the GO and PFAM enrichment tests 
by multiplying the p-values by the number of terms/
domains tested.

Transposable elements
We annotated TEs in the SVs discovered using the SoyT-
Edb database [48] downloaded from SoyBase [66]. We 
queried the deleted or inserted sequences of all deletions 
and insertions ≥ 100 bp against SoyTEdb using blastn 
v. 2.11.0+ [85] with default parameters. Any queried 
sequence that aligned to a TE in the database with at least 
80% of the query length and 80% of the length of the TE 
sequence was considered a match and annotated accord-
ingly with the classification of the best-matching TE. All 
alignments that matched these criteria had an extremely 
small E-value (< 10−80) and therefore no additional filter-
ing on this was needed.

The annotated SVs were then used to determine both 
the proportion of polymorphic TEs belonging to each 
category and the physical location of polymorphic TEs 
in the genome. We also computed the proportions of 

TEs ≥ 100 bp in each category within the reference 
repeat annotation from Phytozome and compared 
those to the estimated proportions in the SV dataset. 
The estimated number of polymorphic TEs within vari-
ous LTR retrotransposon families and DNA TE types 
were also compared to the number of non-reference 
TEs found by Tian et  al. [38] to check whether our 
results were consistent with previous reports.

Soybean DNA TEs have received little attention com-
pared to retrotransposons, which are more prevalent 
and polymorphic in this species (e.g., [38, 86]). DNA 
TEs that have TIR typically transpose using a “cut and 
paste” mechanism. This mechanism generates a TSD 
upon insertion into the genome and leaves this TSD as 
well as possible additional nucleotides upon excision 
due to DNA repair [87]. In order to study the dynam-
ics of polymorphic DNA TEs within our population, we 
devised a pipeline based on local assembly and multiple 
sequence alignment of the DNA TE insertions. Briefly, 
the pipeline locally assembles Oxford Nanopore reads 
surrounding the sites of polymorphic DNA TEs for 
all samples using wtdbg2 and aligns these assemblies 
to each other using MAFFT v. 7.475 [50] before iden-
tifying TIR and TSD sequences with Generic Repeat 
Finder v. 1.0 [51]. For more details on the pipeline, see 
Supplemental Methods (Additional file  1). Our goal 
with this pipeline was to determine whether the inser-
tion/deletion polymorphisms at various sites were due 
to novel TE insertion, TE excision, or a combination of 
both phenomena. We applied this pipeline to SVs that 
were annotated as TIR DNA TEs and whose matching 
sequence in the SoyTEdb database was matched by at 
least three SVs. We limited ourselves to TE sequences 
that were matched by at least three SV events under the 
assumption that TEs present in multiple copies were 
more likely to have been recently active. For insertions 
that had both TIR and TSD sequences unambiguously 
identified, we computed the proportion of match-
ing nucleotides in the alignment of the two terminal 
repeats and averaged the values across all local assem-
blies bearing the insertion in order to get a single value 
for that SV.

Software used
Unless otherwise stated, all statistical analyses and data 
manipulation were conducted in R version 3.5.0 or 4.0.3 
[88] and Bioconductor version 3.08 or 3.12 [89]. Analyses 
made use of Bioconductor packages Biostrings v. 2.58.0 
[49], GenomicRanges v. 1.42.0 [44], Rsamtools v. 2.6.0 
[90], rtracklayer v. 1.50.0 [91], and VariantAnnotation v. 
1.36.0 [92]. All scripts used for the analyses described in 
this paper are available on GitHub [93].
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